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The real-time monitoring of corn yield by a combine harvester is a critical data

source for constructing the yield histogram, which significantly benefits precision

management and decision-making in modern precision agriculture. While widely

used, the current photoelectric sensor-based yield monitoring method has

limitations. It detects the corn height on each scraper and calculates the yield

through a geometric formula. However, it neglects the noticeable difference in the

corn stacking patterns affected by factors such as feeding volume, terrain, and

driving speed. This oversight often results in low accuracy and poor stability in the

prediction of corn yield, highlighting the need for a more advanced approach. To

resolve this, we employ EDEM discrete element simulation to demonstrate the large

difference of corn stacking patterns on the scraper of the elevator corresponding to

feeding volume. Then, we develop a real-time monitoring system on our self-

developed double elevator testing rig for carrying out a composite dataset for

training three machine learning algorithm-based models, namely Deep Neural

Networks (DNN), Gradient Boosting Machine (GBM), and Random Forest (RF).

Importantly, these models have undergone rigorous validation under various

feeding volumes, ensuring their robustness and reliability. The auxiliary elevator

speed is meticulously set at 150r/min, 225r/min, and 450r/min, providing a

comprehensive performance assessment. The results denote that the DNN model

performs best and is stable, with a coefficient of determination (R2) of 0.998, root

mean square error (RMSE) of 0.526, and mean absolute error (MAE) of 0.425. The

paper also performs field experiments to test the proposed three prediction models

and the system. The results also denote the DNN-based prediction model’s best

performance for the lowest relative error of 2.29% and the highest average accuracy

of 97.85%. Consequently, the proposed real-time corn yield monitoring system

achieves high accuracy and reliability for the combine harvester applications.
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1 Introduction

Precision agriculture is a modern management approach supported

by information technology that relies on multidimensional and accurate

data to provide rational management decisions (Wang, 1999; Zhao et al.,

2003; Reinke et al., 2011). Instantaneous grain flow rate is key to

generating an accurate yield map. Each block of information on the

yield map is derived from the instantaneous grain flow rate data. Only

precise instantaneous flow rate information can ensure the accuracy of

the yield map. Therefore, real-time yield information can generate a yield

map, enabling agricultural producers better to understand the dynamics

of field variability and crop growth to adjust the crop management

strategies for the next planting round (Mistry and Bora, 2019). As the

world’s most important and productive crop, corn accounted for 35% of

the world’s total crop in 2018. It is also one of the three significant crops

in China. Hence, it is essential to implement real-time yield monitoring

during corn harvesting.

Corn yield monitoring can be achieved by different methods,

including sample estimation, remote sensing, Internet of Things

(IoT) technology, and direct measurement on a combine harvester

(Zhang, 2003; Veal et al., 2010; Zhu et al., 2018; Omasa et al., 2022;

Yin et al., 2022) in which sample estimation highly depends on the

representative and sampling frequency. Unfortunately, the accuracy

can hardly be assured. Remote sensing technology restricts the

accuracy due to cloud coverage, image resolution, and algorithms.

The Internet of Things (IoT) has a high cost for deploying abundant

sensors and equipment, resulting in complicated data processing.

None of the abovementioned methods is feasible for monitoring the

corn yield in real-time. Hence, this study aims to develop direct

measurement methods deployed in combine harvesters to realize

real-time yield monitoring during harvesting. Currently, the direct

measurement methods used in combine harvesters are categorized

into dynamic weighing, impulsive, volumetric, and ray

measurements (Wang et al., 2021). More research has been

carried out based on impulsive and volumetric measurement

methods. Chen et al. (Chen et al., 2010) designed a double-plate

differential impulsive grain flow sensor and demonstrated good

measurement accuracy in field trials. Zhou et al. (Zhou et al., 2006)

designed a parallel beam impulsive grain mass flow sensor as the

core of the yield measurement system. However, the pulse beam of

the impulse sensor is relatively narrow, and the sensor installation is

complex, which hinders the method’s practical application under

complex field and working conditions. Fu et al. (Fu et al., 2017) used

a diffuse reflective photoelectric sensor to measure the pulse signal,

established a segmented grain yield conversion model, and further

outcome a measurement system. Jin et al. (Chengqian et al., 2022)

adopted a pair of opposed photoelectric sensors to obtain the data

and predict the yield upon the duty cycle and a yield measurement

model, reporting a maximum error of 3.83% in field trials. All the

above studies provide an essential base for utilizing direct

measurement methods while developing a real-time monitoring

system for yield prediction in field scenarios.

The following problems still exist in yield measurement with

photoelectric sensors: 1) pre-experimentation before each test is

necessary for calibration, but performing it in fields can be complex,

cumbersome, and lacks maneuverability; 2) prediction with a
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scraper-geometric formula is inaccurate since the corn stacking

pattern during lifting on a scraper can be varied corresponding to

multiple factors including feeding volume, driving speed, and slope

of elevator and terrain.

In recent years, machine learning, as a core of artificial

intelligence (Shaikh et al., 2022), has been increasingly used in

field applications (Zhang, 2021), producing from a large amount of

data and making decisions to promote the efficiency of agricultural

production (Van Klompenburg et al., 2020). Liu et al. (Liu et al.,

2019) utilized the random forest algorithm to construct a

multivariate combination model for the regression and prediction

of winter wheat yield. Zhou et al. (Zhou et al., 2023) studied four

machine learning algorithms, multiple linear regression, random

forest, adaptive augmentation model, and artificial neural network,

to build a model for predicting soybean yield and weighing the

influencing factors.

This paper aims to study yield monitoring using machine

learning methods. Through EDEM discrete element modeling and

simulation, it simulates the corn kernel elevating process under

different feed rates and verifies that the accumulation pattern of

corn kernels on the scraper is not fixed (Owen and Cleary, 2009). As

a novel approach, we first built an indoor testing rig to mimic the

corn elevating and measure the corn volume rate in real-time with

our developed data acquisition system based on the low pulse-width

measuring method. We designed tests for a composite situation and

trained yield prediction models using three machine learning

algorithms: deep neural network (DNN), gradient boosting

machine (GBM), and random forest (RF). Comparative indoor

and in-field experiments were then conducted to verify the

feasibility and accuracy of the proposed corn yield monitoring

system and determine the most appropriate prediction model.
2 Materials and methods

2.1 Mechanism of stacked corn
height acquisition

A photoelectric-based yield monitoring system often deploys

sensors near the top of a combine’s elevator, as shown in Figure 1A.

The system mainly detects the height of the stacked corn on each

scraper in the elevator and predicts the yield by a model with its

schematic diagram shown in Figure 1B. In a harvester, the auger

and elevator jointly operate to convey the corn to the harvester’s

tank. The auger horizontally transports the corn while the elevator

transports the corn to the tank in an inclined or quasi-vertical

direction. The system uses an opposed beam-type photoelectric

sensor, whose one end emits an infrared light beam in a certain area

while the other outputs a variant signal to inform whether or not an

object blocks the beam. The NPN-type sensor outputs a high level

when the beam is fully received and a low level when the beam is

blocked. The sensor is installed at the top of the elevator because

kernels on the internal scraper may fall off during the lifting process

during the transfer of corn kernels by the elevator. Installing the

sensor at the bottom or middle of the elevator would result in

significant errors. A proper sensor position can avoid signal
frontiersin.org
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interference and measurement errors caused by corn drops. The

mechanism of the corn yield monitoring system in the present

paper is as follows: in non-loading conditions, the shading time by a

lifting scraper is t0, which denotes the time of the sensor’s low pulse

width output.

During the harvesting process, the system operates as follows:

the time interval between the two adjacent scrapers is T, which

refers to two adjacent rising edges of the signal. In the non-loading

condition, the idling low pulse width time ratio is P0=t0/T,

representing the duty cycle per cycle time. Each scraper’s masking

time is t1, which is the observed low pulse width time passing the

scraper and stacked corn. Therefore, the masking ratio is P1=t1/T,

denoting the scraper and corn’s time ratio over each cycle. Then, the

masking time ratio for corn is extracted by Pg=P1-P0, and the

stacked corn height is h1=H*Pg, where H is the height between two

adjacent scrapers. We also obtain that,

hn = H(
tn
T
−
t0
T
) (1)

where, hn is the staking corn height on the nth scraper, and tn is

the masking time of the nth scraper.
2.2 Harvest yield monitoring
system composition

According to the requirements, the study builds the monitoring

system upon a pair of photoelectric sensors, a GNSS positioning

module, an antenna, a power supply unit, a data acquisition card,

and a triple-proof computer. The photoelectric sensor is the Omron

E3FA-RN21, and the data acquisition board is the Beijing Simai

Kehua’s USB-1252A with 40 ns for the pulse width measuring time.

The GNSS module is Beiyun Technology’s high-precision

positioning and directional receiver T1, used for obtaining real-

time position information of the corn harvester. The power supply

unit reduces the 12V to 5V to power the data acquisition card while

powering 12V to other equipment. The system uses a triple-proof

computer for operation, real-time yield prediction, and other

information displays.

The study adopts LabVIEW for system software, which includes

parameter and function settings, graphical displays of corn yield,
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numerical displays of monitoring parameters, GPS-related

parameters, and equipment connection status, as shown in

Figure 2A. A parameter setting is required before starting yield

monitoring. The parameter setting configures the chain’s cross-

sectional area, the scraper’s length, width, and thickness, the space

between neighboring scrapers, and the elevator’s gear numbers.

Afterward, a no-load preprocessing test is required to obtain the

combine harvester’s raw scraper shading duty ratio (initial low

pulse width time to cycle time ratio) and then input information

such as maize weight determination, GPS serial channel, and save

path. The function setting configures the corn weight correction

factor, GPS serial channel, and directory path. The setting also

requires performing a non-loading test to obtain the harvester’s

idling low pulse width time ratio. The acquisition board acquires the

sensor signals’ high- and low-level variation at a high speed. The

board converts signals’ variations into low pulse width and cycle

time variables. Then it transmits them to the system to calculate the

staking corn height and the masking time for each scraper. The

system introduces these parameters and variables into the yield

prediction model for outputting the instantaneous corn flow rate

and cumulative weight. Lastly, the system saves data, including

time, instantaneous yield, cumulative weight, latitude, longitude,

and driving speed, in a file following the directory path. Figure 2B

shows the whole workflow of the corn harvester’s yield

monitoring system.
2.3 EDEM Simulation of corn elevating

2.3.1 Corn kernel and elevator modeling
Due to the high elevator speed of the combine harvester under

field operating conditions, it is difficult to capture accurate

observations. Additionally, during the lifting process, corn kernels

may fall, making it impossible to directly observe the accumulation

of corn kernels through effective means. Therefore, EDEM

simulation can be used to observe the changes in corn

morphology under different feed rates. To realize this, we adopt

EDEM software to simulate and analyze the corn stacking behavior

on the elevator scraper associated with different feeding amounts.

Firstly, a corn kernel model is constructed in EDEM to represent a

physical corn. The study repeats measurements several times and
FIGURE 1

Schematic diagram of (A) harvesting process of a combine harvester, and (B) developing a system for monitoring the harvester's working process.
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takes the average value, having the three dimensions of a corn

kernel as 12.8mm in length, 9mm in width, and 5mm in thickness.

The study utilizes 15 small spheres to combine and generate the

corn model shown in Figure 3A. Next, the elevator is determined to

have an equal scale to the actual harvester’s elevator and is built in

SolidWorks, as shown in Figure 3B. The elevator’s side wall and
Frontiers in Plant Science 04
chain are made of steel, while the scraper is made of rubber.

According to the literature (Wang et al., 2016) corn kernels

constantly collide with the elevator’s inner wall, chain, and

scraper. Thus, the mechanical properties of corn, scraper, and

elevator are carefully determined (Liu et al., 2022; Hongmei et al.,

2023), as are the collision parameters. Table 1 demonstrates the
FIGURE 2

(A) System function interface design diagram and (B) system function flowchart. 1. Maize yield infographic display module. 2. Device connection
status display module. 3. Numerical display module for monitoring parameters. 4. GPS related parameter display module. 5. Function setting module.
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properties mentioned above. The collision model used in the

simulation is Hertz-Mindlin (no slip), and the friction model is

Standard Rolling Friction.

2.3.2 Lifting configuration and simulation
The model only keeps the elevator and discards the auger to

reduce the computational cost and guarantee the smoothness of the

simulation. The structure’s transparency is set to 0.3 to visualize the

animation. Most harvesters’ elevators tilt between 5° and 15°. Such

an angle allows corn to flow over the scraper while avoiding uneven

stacking or slippage. In this study, the tilt angle q is 15°. The

elevator’s cross-sectional area is 300mm in length and 150mm in

width. A rectangle of the same size is 150mm from the bottom of

the elevator. This position is determined where the auger feeds corn

into the elevator. The software uses this rectangular area as the corn

plant to generate corn kernels, as displayed in Figure 4.

In the harvesting circumstance, the feeding rate or feeding

amount varies in terms of corn density and operating parameters.
Frontiers in Plant Science 05
The feeding amount, in turn, dramatically affects the corn stacking

pattern on the scraper. The study simulates three conditions

regarding low, medium, and high feeding amounts for a

comprehensive investigation and analysis. The study utilizes

rotary and linear motions for scrapers and chains to lift the corn

kernels for the additive motion. The elevator’s rotational speed

ranges from 500 to 600r/min, with the linear motion speed being

2.5m/s since the elevator can constantly rotate in a harvester. The

elevator model in the simulation is constructed based on the actual

elevator of the combine harvester. The corn feed rates required for

the simulation under different conditions are calculated by

measuring the height between the scrapers in the elevator. After

calculation, the initial corn weight of 2 kg, 5 kg, and 8 kg meets the

demand to simulate low, medium, and high feed rate scenarios.
2.3.3 Morphological analysis of corn
kernel stacking

Figure 5 demonstrates the morphology of corn stacking in terms

of different feeding amounts. When the plant imports 2kg of corn

kernels, the kernels pile up at the outer end of the scraper while the

inner end has less corn. The morphology of stacking corn retains a

similar shape while lifting the scraper, indicating a stable stacking

process that is not significantly affected by the elevator tilt and gravity.

The stable shape of the corn accumulation is observed as a

trigonometry. When the plant imports 5kg of corn kernels, the

corn stacking on the scraper is centered and piles up at the outer

end when the scraper rotates at the bottom of the elevator. However,

corn deviates to the inner end during lifting: the elevator tilt and

gravity cause the phenomenon. The morphology varies from the light

feeding amount, and the final morphology becomes a rectangle.

When the plant imports 8kg of corn kernels, the outer end of the

scraper is full of corn. When the scraper ascends, the tilt and gravity

compress the corn towards the inner end, resulting in higher inner

accumulation than the outer. Moreover, the final morphology is a

trapezium, and the incline angle tends to parallel the scraper. Based

on the analysis, the morphology of corn stacking patterns on the

scraper varies via lifting at different feeding amounts. Therefore, it is

reasonable that a simple mathematical model only formulated by the

scraper geometry will be inaccurate for predicting the yield. Repetitive
TABLE 1 Individual material and contact parameter settings.

Material Parameter Value

Corn kernels
Poisson’s ratio

Shear modulus/Pa
Density/(kg/m3)

0.4
2.17×108

1250

Steel plate
Poisson’s ratio

Shear modulus/Pa
Density/(kg/m3)

0.3
7.0×108

7800

Rubber
Poisson’s ratio

Shear modulus/Pa
Density/(kg/m3)

0.45
0.5×108

1300

Corn kernels
with corn kernels

Recovery coefficient
Static friction factor
Rolling friction factor

0.182
0.420
0.080

Corn kernels
with rubber

Recovery coefficient
Static friction factor
Rolling friction factor

0.500
0.450
0.035

Corn kernels
with steel plate

Recovery coefficient
Static friction factor
Rolling friction factor

0.532
0.482
0.092
FIGURE 3

Necessary elements in the EDEM model (A) single corn particle model (B) elevator model.
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corrections of such a model are required when the harvester operates

at different feeding conditions, which is cumbersome, inconvenient,

and lacks maneuverability.
2.3.4 Yield prediction model construction
During the field operation of the combine harvester, the scraper

in the elevator conveys the grain into the grain tank. During this

process, the height information of corn kernels on the elevator

scraper is the most crucial data for reflecting the yield of the

combine harvester. This information is also the most effectively and

conveniently one to be collected by a system, and can well-illustrate

the variation of flow rate and instantaneous yield. In this process, the

system is well-designed to collect the variable value of the grain pile

height inside the elevator, which best reflects the accumulation of

kernels on the scraper at each instance. Deep Neural Network
Frontiers in Plant Science 06
(DNN), Gradient Boosting Machine (GBM), and Random Forest

(RF) are trained to construct a yield prediction model under the

composite condition. Then, the study tests these models’

performances with three working conditions. The coefficient of

determination (R2), root mean square error (RMSE), and mean

absolute error (MAE) are the model evaluation metrics. R² is

chosen to better reflect the goodness of fit of the model, thereby

evaluating the overall predictive performance of the system. RMSE

and MAE are selected to reflect the average error between the

predicted and actual values, allowing for the assessment of the

system’s accuracy and precision. The coefficient of determination

evaluates the fitting effect of the models, with its value closer to 1

indicating a better model fitting and the overall performance of the

system is improved. The root mean square and absolute errors assess

the model’s accuracy, whose values closer to 0 indicate more precise

predictions and the higher the accuracy and precision of the system.
FIGURE 4

Simplified elevator and bottom built pellet plant plane.
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3 Result and discussion

3.1 Indoor elevating experiment and yield
prediction model

3.1.1 Indoor double-elevator testing rig
The experimental bench is designed according to the structure

and size of the 4YL-6 (8568) corn harvester’s internal elevator,

independently developed by the National Innovation Centre for
Frontiers in Plant Science 07
Agricultural Machinery and Equipment. It mainly consists of six

parts: the main elevator, weighing bucket, transfer bin, auxiliary

elevator, sieve, and feeding bin, which are capable of completing the

functions of maize circulation and real-time weighing. Two DC

motors drive the main elevator, auxiliary elevators, and auger. The

sensor bracket is used to fix the opposite-type photoelectric sensor

on the main elevator, as shown in Figure 6A. The weighing bucket

with a maximum capacity of 100 kg is designed to accommodate the

corn discharged by the elevator. In order to obtain the accurate
FIGURE 6

Composition diagram of the test stand. 1. Main elevator. 2. Weighing bucket. 3. Transfer bin. 4. Auxiliary elevator. 5. Sieve. 6. Feeding bin. (A) is the
sensor bracket installing on the top of elevator, (B) shows weighing sensors, and (C) is the display instrument.
FIGURE 5

Corn accumulation at different feed rates. (A) The side view morphology at low feed rate, (B) at moderate feed rate, and (C) at high feed rate.
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weight of the harvested corn in real-time, we adopt a three-point

measurement method is used for weighing by adding high-precision

spoke weighing sensors, as shown in Figure 6B. The weighing

sensor model is Decent DSLF-102, with a 0-100kg range and a

measurement accuracy error of less than 0.05%. As illustrated in

Figure 6C, the rig installs a frequency converter to control the motor

speed, allowing the elevator and auger speed adjustment by varying

the frequency of the converter.
3.1.2 Establishment of yield dataset
The study designs the training dataset under a composite

working condition and a verification dataset under three

independent working conditions, including low, medium, and

high feeding amounts. Jin et al. (Chengqian et al., 2022) studied

the grain accumulation patterns at different elevator speeds,

however, the investigation of the effect of the accumulation

patterns under varying feed rates is not obvious. This study

proposes using different auxiliary elevator speeds to generate

obvious feed rate changes during actual operations, providing a

more comprehensive analysis of corn kernel accumulation patterns

inside the elevator. In the experiment, the main elevator’s speed is

set at a constant 550 r/min. The low feeding amount signifies the

auxiliary elevator’s speed of 150 r/min, 225 r/min for the medium,

and 450 r/min for the high. The height and maize bucket’s weight

information are synchronously collected. During each test, the

system collects the height information of the corn pile on the

main elevator’s scraping board. The weighing sensor records

the yield weight data correspondingly and transmits the data to

the system. The composite working condition integrates low,

medium, and high feeding amount conditions. When the feeding

amount changes from low to high, the data are continuously

collected to build the composite dataset. The verification dataset

contains two sorts of data while performing three working

conditions, respectively. 3.1.3 Preprocessing of raw data.

A 380V variable-frequency motor drives the experimental

bench, which leads to electromagnetic interference on the sensor

signals due to the high current and frequent conversion. The system

introduces an optocoupler isolation circuit to suppress the noise of

the sensor signals. We observe the abnormal sensor data in the

indoor experiments and analyze the elevator’s vibration, which

causes the kernel to fall from the scraper, some of which blocks

the sensors. Moreover, we also observe such abnormal signals in the

field experiments due to falling kernels induced by variant travel

speeds and the unevenness of the farmland. Therefore, this paper

employs a time-domain threshold smoothing interpolation

algorithm to preprocess the data collected by the sensors. When

the collected raw data arrives at 10, the following data is processed

and filtered. The average value of the previous 10 data points is VAn,

and the ratio between the following data and the mean data VAn is

determined. Considering the signal changes w.r.t. different

conditions, we determine the threshold as VMAX =3 VAn and

3VMIN= VAn. During threshold filtering, data exceeding the

threshold range are replaced by smoothed interpolation as Vn =

VAn, while data within the threshold range are retained.
Frontiers in Plant Science 08
Vn =

VAn (Vn ≤ VMIN )

Vn (VMIN ≤ Vn ≤ VMAX)

VAn (Vn ≥ VMAX)

8>><
>>:

(2)

where, n > 10, and Vn represents the original value of each data

processing, VMIN is the minimum value of the threshold range, and

VMAX is the maximum value of the threshold range. As observed in

Figure 7A, the original signal is severely affected by noise

interference, making it difficult for the system to identify the

proper signal and collect information normally. On the contrary,

Figure 7B shows the signal after preprocessing and observes that the

interference effect is greatly reduced. At the same time, the signal-

to-noise ratio has enhanced, promising adequate data information.

3.1.3 Model training results and analysis
A total of 724 data sets were collected in the experiment, of which

700 sets are valid. Among these datasets, 400 are for compound

situation sets and 100 sets for each of the three feeding levels. The

data are divided into training and test sets by a ratio of 4:1.We arrived

at a DNN model structure with five hidden layers through multiple

training and parameter optimizations. The first layer contained 1,024

neurons; half of the neuron number is used in the subsequent layer.

The ReLU activation function is also used to enhance the model’s

non-linear representation capability, while Dropout is employed to

prevent overfitting. The Adam optimizer, with a learning rate of 0.01,

is used. The GBMmodel is built with 100 weak learners, while the RF

model also has 100 decision trees with a maximum depth of 3. The

loss function utilizes the mean squared error (MSE) running with 300

epochs. Figure 8 presents the predictive performance of these three

yield prediction models derived from the compound dataset. As

analyzed, the DNN model achieves the highest R² value of 0.998 for

both training and testing sets. It also has stable RMSE and MAE

without significant fluctuations. The GBM model exhibits the best fit

in the training set; however, the model results in outliers, considerable

fluctuations, and lower accuracy with the RMSE higher than 1 for the

test set. The RF model performs similarly to the GBM model.

Although the predicted results best fit the test set, the results

exhibit outliers and considerable variability and lead to a poor

RMSE greater than 1 in the training set.

Figure 9 illustrates the performance of each algorithmic

model in predicting corn yields under various working

conditions, aiming to determine the model proper for various

corn stacking patterns comprehensively. The analysis shows that

under low feeding conditions (150 r/min), the DNN model

achieves the best fit, with the highest R² value of 0.997. The RF

model has the worst fit, with the lowest R² of 0.986, while the

GBM model’s performance is intermediate. Under medium

feeding conditions (225 r/min), both the GBM and RF models

show improved fit but with a higher RMSE, indicating increased

error. The GBM model has the most volatility, with an R² of

0.931, while the RF model displays signs of overfitting. The DNN

model performs well overall, with the highest R² of 0.992 and

considerably low RMSE and MAE. Under high feeding

conditions (450 r/min), although the GBM model’s fit is
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FIGURE 8

Training and testing of corn yield predictions based on different models with the composite scenario dataset for validating the model effectiveness.
(A) Performance of DNN with training set, (B) performance of GBM with training set, (C) performance of RF with training set, (D) performance of
DNN with test set, (E) performance of GBM with test set, and (F) performance of RF with test set.
FIGURE 7

Temporal width of low pulse captured before process (A) and after processing (B).
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relatively good, it contains numerous poor fitting points. The

DNN model demonstrates the highest stability, achieving an R²

of 0.999, indicating superior predictive accuracy. In contrast, the

RF model performs the worst, with a RMSE greater than 1. In

summary, the DNN model consistently predicts the yield with

the highest R² values under three working conditions, exhibits

the most robust fitting capability, and stably produces low RMSE

and MAE. Therefore, we propose the DNN-based prediction

model to forecast the corn yields.
3.2 Field experiments validation

3.2.1 Design of field experiments
Field experiments for monitoring the corn harvester’s yield

were performed to validate the developed system and test the

prediction models. These tests were taken in mid-November 2023
Frontiers in Plant Science 10
in Nongqiao Town, Jiamusi City, Heilongjiang Province. The

weather during the experiments was sunny, with temperatures

ranging from -11°C to -3°C and a moderate southwest wind at

Beaufort scale 3. Given that the crop was snow-covered, daytime

melting increased the moisture content of the kernels. Such a

condition potentially led to drum clogging and impeded

harvesting operations. Consequently, the study carried out the

tests at night.

The study installed the system and performed the field

experiment on a 4YL-8 corn combine harvester designed and

fabricated by the Innovation Centre for Agricultural Machinery

and Equipment. Table 2 presents the harvester’s geometric and

working parameters. Figure 10 demonstrates the installation

positions of all the necessary components of the corn yield

monitoring system. The thru-beam photoelectric sensor were

mounted on a bracket and installed near the top of the

harvester’s elevator. The GNSS antenna was mounted on top
FIGURE 9

Training and testing of corn yield predictions based on different models under different working conditions for validating the model effectiveness. (A)
Performance of DNN at 150 r/min, (B) performance of GBM at 150 r/min, (C) performance of RF at 150 r/min, (D) performance at 225 r/min, (E)
performance of GBM at 225 r/min, (F) performance of RF at 225 r/min, (G) performance of DNN at 450 r/min, (H) performance of GBM at 450 r/min,
and (I) performance of RF at 450 r/min.
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of the harvester’s side-view mirror. The display terminal,

comprising a rugged computer and a controller unit for signal

receiving and processing, was placed in the cab for real-

time monitoring.
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3.2.2 Field experiments results and analysis
Before the field experiment, the harvester’s parameters in

Table 2 were set in the yield monitoring system. For the bulk

density value in the system, the study collected corn in the field and

measured the bulk density, which then replaced the value for the

indoor experiment, aiming to eliminate the difference due to corn

variety and moisture content, promising a more accurate yield

prediction. During the experiment, the system collected the height

of the corn pile on scrapers and harvester positions in real-time. The

system predicted the instantaneous flow rate and the cumulative

yield value accordingly. The actual yield value of the harvester was

periodically measured using a platform scale. The study employs

and analyzes the relative error between the predicted and the actual

yield value by the following equation.

Er =
Mp −Mr

Mr
� 100%

����
���� (3)

where, Er is the relative error, Mp is the system’s prediction of

corn yield, and Mr is the actual corn yield.

As presented in Table 3, field data are imported into three models

to predict the yield, including DNN, GBM, and RF. The results show
frontiersin.or
FIGURE 10

Installation diagram of the system components.
TABLE 2 Related parameters of 4YL-8 corn combine harvester.

Item Unit Value

Type / 4YL-8(8568)

Appearance size (length * width
* height)

mm 7850*3540*3950

Number of working rows / 8

Row spacing mm 650

Working width mm 5420

Operating speed km/h 0-12

Maximum volume of granary L 7500

Grain unloading method / High-level horizontal
unloading grain

Driving form / Four-wheel drive
TABLE 3 Comparison of yield prediction in field experiments of each model.

Experiment Medel Actual yield value(kg) Predicted yield value(kg) Relative error(%)

1
2
3

DNN
3488.86
6028.60
5301.98

3414.55
5890.55
5193.82

2.13
2.29
2.04

1
2
3

GBM
3488.86
6028.60
5301.98

3355.93
5979.16
5406.43

3.81
0.82
1.97

1
2
3

RF
3488.86
6028.60
5301.98

3576.43
6263.11
5527.84

2.51
3.89
4.26
g
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that the DNN-based model has a maximum relative error of 2.29% in

yield prediction, with an average accuracy of 97.85%. The GBM-based

model has a maximum relative error of 3.81%, with an average

accuracy of 97.8%. The RF-based model demonstrates the highest

maximum relative error at 4.26%, with an average accuracy of 96.45%.

Although the average accuracy for the DNN and GBM models is

similar, the DNN model exhibits notably better stability. The field

experimental results denote that the proposed DNNmodel can reliably

predict corn kernel yield during harvesting operations.
4 Conclusion

This study developed an advanced yield monitoring system for corn

harvesters by exploring photoelectric sensing technology and the

characteristics of corn accumulation in the elevator. The system

achieved real-time monitoring of harvester operation, yield prediction,

and data synchronization. EDEMdiscrete element simulations were used

to observe the accumulation and pattern formation of corn kernels as

they ascend in the elevator under different feeding conditions. The

simulations highlighted significant variations in kernel morphology,

indicating the need for a more sophisticated yield prediction model

rather than relying on simple geometric formulas. The study developed

an indoor test rig and trained three different machine learning models—

Deep Neural Network (DNN), Gradient Boosting Machine (GBM), and

Random Forest (RF)—using a composite dataset. These models were

validated by operating the auxiliary elevator at various speeds (150 r/min,

225 r/min, and 450 r/min) under different feeding conditions. TheDNN-

based model demonstrated the best overall performance and stability.

Field experiments confirmed the proposed system’s high

prediction accuracy.
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