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Although plant disease recognition has witnessed a significant improvement with

deep learning in recent years, a common observation is that current deep

learning methods with decent performance tend to suffer in real-world

applications. We argue that this illusion essentially comes from the fact that

current plant disease recognition datasets cater to deep learning methods and

are far from real scenarios. Mitigating this illusion fundamentally requires an

interdisciplinary perspective from both plant disease and deep learning, and a

core question arises. What are the characteristics of a desired dataset? This paper

aims to provide a perspective on this question. First, we present a taxonomy to

describe potential plant disease datasets, which provides a bridge between the

two research fields. We then give several directions for making future datasets,

such as creating challenge-oriented datasets. We believe that our paper will

contribute to creating datasets that can help achieve the ultimate objective of

deploying deep learning in real-world plant disease recognition applications. To

facilitate the community, our project is publicly available at https://github.com/

xml94/PPDRD with the information of relevant public datasets.
KEYWORDS

plant disease recognition, deep learning, dataset making, smart agriculture,
precision agriculture
1 Introduction

Having enough food is a basic requirement for human beings. However, more than 600

million people worldwide are estimated to be exposed to hunger in 2030 according to the

United Nations. However, many things threaten the availability of food, and plant disease is

one of the most essential. It is estimated that $220 billion is lost due to plant disease

according to the Food and Agriculture Organization of the United Nations. It is therefore
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eager to mitigate them, and recognizing plant diseases is a

fundamental mission. However, a traditional way is that human

experts have to go to the farm to see the plants and then make

decisions. This paradigm is expensive and noisy because training

experts takes time and many factors play a role in human’s making

decisions such as mood and the time taken to complete work

(Kahneman et al., 2021).

Deep learning has shown the potential to recognize plant

diseases automatically in recent years (Singh et al., 2018; Liu and

Wang, 2021; Thakur et al., 2022; Xu et al., 2022b; Salman et al.,

2023; Xu, 2023). To access deep learning models, the dataset is one

of the most essential considerations (Krishna et al., 2017; Cui and

Athey, 2022; Wright and Ma, 2022; Xu et al., 2023b). High-quality

training datasets are expected to achieve decent test performance

and superior generalization capability. However, plant disease

recognition datasets have received relatively less attention in

recent years. We argue that it is worth focusing on these datasets

for the following reasons.

First, the current datasets exaggerate the performance of

existing deep-learning models. From a general computer vision

perspective, a common observation is that deep learning models

tend to degrade non-trivially when the training and test datasets are

not in the same distribution (Arjovsky et al., 2019; Bengio et al.,

2021; Cui and Athey, 2022; Corso et al., 2023), known as poor

generalization. In the context of plant disease recognition, the

ultimate goal is to secure superior performance in the test

process. When the test datasets are heterogeneous from the

training datasets, the trained models do not have reliable

performance when deploying. For example, very recent papers

suggested that a model trained with controlled background

images degrades in performance when tested with uncontrolled

background images (Ahmad et al., 2023; Guth et al., 2023; Wu et al.,

2023). Therefore, making reliable TEST datasets to test the

performance of the model is a fundamental issue for real-

world applications.

Second, high-quality TRAINING datasets for plant disease

recognition are relatively difficult to collect as this requires an

essential understanding in both the deep learning and agricultural

fields. Compared to generic benchmarks in computer vision such as

ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) that are

related to daily-available objects, strong domain knowledge about

agriculture and plants is required to create a plant disease recognition

dataset. Simultaneously, knowledge about deep learning should be

involved, such as the challenges related to current deep learning

methods and data annotation strategies. For example, data

annotation should be compatible with the application’s objective

and deep learning methods, as detailed in Section 2.6. Hence,

considering dataset characteristics from both deep learning and

plant disease perspectives is another essential issue.

To address such issues, this paper aims to enhance the

understanding of the creation of datasets, evaluate the reliability of

deep learning models in close to real-world scenarios, and further

facilitate the deployment of deep learning for plant disease

recognition. Our ambitious objective is to deploy deep learning

models in real-world applications effectively, efficiently, reliably,

and robustly. Our study is inspired by a current paradigm in deep
Frontiers in Plant Science 02
learning, data-centric AI1 (Whang et al., 2023; Zha et al., 2023). To

our knowledge, this study is the first to address these issues. In

this way, our paper is in the PERSPECTIVE style heterogeneous

from the REVIEW papers (Liu et al., 2021; Ouhami et al., 2021; Singh

et al., 2021; Thakur et al., 2022; Shoaib et al., 2023) with the aim of

investigating the deep learning methods used and presenting current

datasets. In summary, this study has the two main contributions:
• It proposes an informative taxonomy for plant disease

recognition datasets.

• It presents future directions for creating plant disease

datasets using deep learning.
2 Taxonomy

Using deep learning to recognize plant disease is an interdisciplinary

challenge. Such a holistic application should be considered from both

perspectives, which is the motivation of this section. As shown in

Table 1, a taxonomy is proposed. We hope that it will enhance the

understanding of the community with the objectives of real-world

applications, the collection of suitable training datasets and reliable

test datasets, and the deployment of compatible deep learning methods.
2.1 Application objective

In terms of plant disease recognition, different applications may

have specific interests, such as the type of plants and organs. For

example, some applications focus on one specific crop such as

tomatoes (Fuentes et al., 2017b; Xu et al., 2022a) and apples

(Thapa et al., 2020) whereas others may consider multiple crops

(Hughes et al., 2015; Liu et al., 2021). Similarly, diseases exist in

different organs, such as leaves, fruits, and stems.

Moreover, applications require different recognition levels.

When diseases appear, one may wonder what it is, referring to

classification. Sometimes, multiple abnormal patterns may occur

simultaneously, and localizing them individually is beneficial.

Specifically, a plant may have more than one unhealthy symptom

where the locations give more precise information. Furthermore,

some decisions and remedies can be adopted based on their

magnitudes, termed quantitation, such as the number of infected

leaves and the severity of an unhealthy leaf. To some extent, the

complexities of the aforementioned analysis gradually improve.

Fortunately, these analyses can be implemented by choosing the

appropriate deep learning methods, such as image classification,

object detection, and segmentation (Xu et al., 2023a).

Furthermore, plants may grow in either in a controlled

environment, such as a greenhouse, or a field. In general, diverse

environmental settings suggest differences that should be

considered when developing datasets and deep learning methods.
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2.2 Input modality

To recognize plant diseases, human experts use multiple senses

such as vision and smell. In addition, knowledge from other experts

and their own experience also provide benefits. In terms of

machines equipped with deep learning, similar scenarios exist.

Optical images, a type of vision, are one of the most fundamental

modalities of information to recognize plant diseases. They can be

obtained with different devices and with multiple sub-categories, as

described in the next subsection. Videos and time-series images

provide additional information compared to images alone. To be

more specific, videos can capture visual patterns of plant diseases

from different perspectives and distances that can be taken as

accumulated observations. In a similar way, time series images
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resemble the actions of human experts who investigate the

transformation of plant diseases over time to make decisions. In

addition, texts are also beneficial for semantic information in nature

because they are created by human beings. For example, text can

depict the characteristics of plant diseases such as color and their

temporal changes. Text can describe images such as the location of

diseases and their magnitudes of severity (Fuentes et al., 2019;

Wang et al., 2022; Cao et al., 2023). Furthermore, text can be

replaced with audio to provide human knowledge. More modalities

are possible and encouraged, such as smell and other new ones,

because new types of sensors can also be employed in the future

(Zhang et al., 2023).
2.3 Image acquirement

Although there are heterogeneous input modalities to recognize

plant diseases as mentioned above, optical images are the most

widely used. This subsection aims to probe the ways to obtain them

since there are multiple types for optical images that are beneficial

for diverse cases (Oerke et al., 2014; Mahlein, 2016). As shown in

Figure 1, optical image acquirement is grouped into two factors,

sensors that produce the images and the platform to hold the

sensors. This paper focuses on passive sensing, and active remote

sensing techniques such as radar are not considered.

The most widely used type of optical sensor is the RGB camera

(red, green, and blue) which captures a range of visible wavelengths.

Humans understand RGB images very well. One of the reasons for

the popularity of RGB images is the great availability resulting from

relatively cheap mobile phones. Such phones handled by human

beings can produce an enormous number of RGB images. Imagine a

scenario where anyone with a mobile phone can take pictures if they

are interested in abnormal plants. Furthermore, the resolution is

significantly large with clear details. Unlike humans, RGB cameras

can be fixed to monitor the growth of plants. RGB cameras placed in

robot arms that can move automatically would be an efficient way to

free human beings. We argue that this type of image capture is

superior to plants in greenhouses. In spite of the super-comfort of

RGB images, extra information is also required. For example, thermal

sensors are light-free and thus can be employed at night when RGB

cameras fail to work. Fluorescence is another possible type although,

to the best of our knowledge, there is no related dataset.

The aforementioned sensors take images with a certain range of

wavelengths. In contrast, multi-and hyper-spectral sensors can

record images with multiple and many ranges of wavelength,

resulting in images with many channels. Many vegetation indexes

can be obtained with the two sensors (Adão et al., 2017; Lu et al.,

2019; Lu et al., 2020; Wan et al., 2022). One of the main advantages

is that they can capture images of a large area, beyond a single leaf

and plant (Oerke et al., 2014; Mahlein, 2016; Xu, 2023). These two

sensors are generally placed in UAVs (unmanned aerial vehicles)

and aircraft to surveil many plants. However, their disadvantages

are the non-trivial computations resulting from the many channels

and being inconvenient to use.
TABLE 1 Taxonomy of datasets to recognize plant diseases using
deep learning.

Application objective It can be considered from interest:
types of plant and organ; plant
environment, such as field and
greenhouse; recognition level, such as
classification, localization,
and quantitation.

Input modality It covers optical images, video, text,
audio, and so on, as well
as combinations.

Image
acquirement

Optical sensor Type of sensor to obtain images,
including hyper-spectral, multi-
spectral, RGB, thermal, and
depth images.

Platform Place or device to put the optical
sensors, including human hand, robot
arm, UAV, aircraft, and satellite.

Image variation Change and visual variation of images
within a class, such as background,
illumination, and scale. The images
belonging to a class in a dataset may
have many or few image variations.

Dataset splitting Strategies to split a collected dataset
into training, test, and validation
datasets, including random, spatial,
and temporal.

Annotation Existence Datasets can be categorized into fully,
partly, and not annotated groups if
every image, part of images, and no
part of images are
annotated, respectively.

Correctness Strategy to make sure that annotations
from human experts are correct. In
general, annotations introduce bias
and noise and voting is an effective yet
expensive strategy to reduce them if
experts provide
annotations individually.

Level Annotation level, including image,
instance, and pixel level where
annotations are given for a holistic
image, every instance of disease, and
every pixel.
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2.4 Image variation

In the age of traditional machine learning, engineers and

researchers carefully consider data collection, and thus the collected

data are relatively small, but informative (Wright andMa, 2022). This

situation has changed in the era of deep learning, where the datasets

have become much larger yet non-informative. Sometimes, datasets

are collected without any specific objective in advance (Wright and

Ma, 2022). Analyzing these datasets is therefore essential, and

variation is arguably one of the most important variables for

image-based datasets (Fuentes et al., 2017a; Singh et al., 2020; Wu

et al., 2023; Xu, 2023; Xu et al., 2023b; Xu et al., 2023a). To achieve

decent generalization performance and a basic assumption of

machine learning and deep learning, the training and test datasets

must be in an identical and independent distribution (i.i.d) (Vapnik,

1991). However, this assumption does not hold in many real-world

applications. Hence, we contend that understanding variation within

a collected dataset is beneficial for robust applications, and this study

focuses on RGB image variation because of its prevalence in

recent years.

Officially, image variations consist of inter-class, the diversity

between two classes, and intra-class, the diversity within one class

(Xu et al., 2023a). One of the basic assumptions in distinguishing

plant diseases is that different diseases have different visual patterns

even if they are similar (Xu et al., 2023a); otherwise, pattern

recognition and classification methods fail. However, recognizing

diseases that share some visual patterns, i.e., smaller inter-class

image variation, is difficult. Images from one class but with

disparate visual patterns, i.e., larger intra-class image variation,
2 https://www.greenhousecanada.com/expanding-sight-plant-health-

beyond-the-naked-eye/.
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such as the flower colors in different growth stages, are also

challenging to classify. From the perspective of agriculture, it is

inevitable that we have smaller inter-class and larger intra-class

image variations. Therefore, deep learning methods are expected to

mitigate this challenge. In general, testing models with test images

that have similar image variations as the training images tends to

lead to high performances. In contrast, deep learning methods are

expected to have a poor generalization ability, such that models

training only with images from controlled imaging environments

will have a low performance when tested with images from

uncontrolled ones (Guth et al., 2023; Wu et al., 2023).

The main image variations are summarized in Table 2 and

Figure 2 illustrates some image variations. Some variations are

closely related. For example, images of the plants in the field may

have a much larger diversity in illumination than images from the

greenhouse and laboratory. Similarly, canopies tend to have smaller

scales than leaves and fruits. Furthermore, additional factors may be

the source of multiple variations, for example, a person’s habits

when they take pictures could result in diversity in scales and

viewpoints. We emphasize that we group backgrounds as either

uncontrolled or controlled. For example, leaves are put on

homogeneous materials such as paper in the laboratories or field.

In the field, plant organs of interest can also be moved to have a

simple background. In contrast, with an uncontrolled background,

the images are taken without considering the background.

Therefore, backgrounds vary significantly and can be controlled

when taking pictures of the plants in fields.
2.5 Dataset splitting

In general, three types of datasets are adopted to develop deep

learning models. Training datasets are used to train models and
FIGURE 1

Top-Left: platforms and sensors can be used to obtain plant disease images in different combinations for different purposes such as for plants in
fields and greenhouses, adapted from (Xu, 2023) and inspired by (Oerke et al., 2014; Mahlein, 2016). The distances between the plant and platform
and the number of channels increase along the horizontal and vertical axes. Further types of sensors and platforms are possible and encouraged. For
the advantages and disadvantages of the sensors and platform, please refer to (Oerke et al., 2014; Mahlein, 2016). Bottom-left: visual examples of
platforms. Top-right2: an illustration of a hyper-spectral image and a multi-spectral image. Bottom-right: an RGB image and the corresponding
thermal image using an infrared camera of a wheat canopy (Feng et al., 2021).
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validation datasets are used to choose the optimal set of hyper-

parameters such as the architecture of the models. After training

and validating, test datasets are finally used to check the

performance of the trained models. In practical applications, the

training and validation datasets are available in the training process,

whereas the test dataset is not available until users use the trained

model. In such a case, the test performance is not known and thus

the model developers cannot assess the trained models. An

alternative scheme is to split a holdout dataset as a test before

training the models, resembling the real test data. Empirical results

suggest that splitting results in a different performance, and thus the

splitting strategies should be considered. To be clear, the collected

dataset is referred to as the original one that will be split into three

parts, training, validation, and test. The real test data from model

users are distinguished from the split test dataset.

The most widely used strategy is random splitting. This is when

an image in the original data set is randomly placed in one of the

three datasets. One of the main issues with this strategy is that

multiple images taken for the same observation (e.g., a symptom of

plant disease in nature) with only slight differences can be assigned

to the training and test datasets, by which the test performance

could be overestimated. Moreover, this strategy ignores the

generalization challenge (Arjovsky et al., 2019; Bengio et al., 2021;

Corso et al., 2023; Xu et al., 2023a), which commonly exists in real-

world applications, such that the real test data do not fall into the

same distribution as the training dataset.

To mitigate the issues, splitting the data spatially and temporally

is appealing. For example, images taken in a place are put into either

the training or test datasets (Beery et al., 2022). Similarly, images on

the same day or in the same year can be used for only one of the

three datasets. In spite of being invariant to the type of plant

diseases, the spatial and temporal factors explicitly allow the

training and test datasets to be in different distributions.

Although the strategy introduces new challenges, such as domain

shift (Xu et al., 2023a) as suggested in (Beery et al., 2022), it is

worthwhile. Specifically, our objective is to achieve the best

performance in the real test process, rather than in the training or

the split test datasets. For example, a model trained on the collected

data from several farms this year is probably desired to be deployed

on different farms for the next couple of years. Beyond spatial and

temporal splitting, more things can be considered and encouraged,

such as the images being taken by the same person who may have

certain habits when taking pictures.
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2.6 Annotation strategy

To begin with, we explicitly propose the rules for annotating

datasets as follows:
• Annotations are difficult, time-consuming, and expensive

to obtain.

• Annotations from humans have bias and noise.

• Images and their annotations should simultaneously satisfy the

requirements of deep learning methods and agricultural tasks.
The first rule triggers the first question of whether an image is

annotated or not, termed the existence of annotation. Usually, all

images are fully labeled in related public datasets. On the contrary, all

images in a collected dataset are not completely annotated. A more

reasonable case is partial annotations where some images are labeled

whereas other images are not, mainly because the images are more

easily available in a relative manner. In such a scenario, two more

factors should be considered: image level, whether an image should be

annotated, and class level, how many images should be annotated for

a class. We argue that partially annotated datasets should be

promoted considering the characteristics of practical applications.

In addition, theory also supports it as a marginal distribution of

images can be useful with the learned conditional distribution or joint

distribution, between labels and images (Bengio et al., 2013).

Furthermore, bias and noise appear when humans make

decisions and the magnitude may be underestimated (Kahneman

et al., 2021). For example, the validation dataset of ImageNet (Deng

et al., 2009), used to perform image classification of generic objects

such as dogs and cats, has approximately 6% incorrect labels

(Northcutt et al., 2021). Compared to this case, plant disease

annotation requires more domain knowledge and it may be more

difficult to be precise. For example, three experts had only 85.9%

accuracy on average when labeling 999 wheat images (Long et al.,

2023). Noisy annotations in the training datasets could result in an

unstable training process and inferior test performance, whereas the

noise in the validation datasets may lead to the incorrect selection of

hyper-parameters (Patrini et al., 2017). Deep learning generally

assumes that the annotations are correct and tends to obtain better

performance if the annotation noise is smaller (Patrini et al., 2017).

Based on this observation, making precise annotations is

worthwhile, yet it requires more resources. For example,

independent voting by multiple experts tends to be beneficial

(Kahneman et al., 2021). In addition, polymerase chain reaction

(PCR) may also contribute (Pereira et al., 2023). We emphasize that

we are not trying to say that bias and noise should be avoided

completely but that they should be noticed when annotating and

decreased considering the trade-offs both in the model training and

validation stages.

The last law highlights the format of annotation, called levels of

the annotation. In general, image classification can be performed at

image-level annotation, i.e., an image with a label. Multi-label image

classification is also possible if an image contains multiple plant

diseases. However, bounding boxes can point out the location of

every instance of plant disease in an image and thus is called
TABLE 2 Factors of image variation, partially summarized from
(Xu et al., 2023a).

Category Variation

Plant

Type of plant such as tomato and apple.
Plant organs, including leaf, fruit, stem, flower, and canopy.
State of plant, such as florescence, and disease, such as with
early symptoms.
Environment, including field, greenhouse, and laboratory.

Imaging process Include illumination, scale, viewpoint, and background.
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instance-level annotation. Moreover, pixel-level annotations are

desired for the task of segmentation which assigns a label to every

pixel. For every level of annotation, extra strategies exist, such as the

EEP (Xu et al., 2023a): Exclusion, every annotation includes only

one specific visual pattern of plant disease; Extensiveness, every

plant disease in the images should have been annotated; Precision,

annotation is expected to be precise for different tasks such as the

correct labels and precise location of bounding boxes. Again, we

highlight that incompatible formats of annotation become feasible

with the concept of weak supervision (Zhou, 2018; Xu et al., 2023a)

and have a negative impact on test performance. In addition, new

types of annotations have emerged and new models may embrace

different types of annotation.

Considering the advantages of a localization task using object

detection with a weaker image assumption than image classification

and a lower annotation workload than segmentation (Xu et al.,

2023a), we give more details about it beyond the EEP (Xu et al.,

2023a) strategy. To be more specific, how can we give the boundary

box for different diseases in a consistent manner, as illustrated in

Figure 3? In general, three independent strategies can be used for a

bounding box. First, every instance of fruit or leaf with diseased

symptoms is labeled, termed the global level. The problem is that an

instance may have multiple diseases and thus the corresponding

bounding boxes will have diverse labels and include the healthy

parts, which may confuse deep learning models or cause challenges

for model optimization. Second, every single symptom gets a

bounding box and the symptom is assumed to be dense without a

non-trivial gap, termed the local level. In this case, many bounding
Frontiers in Plant Science 06
boxes may exist in an instance, such as the third and fourth images

in the first row of Figure 3, which makes annotation harder and

more time-consuming. Furthermore, different annotators may have

diverse definitions of what constitutes “dense”. Third, the semi-level

is a trade-off of the previous two, allowing a gap between symptoms,

especially for those that are tiny but many. Based on our

understanding and experimental results, an adaptive strategy

(Dong et al., 2022) is recommended so that different diseases

have different levels of annotation. Another issue is the

inconsistency mentioned by Andrew Ng in a video. The

underlying issue is that different annotators or even the same

annotator at a different time would use different levels of

bounding boxes, as shown when comparing annotations 1 and 2

for same image in Figure 3. This inconsistency in training datasets

gives different information to models, resulting in unstable learning.

In addition, inconsistency in the test process may give us an

inaccurate evaluation.
3 Public plant disease
recognition datasets

Based on our preliminary survey, RGB images taken by hand-

held cameras dominate in public plant disease recognition datasets.

Other types of datasets are rarely utilized or are public. Therefore,

we aim to provide a survey on the use of RGB images to recognize

plant diseases in this section. We did not do a complete survey, as

that is impossible to some extent, and rather focused on the datasets
FIGURE 2

Examples of some image variations from the first to last row: disease stage, illumination, scale, and background. The images are taken from the
corresponding datasets. In this paper, the image background is grouped into three groups: simple (the first two images), medium (the third and
fourth images), and complex (the last image).
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with a relatively higher frequency of utilization or which were

released recently, which suggests the tendency in this field. For a

dataset, the following tags were considered:
3 https://www.statisticshowto.com/iid-statistics/.

Fron
• Dataset name. We will assign a name for the dataset if it was

not given one in the original material. The datasets are by

default publicly available. Some partial public datasets are

also included.

• Plant species. If only one crop is included, the name is

given. Otherwise, the number of plant species is given.

• Number of classes. Disease classes and healthy ones

are included.

• Number of images. Only the images with publicly available

annotations are counted.

• Image background (BG). We split the image background into

three categories as shown in the last row in Figure 2. The

simple one was taken in the environment of a laboratory

where the region of interest (RoI) is put on the controlled

material. The complex one is taken in the field with a complex

background. The medium one is also taken in the field but the

RoI may be moved to have a simpler background. Their

corresponding abbreviations are sim, med, and cmpx.

• Machine learning (ML) task and official performance (PE).

This paper focuses on three types of machine learning tasks

as discussed before: image classification (clf), object

detection (obj), and segmentation (seg). A dataset may

support more than one task. We only report official
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performance, either in the original publications or from

the leaderboard of official challenges. Otherwise, NA

denotes not available.
Table 3 summarizes the related public datasets and our project

is publicly available on GitHub with more detailed information.

Although we tried to do our best, some beneficial datasets may be

not included and thus any new contribution is welcome. One of the

main observations of enough descriptions about objectives and

usages are lacking. As mentioned above, localization and

quantitation analysis are also beneficial, but there are a few

relevant datasets with relatively high quality that are available to

the public. Another observation is that a decent performance is

achieved in most of the reported performance datasets. An

exception is that a model trained in the PlantVillage dataset with

simple image backgrounds suffers in the FieldPV dataset with

different levels of background. A similar situation appears in the

FieldPlant dataset. In addition, we found that the majority of the

research is unable to use or compare datasets, except the Plant

Village dataset. Finally, we point out that, when using the deep

learning method, most existing public datasets embrace the i.i.d.

assumption 3 where the training and test datasets are identical and

independent. In this assumption, the original datasets are randomly
FIGURE 3

Bounding box annotation strategies in object detection, useful for the localization task. Top row: three strategies for bounding boxes: global (light
yellow), which covers one instance such as an instance of fruit or leaf; local (light blue), which covers local areas with dense and intensive
symptoms; and semi-global (dotted red), which is a trade-off of previous two, covering local areas yet allowing sparse symptoms such as the case in
the first image. Middle row: recommended disease-adaptive strategy in which different diseases may use either local or semi-global strategies. The
global strategy is not recommended because an instance may include more than one type of diseases and may include healthy part. Bottom row:
inconsistent annotation when the bounding boxes for the same disease are given using different strategies in a dataset, which may confuse the deep
learning model and result in optimizing issues. The picture is adapted from (Dong et al., 2022).
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TABLE 3 Overview of some public plant disease recognition datasets.

Dataset name Species Class Image Image BG ML task & PE

Apple2020 (Thapa et al., 2020) Apple 4 1,821 med clf: 0.984 AUROC

Apple2021 Apple 6 18,632 med clf: 0.883 F1

PCApple2023 Apple 9 10,212 med+sim clf: N.A

ASDID (Bevers et al., 2022) Soybean 8 9,648 med+sim clf: 0.968 Acc

BRACOL (Esgario et al., 2020) Coffee 5 1,747 sim clf: 0.956 Acc

RoCoLe (Parraga-Alava et al., 2019) Coffee 6 1,560 med clf: N.A

iCassava (Mwebaze et al., 2019) Cassava 5 5,656 med clf: 0.939 Acc

CLDCMakerere Cassava 5 21,397 cmpx+med clf: 0.913 Acc

CLDCAmanda (Ramcharan et al., 2017) Cassava 6 2,249 med clf: 0.930 Acc

CLDD Cassava 3 228 med clf: N.A

CDRD (Sultana et al., 2023) Cucumber 8 1,289 med+sim clf: N.A

CucumberNegm Cucumber 2 691 med clf: N.A

PaddyDoctor (Petchiammal et al., 2023) Rice 10 10,407 cmpx clf: 0.990 Acc

Rice1426 (Rahman et al., 2020) Rice 9 1,426 cmpx+med+sim clf: 0.971 Acc

Rice5932 (Sethy et al., 2020) Rice 4 5,932 med clf: 0.984 Acc

HuyDoRice Rice 4 3,355 sim clf: 0.984 Acc

DhanShomadhan (Hossain, 2023) Rice 5 1,106 cmpx+sim clf: N.A

WheatLong (Long et al., 2023) Wheat 5 999 cmpx clf: 0.971 Acc

WheatLeafDataset Wheat 3 407 med+sim clf: N.A

GroundNutLeaf (Aishwarya and
Reddy, 2023)

Groundnut 5 3,058 med clf: N.A

MaizeCraze Corn 6 2,355 sim clf: N.A

BisqueCorn 1 2 Corn 2 1,785 cmpx clf: N.A

CornNLB (Wiesner-Hanks et al., 2018) Corn 1 18,222 cmpx clf: N.A

iBean Bean 3 1,296 med clf: N.A

SoybeanMignoni (Mignoni et al., 2022) Soybean 3 6,410 cmpx clf: N.A

TaiwanTomato Tomato 6 622 med+sim clf: N.A

GLFD (Rajbongshi et al., 2022) Guava 5 527 sim clf: N.A

CitrusRauf Citrus 10 759 sim clf: N.A

PlantVillage (Hughes et al., 2015) 14 38 54,305 sim clf: N.A

FieldPV (Gui et al., 2021) 14 38 665 med+sim clf: 0.720 Acc

PlantDocCls (Singh et al., 2020) 13 27 2,598 cmpx+med+sim clf: N.A

PlantConservation (Chouhan et al., 2019) 12 10 4,503 sim clf: N.A

CCMT (Mensah et al., 2023) 4 22 24,881 med clf: N.A

PDD271 (Liu et al., 2021) N.A 271 2,710 cmpx+med clf: 0.855 Acc

PlantDocObj (Singh et al., 2020) 13 27 2,598 cmpx+med+sim obj: N.A

NZDLPlantDiseaseV1 (Saleem et al., 2022a) 5 20 3,337 med obj: 0.745 mAP

NZDLPlantDiseaseV2 (Saleem et al., 2022b) 8 28 3,039 med obj: 0.932 mAP

FieldPlant (Moupojou et al., 2023) 4 31 5,156 cmpx+med obj: 0.144 mAP

(Continued)
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split into training and test datasets, and thus the reported test

performance is more highly estimated than is the case when

deploying the trained model.
4 Future direction of plant disease
recognition datasets
Fron
• Stage one: verification, where deep learning methods are

verified to be useful in recognizing plant diseases.

• Stage two: implementation, where deep learning methods

are deployed in real-world applications of plant disease

recognition with decent performance.

• Stage three: connection, where plant disease recognition using

deep learning methods is connected to downstream

applications.
To probe future directions, we first declare three stages of plant

disease recognition using deep learning. The first stage is

straightforward and almost finished in recent years. However, the

second and third stages are still in their infancy. Currently, few

publications have mentioned the successful implementation in real-

world applications. One of the main reasons for this comes from the

assumptions embraced by deep learning methods that generally do

not hold in real-world applications. From this perspective, existing

datasets accommodated the assumptions. Therefore, one of the future

directions of plant disease recognition is to make datasets that violate

the assumptions, termed deep learning challenge-oriented datasets.

Furthermore, we argue that recognition of plant disease is not the

final objective and should be connected with the downstream work,

arriving at the third stage. From such a perspective, we argue that

another future direction is to make the datasets oriented to

downstream applications. Besides achieving better performance in

general, two inspirations are discussed, multi-observation and large-

scale datasets. These are outlined in the following section with an

additional discussion. Table 4 summarizes our thinking.
4.1 Deep learning challenge-
oriented dataset

Although decent performance is achieved in most datasets, the

corresponding trained models may suffer when deploying them in
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real-world applications. One of the reasons is that the assumptions to

achieve good performance are not always valid (Xu et al., 2023a).

Violating those assumptions results in challenges when deploying

deep learning models. For example, a model trained in the datasets of

several farms is desired to give better results when deployed in other

farms, termed spatial generalization. In a similar spirit, it is desirable

for a model trained in the datasets collected in a particular time

duration to be decent when deployed in another time duration,

termed temporal generalization. Additional invariant disease

characteristics are also expected to have no impacts. However,

current datasets do not support this kind of verification. Formally,

deep learning challenge-oriented datasets are highlighted to test and

develop models for plant disease recognition. Simultaneously, we

argue that datasets should have meta-data, such as position and time

stamp. In other words, current datasets assume that something in the

training and test datasets is shared (Meng et al., 2023). For example, a

new plant disease may exist in the testing stage and is desired to be

classified from the known classes that exist in the training dataset

(Meng et al., 2023), a challenge termed open set recognition.

Furthermore, we highlight that realizing the assumptions of deep

learning models and incorporating them into the dataset collection

stage needs the cooperation of researchers from the agriculture and

deep learning fields. Please refer to the detailed challenges regarding

the datasets in (Xu et al., 2023a).
4.2 Application-oriented dataset

From the perspective of agriculture, recognizing plant diseases

may not be the final objective, and downstream work may follow.

For example, early visual pattern recognition is beneficial in making

some remedies to reduce loss. Therefore, collecting such datasets is

appealing. Although some papers aimed to focus on this issue, there

is no agreement on the definition of early disease recognition. We

contend that such data have two primary characteristics:

recognizable patterns and effective remedies. One of the core

assumptions embraced by deep learning models is that different

plant diseases have their own patterns; otherwise, they cannot be

distinguished. Considering that data modalities have heterogeneous

advantages and disadvantages, selecting a suitable input modality is

essential. However, disease states cause varying degrees of losses

and there are difficulties in providing remedies. In an extreme

scenario, when a plant disease explodes on a farm and the plants all

die, recognizing the corresponding disease is not useful. More
TABLE 3 Continued

Dataset name Species Class Image Image BG ML task & PE

GrapevineDiseaseMalo Grape 3 744 cmpx obj: N.A

GrapevineDiseaseMalo Grape 4 128 cmpx seg: N.A

BRACOL (Esgario et al., 2020) Coffee 2 1,560 sim seg: N.A

ATLDSD Apple 5 1,641 med+sim seg: N.A
Class, image, image BG, ML task, and PE denote the number of classes, number of images, image background, machine learning task, and official performance, respectively. We point out that,
when using the deep learning method, most existing public datasets elusively embrace the i.i.d. assumption and the original datasets are randomly split into training and test datasets, which
results in a high estimated test performance.
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applications in the field of agriculture are possible. Although the

objectives are from agriculture, we highlight that trade-offs exist

such as in the case of early disease recognition which requires the

cooperation from engineers in the deep learning field.
4.3 Multi-observation dataset

In general, human experts make superior decisions to recognize

plant diseases through multiple observations rather than single

observations. Inspired by this situation, we contend that deep

learning methods can also be improved with multi-observation.

Essentially, multiple observations distribute different information.

Multi-modal datasets refer to datasets with various modalities for

the same plant diseases. For example, given a leaf with a plant disease,

various optical images and texts can be made. In addition, datasets

can be in a time series, such as taking images of plant diseases at

different times. In particular, visual patterns become clearer and

easier to recognize when diseases gradually involve. Time-series

datasets may mitigate the challenge of the early recognition of

plant diseases. For image data, higher test performance can also be

due to multi-spatial datasets, such as taking images in different scales

and perspectives. For example, some plant diseases have different

patterns on the front and back of leaves.
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4.4 Large-scale dataset

Large-scale datasets tend to be beneficial for model

generalization in many general computer vision tasks and

datasets (Kaplan et al., 2020; Zhai et al., 2022; Xu et al., 2023c).

Therefore, collecting large-scale datasets for plant disease

recognition is appealing and worthwhile although it is time-

consuming, difficult, and expensive. One way in which this

could be done is crowdsourcing (Coletta et al., 2020) by which

related people in different locations take images and then upload

them to a platform. These images would then be annotated by the

community. In this way, the collected datasets have enormous

variations and thus contribute to model generalization (Xu

et al., 2023a).
4.5 Extra discussion

Benchmarks. In recent years, plant disease recognition has

witnessed a significant improvement (Singh et al., 2018; Liu and

Wang, 2021; Thakur et al., 2022; Salman et al., 2023; Xu et al.,

2023a), as well as the number of related publications. However, a

relative comparison is relatively lacking to evaluate different

models in diverse applications. One of the main reasons is the

shortage of benchmarks, i.e., public and widely used high-quality

datasets. We argue that this kind of benchmark will facilitate

the community and speed up the deployment of deep

learning methods in the real-world applications of plant

disease recognition.

Meta-data is the information used to describe datasets from

different perspectives, usually with tags. Most of the current relevant

public datasets only have the types of plant disease. Other types of

information are expected to be beneficial, such as spatial and

temporary tags. The datasets with meta-data can be used for

different applications by making new datasets.

Analysis of datasets. In general, different applications have

heterogeneous difficulties and challenges. Datasets show the faces

of applications and therefore, analysis of datasets are essential to

understand the applications and further to achieve a better

performance. However, few datasets have corresponding analysis

and one of the expected future research directions is automatic

analysis, such as for intra- and inter-class image variations.

Furthermore, dataset analysis can be used in an iterative way to

make high-quality datasets.

Beyond plant disease recognition. Recognizing plant disease is just

one of the fundamental requirements to have decent crop yields. This

objective may be further facilitated by incorporating disease

recognition and more things. For example, plants may be infected

by specific diseases or viruses in some conditions where finding the

correlated factors are beneficial to prevent the plants from succumbing

to those diseases. In addition, plant disease recognition is plant-related

and thus, from a wider perspective, its recognition can be connected to

other tasks such as plant species recognition (Xu et al., 2022b; Meng

et al., 2023).
TABLE 4 Potential future directions of plant disease
recognition datasets.

Deep learning
challenge-oriented

Consider the challenges from the perspective of deep
learning methods such as learning with noisy data
(Dong et al., 2023b), adopting unlabeled inputs
(Fang et al., 2021), zero-shot learning (Sun et al.,
2024), learning to generalize (Guth et al., 2023; Wu
et al., 2023; Xu et al., 2023a), finding and clustering
new or unknown diseases (Han et al., 2021),
lifelong-learning with iteratively coming input (Dong
et al., 2023a), uncertainty quantification and
according strategy (Angelopoulos and Bates, 2021;
Angelopoulos et al., 2021), and utilization of
synthetic data by large models and simulation data
from digital twins (Pylianidis et al., 2021)

Application-oriented Consider the objectives of the applications from the
perspective of plant disease recognition such as early
symptom classification, similar plant disease
recognition, connecting plant disease recognition,
and effective and efficient remedy making.

Multi-observation Consider the skills of human experts to recognize
plant disease, such as using different modalities, and
compare the difference over time during plant
disease (time-series).

Large-scale Collecting a relatively large-scale dataset with high-
quality data, considering the success of a large-
language model.

Extra Making benchmarks for plant disease recognition to
develop more powerful models. Supplying metadata
and attributes. Datasets analysis. Consider beyond
plant disease recognition, such as analyzing the
incidence of specific plant diseases and other plant-
related tasks.
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5 Concluding Remarks

Using deep learning to recognize plant disease is an

interdisciplinary challenge and thus requires a unified perspective.

Compared to making deep learning models, we highlighted that

datasets are also essential if our objective is to deploy models in real-

world applications. Making a plant disease recognition dataset reliable

and close to real-world applications a requires superior understanding

of both the deep learning and agriculture fields. A systematic

taxonomy for related datasets was first provided. We specially

emphasize dataset splitting and the annotation strategies that are

scarcely discussed in the literature and suggest possible challenges in

real-world applications. Further, RGB images are observed as the

dominant input modality and an extensive summarization was

given. Finally, four types of dataset are described as future directions:

deep learning challenge-oriented, application-oriented, multi-

observation, and large-scale, with an additional discussion.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

MX: Conceptualization, Formal Analysis, Investigation, Writing

– original draft, Writing – review & editing. JP: Investigation, Writing

– original draft, Conceptualization. JL: Writing – review & editing,

Investigation. JY: Conceptualization, Writing – review & editing. SY:

Funding acquisition, Supervision, Writing – review & editing.
Frontiers in Plant Science 11
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Korea Institute of Planning and Evaluation for

Technology in Food, Agriculture and Forestry (IPET) and Korea

Smart Farm R&D Foundation (KosFarm) through Smart Farm

Innovation Technology Development Program, funded by Ministry

of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of

Science and ICT (MSIT), Rural Development Administration (RDA)

(RS-2021-IP42027). This research was supported by Basic Science

Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education (No.

2019R1A6A1A09031717). This work was supported by the

National Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (RS-2024-00360581).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
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