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Enhancing prediction accuracy
of foliar essential oil content,
growth, and stem quality in
Eucalyptus globulus using multi-
trait deep learning models
Daniel Mieres-Castro1, Carlos Maldonado2

and Freddy Mora-Poblete1*

1Laboratory of Genomics and Forestry Biotechnology, Institute of Biological Sciences, University of
Talca, Talca, Chile, 2Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor,
Santiago, Chile
Eucalyptus globulus Labill., is a recognized multipurpose tree, which stands out

not only for the valuable qualities of its wood but also for the medicinal

applications of the essential oil extracted from its leaves. In this study, we

implemented an integrated strategy comprising genomic and phenomic

approaches to predict foliar essential oil content, stem quality, and growth-

related traits within a 9-year-old breeding population of E. globulus. The strategy

involved evaluating Uni/Multi-trait deep learning (DL) models by incorporating

genomic data related to single nucleotide polymorphisms (SNPs) and haplotypes,

as well as the phenomic data from leaf near-infrared (NIR) spectroscopy. Our

results showed that essential oil content (oil yield) ranged from 0.01 to 1.69% v/fw

and had no significant correlation with any growth-related traits. This suggests

that selection solely based on growth-related traits did n The emphases (colored

text) from revisions were removed throughout the article. Confirm that this

change is fine. ot influence the essential oil content. Genomic heritability

estimates ranged from 0.25 (diameter at breast height (DBH) and oil yield) to

0.71 (DBH and stem straightness (ST)), while pedigree-based heritability exhibited

a broader range, from 0.05 to 0.88. Notably, oil yield was found to be moderate

to highly heritable, with genomic values ranging from 0.25 to 0.60, alongside a

pedigree-based estimate of 0.48. The DL prediction models consistently

achieved higher prediction accuracy (PA) values with a Multi-trait approach for

most traits analyzed, including oil yield (0.699), tree height (0.772), DBH (0.745),

slenderness coefficient (0.616), stem volume (0.757), and ST (0.764). The Uni-trait

approach achieved superior PA values solely for branching quality (0.861). NIR

spectral absorbance was the best omics data for CNN or MLP models with a

Multi-trait approach. These results highlight considerable genetic variation within
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the Eucalyptus progeny trial, particularly regarding oil production. Our results

contribute significantly to understanding omics-assisted deep learningmodels as

a breeding strategy to improve growth-related traits and optimize essential oil

production in this species.
KEYWORDS

Eucalyptus essential oil, wood production, deep learning, genomic prediction,
phenomic prediction, multi-trait, multi-omic, high-throughput plant phenotyping
and genotyping
1 Introduction

The Eucalyptus genus comprises more than 900 species and

subspecies distributed in several environmental conditions, including

arid, semi-arid, tropical, oceanic, and Mediterranean climates (Drake

et al., 2015; Ballesta et al., 2018). Some Eucalyptus species are

renowned for their remarkable biomass production, rapid growth

rate, and exceptional adaptability (Mora et al., 2019; Ballesta et al.,

2018; Ballesta et al., 2019). They have been cultivated across a global

plantation area exceeding 22.57 million hectares (ha) worldwide,

spanning over 90 countries with the major centers of cultivation in

Brazil (5.7 million ha), India (3.9 million ha) and China (4.5 million

ha) (FAO, 2020; Seng et al., 2022). Eucalyptus plantations serve as a

valuable resource for the forestry industry, as they constitute the

primary sources of biomass globally and among the main hardwoods

utilized in pulp and wood production (Paiva et al., 2011; Mora et al.,

2019; Ballesta et al., 2018, Ballesta et al., 2019). Additionally, several

Eucalyptus species contain bioactive compounds, contributing to the

production of diverse agro-based industrial products (Mieres-Castro

et al., 2021). In fact, Eucalyptus compounds have diverse applications

in nutraceuticals (Hamed et al., 2021), natural food preservatives

(Kumar Tyagi et al., 2014; Boukhatem et al., 2020; Kheloul et al.,

2023), pharmaceuticals (Salehi et al., 2019; Silveira et al., 2020;

Chandorkar et al., 2021; Mieres-Castro et al., 2021), agricultural

crop protection (Üstüner et al., 2018; Tomazoni et al., 2018; da

Silva et al., 2020; Oli et al., 2019; Pedrotti et al., 2019, Pedrotti et al.,

2020, Pedrotti et al., 2022), and renewable biofuels (Kainer et al.,

2015, Kainer et al., 2017, Kainer et al., 2018, Kainer et al., 2019).

Moreover, Eucalyptus terpene-based essential oils are economically

important commodities (Barbieri and Borsotto, 2018; Kainer et al.,

2019), which are frequently produced on an international scale as by-

products in plantations of species such as E. polybractea, E. smithii,

and E. globulus, primarily cultivated for their wood (Kainer et al.,

2015, Kainer et al., 2017). The oil production and related traits in

commercially harvested Eucalyptus species depend on complex

quantitative factors, including foliar oil content, foliar biomass, and

environmental adaptation (Kainer et al., 2015).

Eucalyptus globulus Labill is a key source of foliar essential oil

used for pharmacological purposes, attributed to its elevated
02
content of the main bioactive monoterpene, 1,8-cineole

(commonly known as eucalyptol), which can comprise over 80%

of the total oil (Mieres-Castro et al., 2021). Its bioactive compounds,

including 1,8-cineole, contribute to pharmacological advancements

and also hold potential for the development of eco-friendly natural

products (Almeida et al., 2024). This distinctive species is also

among the most widely cultivated hardwood trees in temperate

regions of the world, prized for its application as raw material in the

pulp and paper industry due to its high-quality cellulose pulp, along

with low lignin and lipid content (Aumond et al., 2017; Ballesta

et al., 2019; Mora et al., 2019). The tree’s adaptability and rapid

growth make it a valuable asset for afforestation projects to mitigate

environmental challenges (Ballesta et al., 2019; Mora et al., 2019).

As a resilient and economically important species, E. globulus

continues to play a pivotal role in ecological conservation efforts

and various sectors of sustainable development, highlighting its

multifaceted contributions to a more robust and sustainable global

environment (Tomé et al., 2021).

The implementation of cutting-edge molecular approaches,

exemplified by genotyping by sequencing and the utilization of

high-density DNA arrays, has significantly propelled the field of

genomic prediction (Ballesta et al., 2019). This progress is

particularly notable in the application of several models to predict

productivity traits in many crops and trees (Jung et al., 2022; Kent

et al., 2023; Liao et al., 2022; Parveen et al., 2023). Alternatively, the

canopy spectral reflectance and vegetation indices have been used as

phenomics data to improve the prediction of genomic models

(Ballesta et al., 2022). This is due to their ability to provide swift

and affordable information on several traits of industrial interest in

Eucalyptus and other species (Ballesta et al., 2022; Rincent et al.,

2018). Recent advancements in the field of industrial crops research

have emphasized the development and application of Multi-trait

and/or Multi-environment genomic prediction models integrated

with Machine Learning and Deep Learning methodologies, offering

a promising solution for selective crop breeding (Maldonado et al.,

2022). These models have demonstrated significant improvements

in prediction accuracy (PA) over traditional models and Uni-trait

approaches, especially in cases where traits have low or negative

correlations (Mora-Poblete et al., 2023). Their efficacy becomes
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even more pronounced in predicting traits that are inherently

challenging or expensive to phenotype within species of agro-

industrial interest, as highlighted by recent studies (Maldonado

et al., 2020, Maldonado et al., 2022; Mora-Poblete et al., 2023). To

our best knowledge, no studies have applied Multi-trait and Multi-

omics approaches, or an integrated phenomic/genomic method

with artificial neural models, to predict phenotypic traits of

industrial interest in E. globulus, highlighting a significant gap in

research and breeding efforts (Rambolarimanana et al., 2018;

Ballesta et al., 2018, Ballesta et al., 2019; Mora et al., 2019;

Maldonado et al., 2022). Implementing these advanced

methodologies could contribute to the development of genetically

improved individuals and enhance the sustainability of essential oil

production and related traits (Kainer et al., 2015, Kainer et al., 2017,

Kainer et al., 2018, Kainer et al., 2019; Mazanec et al., 2021), which

in turn supports the sustainable production and consumption of E.

globulus across different industries, demonstrating the multifaceted

benefits of integrating cutting-edge technologies into agro-

industrial practices (Kainer et al., 2017; Boukhatem et al., 2020;

Hamed et al., 2021; Khazraei et al., 2021; Pedrotti et al., 2022).

In response to these challenges and opportunities, this study

aimed to improve the prediction accuracy of industrial phenotypic

traits such as essential oil content, stem quality, and growth-related

traits, in E. globulus by a Multi-trait and Multi-omics deep learning

(DL) approach. This approach paves the way for advancements in

sustainable agricultural and forestry practices. In this study, the DL

models incorporated genomic data related to single nucleotide

polymorphisms (SNPs) and haplotypes, as well as phenomic data

from NIR spectral absorbance, to predict traits of industrial interest

in a 9-year-old breeding population. The insights and findings

presented in this study significantly contribute to advancing our

understanding of breeding strategies based on omics-assisted deep

learning models to improve traits of industrial interest in E.

globulus, ultimately promoting progress in plant science and

facilitating more effective and targeted breeding efforts.
2 Materials and methods

2.1 Plant material

The study’s breeding population of Eucalyptus globulus

consisted of 62 full-sib and 3 half-sib families, totaling 1,968

individuals, which were selected for improving wood production-

related traits. These families were sourced from forest seed orchards

of Semillas Imperial SpA, Chile. The progeny trial was established in

2012 in La Poza, Purranque, in the administrative region of Los

Lagos, Chile (40°58’S, 73°30’W, 326 m.a.s.l.). The prevailing climate

in this area is an Oceanic or Marine climate type with an annual

accumulated rainfall of 1282 mm and an average annual

temperature of 13°C (Ballesta et al., 2018). The experimental

design was a randomized complete block, with 30 blocks, single-

tree plots, and a spacing of 2.5 m between the trees within a block

(Ballesta et al., 2018, Ballesta et al., 2019; Mora et al., 2019).
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2.2 High-throughput phenotyping
and genotyping

The absolute reflectance of leaves (0.1 g lyophilized powder per

individual) was measured following the methodology of Castillo

et al. (2008) using a NIR spectrometer (NIRQuest512 spectrometer,

Ocean Optics, Inc., Orlando, FL, USA), an HL-2000-HP-FHSA

light source, and a 3.18 mm diameter bifurcated optical fiber

(QR600-7-VIS- 125F). The NIR system was calibrated using a

Spectralon® reflectance standard (Labsphere, Inc., North Sutton,

NH, USA). The measurements covered the spectral range from

~900 to 2500 nm. The equipment was set to integrate three samples

per scan. The NIR spectral absorbance values were calculated as log

(1/R) (where R is the reflectance spectra). The spectral data were

pre-processed in the R 4.0.5 software (Core Development Team,

2020) following the method of Rincent et al. (2018), in which the

spectral absorbance values were normalized (centered and scaled),

and their first derivative was computed using a Savitzky–Golay filter

(window size of 37 points).

Genomic DNA was extracted from the leaves of 339 randomly

selected individuals (Ballesta et al., 2018). Genotyping of individuals

was carried out using the EUChip60K SNPs system (GeneSeek,

Lincoln, NE, USA). The genotyping quality of the samples was

evaluated in Genome Studio software (Illumina, San Diego, CA).

The genotyping quality of the samples was assessed using the

Genome Studio software (Illumina, San Diego, CA). The SNPs

with a minor allele frequency of<0.05 and a call rate of<90% were

excluded from the data matrix, resulting in 14,442 high-quality

SNPs for the individuals. Haplotype blocks were identified using a

confidence interval algorithm in Haploview v. 4.2 (Ballesta et al.,

2019). It was determined that two SNPs were in strong linkage

disequilibrium (LD) if the coefficient of disequilibrium (D′) value
was high (upper limit > 0.98 and lower limit ≥ 0.7). D′ values were
calculated between loci A and B, and the physical positions of each

SNP were determined based on the consensus map of the

Eucalyptus grandis genome. Omics datasets, comprising

phenomic data from NIR spectral absorbance and genomic data

related to SNPs and haplotypes, were used to develop Uni/Multi-

trait and Uni/Multi-omic deep learning models for predicting traits

of industrial interest (as detailed in section 2.5).
2.3 Measurements of phenotypic traits

Phenotypic traits of industrial interest related to foliar essential

oil content and wood production-related traits were assessed in 9-

year-old trees. Fresh, fully expanded, mature leaves were collected

from the northeastern side of the canopy to measure foliar essential

oil content. The leaves were stored in airtight plastic bags at 4°C and

transported under refrigeration to the laboratory, where they were

immediately frozen at -20°C until processing. Foliar essential oils

were extracted by hydrodistillation, following established protocols

from previous studies with E. globulus (Zrira et al., 1992; Silvestre

et al., 1997; Kassahun and Feleke, 2019; Ngo et al., 2020). Briefly, a

total of 100 grams (g) of fresh leaves per individual were cleaned
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with distilled water and ground in a waring blender with 750

milliliters (mL) of distilled water. The essential oil from grounded

fresh leaves was extracted at 100°C for 3 hours using a Clevenger-

type apparatus, glassware, and standard instruments recommended

in the European Pharmacopoeia (European Pharmacopoeia, 2020).

The hydrodistillation process was carried out 3 times for each

individual and the essential oil content was calculated as a

percentage of oil yield (oil yield) using the following equation:

Oil   yield   =  ½Volume   of   essential   oil   (mL)
Leaf   fresh  weight   (g)

� � 100 

Wood production-related traits were assessed by measuring the

following phenotypic attributes: tree height (TH), diameter at breast

height (DBH), slenderness coefficient (SC), stem straightness (ST),

branching quality (BQ), and stem volume (VOL). TH was measured

using a hypsometer from ground level to the highest point of the

tree. DBH was measured with a diameter tape at 1.3 m above

ground level. SC was calculated according to Valenzuela et al.

(2019), Valenzuela et al, 2021), with a SC = TH/DBH. ST, BQ,

and VOL were evaluated according to Ballesta et al. (2018), Ballesta

et al, 2019) and Mora et al. (2019).

Supplementary Table S1 presents the compiled values from the

measurement of industrial phenotypic traits of interest in E. globulus

individuals. The relationship between the evaluated traits was

analyzed by calculating the average Pearson correlation coefficient

(between quantitative traits) and Spearman’s rank correlation

coefficient (between categorical traits). Correlation tests were

conducted using R 4.0.5 software (Core Development Team, 2020).
2.4 Genomic and pedigree-
based heritability

In this study, the heritability estimates were based on both

genetic data derived from an array of SNP markers and pedigree

information. For heritability estimation based on the genomic

information, the following models were used: Bayes A

(Meuwissen et al., 2001), Bayes B (Meuwissen et al., 2001), Bayes

C (Habier et al., 2011), and Bayesian Ridge Regression (BRR;

Gianola, 2013) implemented in BGLR library (Pérez and de los

Campos, 2014) in R 4.3.2 software (Core Development Team,

2020). These models were implemented according to Ballesta

et al. (2020). On the other hand, in heritability estimation based

on a pedigree model, individual breeding values were estimated

using a Bayesian generalized linear model implemented through the

MCMCglmm library (Hadfield, 2010) in R 4.3.2 software (Core

Development Team, 2020) according to Mora et al. (2019).
2.5 Uni/multi-trait and uni/multi-omic
deep learning models

2.5.1 Convolutional neural networks and
multilayer perceptron

The CNN was implemented following the methodology proposed

by Pérez-Enciso and Zingaretti (2019), utilizing a convolutional layer
Frontiers in Plant Science 04
(conv1D) for effective feature extraction. The layers of this approach

follow a hierarchical structure, which has a tremendous capability of

extracting robust features at each of the layers through the learning

process (Maldonado et al., 2022). Briefly, the architecture was

composed of (I) an input layer for loading the input data with n

(number of molecular markers or spectral signatures) neurons, (II) two

Conv1D layers for feature extraction from the molecular markers or

spectral data (considering a kernel matrix or weight matrix), (III) 1D

max pooling layer (Maxpool1D) for reduces the resolution to dividing

the input into 1D pooling regions and computing the maximum value

of the feature map in each region, (IV) flatten layer for creating a one-

dimensional vector through flatten the input data, (V) two dense layers

(fully connected layer), which implies that the neurons between this

layer and its preceding layer are fully connected, and (VI) output layer

(dense layer for prediction) which employs the linear activation

function for prediction problem. The MLP was implemented

according to Mora-Poblete et al. (2023). The architecture of MLP

was composed of (I) an input layer with n (number of molecular

markers or spectral signatures) neurons, (II) three dense hidden layers,

and (III) an output layer (dense layer for prediction). The neurons in

the network are fully connected and perform non-linear

transformations on the original input attributes. Additionally, the

strength of the connection weights determines the contribution of

each neuron to the overall network output. Deep learning models

(CNN and MLP) were carried out in Python v3.11.6, Tensorflow

v2.13.0, and Keras v3.0.0, considering the following hyperparameters

according to Mora-Poblete et al. (2024): 200 epochs, CNN or MLP

layers plus 3 dense hidden layers and 1 dropout layer (with 20%

dropout), and rectified linear activation unit (ReLU) as the activation

function method for training the models. Pseudocodes for

implementing deep learning algorithms are provided in the

methodology section of the Supplementary Material. In this study,

we utilized a mid-level computing cluster equipped with 28 cores and

62 GB of RAM per core. While this setup represents a significant

computational resource, it is increasingly feasible for many institutions

through affordable cloud computing services, which have seen a

reduction in costs in recent years (Yanamala, 2024). Moreover, all

software used in this study is freely available, making it accessible to

researchers irrespective of their financial constraints. It is important to

note that although training deep learning models is resource-intensive,

once the models are trained, they do not require ongoing

computational resources for application. This allows for their

deployment across various breeding programs without the need for

additional training or adjustments, thus mitigating some of the initial

computational demands.

2.5.2 Cross-validation
The performance of Deep Learning models (CNN and MLP)

using Uni/Multi-trait and Multi-omic approaches for predicting

traits of industrial interest was assessed using 50 cycles of cross-

validation. In each cycle, independent and non-overlapping groups

for training (80%) and testing (20%) were randomly selected,

ensuring that the data used for training were entirely separate

from those used for testing. Furthermore, the random selection

process in each cycle ensured that the training and testing sets

remained independent across all cycles. The DL models were
frontiersin.org
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assessed to predict quantitative traits (Oil yield, TH, DBH, SC, and

VOL), and categorical traits (BQ and ST). Prediction accuracy (PA)

was assessed by calculating the mean of the Pearson correlation

coefficient between observed and predicted traits. DL models (CNN

or MLP) and types of omic datasets (SNPs, Haplotypes, NIR

spectral absorbance, SNPs+NIR spectral absorbance, SNPs

+Haplotypes, Haplotypes+NIR spectral absorbance, SNPs

+Haplotypes+NIR spectral absorbance) were compared across

Uni/Multi-trait and Uni/Multi-omic approaches. Significant

differences in PA values between the omic dataset for Uni-trait

and Multi-trait approaches were assessed by a general linear model

(GLM) with Tukey’s post hoc multiple comparison tests (p<0.05).

Significant differences in PA values of each procedure were assessed

using the t-Student test (p<0.05, p<0.01, and p<0.001). Significant

differences in PA values of the CNN model compared to the MLP

model for the same assessed omic dataset and the same approach,

were evaluated by the t-Student test. Statistical comparison tests

were conducted using R 4.3.2 software (Core Development

Team, 2020).
3 Results

3.1 Phenomic and genomic data

Figure 1 shows the omic data related to NIR spectral absorbance

from the leaves of randomly selected E. globulus individuals within

the study population. Our results revealed that the spectral signature

of leaves from this population exhibited four main peaks: between

1300-1500 nm, 1650-1800 nm, 1850-2000 nm, and 2200-2400 nm.

On the other hand, the sample genotyping quality filters resulted in

14,442 high-quality SNPs for the individuals.
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3.2 Foliar essential oil content, growth, and
stem quality

Significant variations in foliar essential oil content and wood

production-related traits were observed among the individuals. The

essential oil content (oil yield) expressed as a percentage of mL of

essential oil per g of leaf fresh weight (% v/fw) exhibited a range of

0.01-1.69 ± 0.001% v/fw (Supplementary Table S2), and the

preliminary analysis of the main terpenes showed 8 major

compounds, including 1,8-cineole, 1H-Cycloprop[e]azulene, a-
Pinene , Globulol , a-Terpineol acetate , D-Limonene,

Alloaromadendrene, and a-Gurjunene (Supplementary Figure

S1). The quantitative traits related to wood production exhibited

a range of variations, with values ranging from 3.6 to 18.0 m for TH,

4.3 to 22.7 cm for DBH, 0.60 to 1.77 m3 for VOL, and an index of

0.01 to 0.22 for SC (Supplementary Table S2).

The correlation analysis among quantitative traits indicated that

essential oil content showed no significant correlation with any of

the traits associated with wood production (Figure 2). This suggests

that selection solely based on growth-related traits did not influence

the essential oil content. Within the quantitative traits related to

wood production, TH had a significant positive correlation with

DBH (r=0.82) and VOL (r=0.86). Similarly, a significant positive

correlation was observed between DBH and VOL (r=0.95). This

coherence is expected, as the volume of a tree is inherently tied to its

size, and DBH serves as a crucial measure of tree dimensions. A

significant negative correlation was observed between SC and both

DBH (r=-0.59) and VOL (r=-0.41), suggesting that with an increase

in DBH (indicating greater thickness in relation to height), SC tends

to decrease. Conversely, the categorical traits assessed (ST and BQ)

exhibited a positive correlation (r=0.30), implying that, overall, trees

with straighter stems tend to have branches of higher quality.
FIGURE 1

Mean of spectral absorbance values from the leaves of 339 randomly selected E. globulus trees from the study population. The mean and 95%
confidence interval NIR spectral absorbance for all samples are colored in black and gray.
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3.3 Genomic and pedigree-based
heritability of phenotypic traits

Table 1 presents heritability estimates for the essential oil

content, stem quality, and growth-related traits in E. globulus
Frontiers in Plant Science 06
trees, based on SNP markers and pedigree information. In this

study, we found that genomic heritability values, as determined by

SNPs, generally exceeded pedigree-based heritability. Genomic

heritability ranged from 0.25 (for DBH and oil yield with

Bayesian Ridge Regression) to as high as 0.71 (for DBH and ST
TABLE 1 Estimates of heritability based on SNP markers (h2
g ) and pedigree information (h2

a) for essential oil content, stem quality, and growth-related

traits evaluated in 9-year-old E. globulus trees randomly selected from the study breeding population.

Trait

Genomic
Pedigree

Bayes A Bayes B Bayes C BRR

h2
g s2

g s2
e h2

g s2
g s2

e h2
g s2

g s2
e h2

g s2
g s2

e h2
a

EO 0.34 0.05 0.10 0.60 0.16 0.11 0.56 0.14 0.11 0.25 0.03 0.10 0.48

TH 0.37 2.45 4.11 0.51 4.65 4.52 0.41 3.28 4.71 0.26 1.28 3.71 0.06

DBH 0.38 5.17 8.26 0.71 22.24 9.17 0.49 9.00 9.31 0.25 2.87 8.51 0.06

VOL 0.33 <0.01 <0.01 0.50 <0.01 <0.01 0.49 <0.01 <0.01 0.28 <0.01 <0.01 0.08

ST 0.36 0.57 1.00 0.71 2.43 1.00 0.58 1.39 1.00 0.28 0.39 1.00 0.61

BQ 0.46 0.84 1.00 0.67 2.02 1.00 0.54 1.15 1.00 0.35 0.55 1.00 0.88

SC 0.41 0.01 0.02 0.43 0.02 0.02 0.46 0.02 0.02 0.29 0.01 0.02 0.05
f

BRR, Bayesian Ridge Regression; s 2
g , genomic variance component; s 2

e , residual variance component; EO, oil yield; TH, tree height; DBH, diameter at breast height, SC, slenderness coefficient;

VOL, stem volume; BQ, branching quality; ST, stem straightness.
FIGURE 2

Pearson correlation coefficient between quantitative phenotypic traits of industrial interest assessed in the breeding population of E. globulus
studied. The diagonal of the plot shows histograms and distributions of the observed phenotype values, while the lower off-diagonal displays scatter
plots between the traits. Oil yield: essential oil content expressed as a percentage of mL of essential oil per g of leaf fresh weight (% v/fw); TH, tree
height; DBH, diameter at breast height; SC, slenderness coefficient; VOL, stem volume. Significance levels of the correlation coefficients are
indicated by *** for p<0.001.
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with Bayes B), while pedigree-based heritability varied from 0.05

(for SC) to 0.88 (for BQ). Notably, oil yield was a moderately

heritable trait, with genomic values spanning from 0.25 to 0.60,

alongside a pedigree-based heritability estimate of 0.48. These

findings underscore the substantial genetic variation present

within the progeny trial for oil production.
3.4 Prediction accuracy based on uni/
multi-trait and uni/multi-omic deep
learning model

Table 2 shows the mean prediction accuracy estimates of the DL

models (including CNN and MLP) for the quantitative traits under

study (oil yield, TH, DBH, SC, and VOL), as well as categorical

traits (BQ and ST), measured in E. globulus trees. The predictions

were based upon different omics datasets (SNPs, haplotypes, and

NIR spectral data) considering both Uni-trait and Multi-trait

approaches. The Multi-trait approach consistently evidenced

superior PA values for the majority of the analyzed traits. For

instance, in the case of TH, the MLP model employing the Multi-

trait approach with the “Haplotypes” dataset achieved the highest

prediction accuracy (0.772), significantly outperforming the Uni-

trait approach with the same omic dataset (0.588). Likewise, the

MLP model employing a Multi-trait approach exhibited improved

accuracy in predicting oil yield, achieving a PA value of 0.699 when

utilizing the “SNPs+Haplotypes+NIR spectral absorbance” data.

Additionally, the MLP model employing a Multi-trait approach

exhibited improved accuracy in predicting SC, achieving a PA of

0.616 when utilizing the “Haplotypes+NIR spectral absorbance “

data. On the other hand, the CNN model with a multi-trait

approach and complemented with the “NIR spectral absorbance”

data achieved PA values of 0.745 and 0.757 for the prediction of

DBH and stem volume, respectively. Similarly, for the prediction of

ST, the CNN model with a Multi-trait approach achieved a PA of

0.764 using the “SNP” data. In contrast, the Uni-trait approach

demonstrated superior accuracy exclusively for the BQ trait, with a

PA of 0.86 using the CNN model and the “SNPs+Haplotypes+NIR

spectral absorbance” data. Notably, this PA value was not

significantly different from the PA value obtained with the Multi-

trait approach using the same deep learning model and omic data

set (0.84).

The results of this study revealed that Multi-trait models, which

combine SNPs, haplotypes, NIR spectral absorbance, or the

combination of both omics data, consistently outperformed the

Uni-trait approach in six out of seven traits (oil yield, TH, DBH, SC,

VOL, and ST). In contrast, individual omics databases (not

combined with other data) attained higher PA for the Multi-trait

approach in four out of seven traits (TH, DBH, VOL, and ST). NIR

spectral absorbance data, either alone or combined with other omics

data, resulted in the highest PA estimates for a substantial majority

of traits (71% of traits for Multi-trait and 57% of traits for Uni-

trait). Furthermore, NIR spectral absorbance data were the best

selection for the CNN or MLP models with a Multi-trait approach

since in most of the traits evaluated (except for TH) no significant

differences were observed between this data and those omics data or
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combinations that presented the best PA values. Interestingly, the

“SNPs+Haplotypes+NIR spectral absorbance” dataset exhibited

statistically significant differences from all other omics datasets,

except NIR spectral absorbance alone. This suggests that both NIR

spectral absorbance alone or in combination with other omics (SNP

and haplotype datasets) may be valuable for enhancing essential oil

content prediction within the Eucalyptus genus.

The statistical analysis revealed significant differences between

the PA values of CNN andMLPmodels in multiple instances. These

findings strongly suggest that the selection of the deep learning

model can have a substantial impact on prediction accuracy,

contingent upon both the omic data set and the approach

utilized. This highlights the importance of considering the

specific traits of Eucalyptus species when selecting the most

appropriate model.
4 Discussion

While our study successfully applied deep learning models to

predict traits of industrial interest, it did not delve into the

identification of genetic variants associated with specific

phenotypic traits. Instead, we focused on leveraging genomic

selection to enhance the accuracy of predicting complex traits

based on genomic and phenomic data. This approach is

instrumental in breeding programs as it facilitates the early

identification of superior individuals by predicting desirable

phenotypic traits. By improving the precision of these predictions,

we can accelerate the breeding process, enhance selection accuracy,

and manage large populations more efficiently. Additionally, it aids

in better managing genetic diversity, integrating multiple traits,

simulating various breeding scenarios, and predicting trait

evolution within the population (Grattapaglia, 2017).

In practical breeding programs, our predictions can be utilized to

select traits such as essential oil content, wood quality, and adaptability

to climate change. For instance, accurate predictions of branching

quality and growth traits can guide the selection of individuals who

will likely produce higher-quality wood or more resilient trees. This is

particularly relevant in addressing challenges such as the demand for

high-quality wood and essential oils, as well as ensuring sustainability

in forest production. Our findings are consistent with previous

research highlighting the role of genomic selection in advancing the

genetic enhancement of Eucalyptus and other species (Myburg et al.,

2014; Ballesta et al., 2018, Ballesta et al., 2019, Ballesta et al., 2022;

Mora-Poblete et al., 2021; Mora-Poblete et al., 2024).
4.1 Predicting traits in Eucalyptus using NIR
spectral data

In E. globulus and other Eucalyptus species of forestry interest,

phenomic tools such as NIR spectroscopy have been employed to

predict wood chemical properties, including lignin content (total,

insoluble, and soluble), syringyl-guaiacyl ratio, and the content of

different monosaccharides. These predictions contribute significantly

to the classification of species, families, and clones, as highlighted by
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TABLE 2 Mean of prediction accuracy estimates for Uni/Multi-trait and Uni/Multi-omic deep learning models assessed to predict phenotypic traits of industrial interest in E. globulus.

Categorical traits

VOL BQ ST

MLP CNN MLP CNN MLP CNN MLP

.573 a 0.584 a 0.584 a
0.807
abc

0.807 a 0.726 a 0.709 a,*

.573 a,* 0.560 a 0.603 a 0.785 bc 0.801 a 0.709 a 0.728 a

.577 a 0.626 a,* 0.594 a 0.775 c 0.840 a,+ 0.701 a 0.737 a

.596 a 0.613 a 0.578 a 0.850 ab 0.854 a 0.751 a 0.721 a

.579 a 0.632 a,* 0.609 a
0.793
abc

0.791 a 0.749 a 0.747 a

.597 a 0.569 a 0.597 a
0.824
abc

0.812 a 0.703 a 0.756 a,+

.574 a 0.606 a 0.588 a 0.861 a 0.838 a 0.749 a 0.728 a

.598 ab 0.576 c
0.590
abc

0.793 a 0.785 a 0.764 a 0.754 a

.530 b 0.538 c
0.619
ab,+

0.812 a 0.803 a 0.721 ab 0.703 a

.568 ab 0.757 a,+ 0.650 a 0.803 a 0.785 a 0.741 ab 0.724 a

0.599
ab,+

0.638 b,+ 0.536 c 0.816 a 0.825 a 0.707 ab 0.713 a

.551 ab 0.553 c 0.570 bc 0.793 a 0.801 a 0.722 ab 0.713 a

0.616
a,+

0.549 c 0.571 bc 0.819 a 0.826 a 0.693 b 0.729 a

.570 ab 0.640 b 0.604 ab 0.841 a 0.837 a 0.734 ab 0.719 a

ameter at breast height; SC, slenderness coefficient; VOL, stem volume; BQ, branching quality; ST, stem
ey’s test (p<0.05). + (p<0.05) show significant differences in PA values of the CNNmodel compared to the
assessed omic-data set of the Uni-trait approach compared to the Multi-trait approach, according to the t-
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Quantitative traits

Oil yield TH DBH SC

Omic-data set CNN MLP CNN MLP CNN MLP CNN

Uni-trait

SNPs 0.623 a,* 0.568 a 0.597 a 0.589 a 0.626 a 0.614 a 0.608 a

Haplotypes 0.592 a 0.570 a 0.608 a 0.588 a 0.599 a,* 0.564 a,* 0.577 a 0

NIR spectral absorbance 0.595 a 0.638 a 0.602 a 0.612 a,* 0.594 a,* 0.564 a,* 0.570 a

SNPs+NIR
spectral absorbance

0.565 a 0.596 a,* 0.596 a 0.611 a 0.598 a 0.608 a 0.556 a

SNPs+Haplotypes 0.637 a 0.629 a 0.576 a 0.616 a,* 0.579 a 0.622 a 0.605 a

Haplotypes+NIR
spectral absorbance

0.600 a 0.601 a 0.624 a,+,* 0.548 a 0.590 a 0.585 a 0.563 a

SNPs+Haplotypes+NIR
spectral absorbance

0.657 a,* 0.637 a 0.623 a 0.601 a 0.586 a,* 0.566 a,* 0.594 a

Multi-trait

SNPs 0.563 bc 0.572 d 0.605 bc 0.612 b 0.552 c
0.600
bc,+

0.599 a 0

Haplotypes 0.604 ab,+ 0.540 d 0.632 b
0.772 a,

+,*
0.539 c 0.657 a,+ 0.558 a

NIR spectral absorbance 0.604 ab 0.673 ab 0.718 a,+,* 0.548 cd
0.745
a,+

0.645 ab 0.572 a 0

SNPs+NIR
spectral absorbance

0.624 ab,+ 0.538 d 0.587 bc
0.553
bcd

0.630
b,+

0.572 cd 0.541 a

SNPs+Haplotypes 0.668 a,+ 0.622 c 0.559 bc 0.535 d 0.545 c 0.562 cd 0.593 a 0

Haplotypes+NIR
spectral absorbance

0.582 bc 0.633 bc,+ 0.543 c
0.563
bcd

0.564 c 0.580 cd 0.549 a

SNPs+Haplotypes+NIR
spectral absorbance

0.525 c 0.699 a,+ 0.605 bc 0.604 bc 0.528 c 0.531 d 0.554 a 0

PA, prediction accuracy; Oil yield, essential oil content expressed as a percentage of mL of essential oil per g of leaf fresh weight (% v/fw); TH, tree height; DBH, d
straightness. Different letters (a, b, c, d) show significant differences in PA values between the omic-data set for Uni-trait and Multi-trait approaches, according to Tuk
MLP model for the same assessed omic-data set and the same trait approach, according to the t-Student test. *(p<0.05) show significant differences in PA values of the
Student test. The best PA values for each trait evaluated are highlighted in bold.
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Hodge et al. (2018). Furthermore, it has been described that different

leaf spectral reflectance indexes that include NIR data have provided

information on several physiological traits of agronomic interest traits

in Eucalyptus and other species (Lobos and Poblete-Echeverrıá, 2017;

Ballesta et al., 2022). Our findings indicated that the NIR spectra were

similar to previous reports illustrating a distinctive spectral signature of

E. globulus leaves characterized by fourmain peaks: between 1300-1500

nm, 1650-1800 nm, 1850-2000 nm, and 2200-2400 nm (Wilson et al.,

2001; Castillo et al., 2008). Furthermore, NIR spectral peaks within the

ranges of 1650-1800 nm and 2200-2400 nm have been reported to be

associated with essential oil and 1,8-cineole content (Wilson et al.,

2001). Similarly, the association between leaf NIR spectral data and

foliar essential oil content has been previously utilized to differentiate E.

globulus, E. nitens, and their hybrid F1 (Humphreys et al., 2008). Our

study considered DL models that used the full foliar NIR spectra (900-

2500 nm) as phenomic data for the prediction of traits associated with

wood and essential oil content. Recently, Ballesta et al. (2022) proposed

the use of the full foliar NIR spectral data to improve genomic

prediction of other secondary metabolites such as cyanogenic

glycosides content in E. cladocalyx. Moreover, in individuals of E.

cladocalyx, it has been emphasized that the use of foliar NIR spectral

data together with DL models improves the ability to discriminate and

assign individuals to specific subpopulations (genetic structure),

facilitating the implementation and application of population

structure studies on a large scale (Maldonado et al., 2022).
4.2 Essential oil content variation in
breeding population of E. globulus

Understanding the genetic basis of essential oil production in E.

globulus is crucial for optimizing breeding strategies in this

economically important species. In this study, the observed difference

between genomic and pedigree-based heritability highlights the

importance of leveraging genomic data to accurately quantify genetic

contributions to complex traits, an issue emphasized by Ballesta et al.

(2020). The observed moderate-to-high heritability of essential oil

content suggests that genetic factors play a substantial role in

determining essential oil yields in E. globulus. This substantial genetic

variation within the breeding population underscores the importance

of further exploration into the underlying genetic mechanisms and

environmental factors influencing this trait. The observed variation in

essential oil content is consistent with previous findings for E. globulus,

with studies reporting yield ranges of 0.80-2.10% v/fw in Ethiopia

(Subramanian et al., 2012; Kassahun and Feleke, 2019), 1.31 ± 0.14% v/

fw in Argentina (Russo et al., 2015), 2.12% v/fw in Morocco (Zrira

et al., 1992), 1.70-2.20% v/fw in Portugal (Silvestre et al., 1997), 2.20%

v/fw in Vietnam (Ngo et al., 2020), and 2.50% v/fw in Algeria (Daroui-

Mokaddem et al., 2010). The difference in essential oil content (% v/fw)

between E. globulus individuals from different regions of the world is

because this trait depends upon variations in complex quantitative

traits such as foliar oil concentration, foliar biomass, and

environmental adaptability (Kainer et al., 2015). This is consistent

with our correlation results between quantitative traits, which indicated

that essential oil content has no significant correlation with stem

quality or growth-related traits.
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4.3 Improving the prediction accuracy of
foliar essential oil content, growth, and
stem quality in E. globulus using multi-trait
deep learning models

The results showed that the PA values depended on the DLmodels

(CNN and MLP), the type of approach (Uni-trait and Multi-trait), and

the omic data set (SNPs, haplotypes, NIR spectral absorption, or the

combination of these omic data). Previous studies have shown that

different DL model architectures could have a significant impact on

prediction accuracy in Eucalyptus (Maldonado et al., 2020). Therefore,

it is important to take these considerations into account when

implementing DL models for phenotypic trait prediction in E.

globulus. Our results demonstrate that DL models that integrate

phenotypic traits in Multi-trait approach increase prediction accuracy

compared to Uni-trait approach. In this sense, 86% of traits showed the

highest PA values in the Multi-trait approach. Among these, 83% had

significantly greater efficiencies compared to their Uni-train

counterparts. Several studies have reported that the Multi-trait

approach generally offers better prediction accuracy compared to the

Uni-trait approach, particularly when the evaluated traits are correlated

(Sandhu et al., 2022; Mora-Poblete et al., 2023). This observation aligns

with our results, as the highest PA values for the Multi-trait approach

were associated with quantitative traits that exhibited positive

correlations, such as TH, DBH, SC, and VOL (Figure 2). In contrast,

the Uni-trait approach demonstrated high PA values for traits with low

or no correlation with other evaluated traits, such as oil yield, BQ, and

ST. Notably, BQ showed the highest PA value using the Uni-trait

approach, though there were no significant differences compared to the

PA value obtained with the Multi-trait approach using the same deep

learning model and omics data set.

Branching quality exhibited higher heritability across most

models used, including Bayes A and Bayesian Ridge Regression

(BRR) based on genomic data, as well as models based on pedigree.

As expected, traits with high heritability, such as branching quality,

show greater prediction accuracies compared to traits with lower

heritability. This pattern is supported by similar findings in the

literature, which consistently demonstrate a strong relationship

between prediction accuracy and trait heritability (Kaler et al.,

2022; Cui et al., 2020). Our results underscore the importance of

considering heritability when evaluating the precision of predictive

models, highlighting the benefits of a Multi-trait approach for traits

with positive correlations and the utility of the Uni-trait approach for

less correlated traits. These findings reinforce previous research that

has shown the advantages of evaluating multiple phenotypic traits

simultaneously for predicting complex traits in plants, including

Eucalyptus (Maldonado et al., 2020; Mora-Poblete et al., 2023).

To the best of our knowledge, this work represents a pioneering

effort in employing DL models to improve the prediction accuracy of

traits associated with essential oil content in the genus Eucalyptus.

Previously, Kainer et al. (2018) assessed the predictive accuracy of

genomic models of the foliar terpene traits, including total leaf oil

concentration in E. polybractea employing different methodologies such

as traditional pedigree-based Additive Best Linear Unbiased Prediction

(ABLUP), Genomic BLUP (GBLUP), Bayes B genomic prediction

model, and a form of GBLUP based on weighting markers according
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to their influence on traits (BLUP|GA). Their findings indicated that the

predictive performance varied across different terpene traits.

Interestingly, they reported that the predictive ability was higher with

Bayes B and BLUP|GA for individual terpene traits, such as a-pinene
and 1,8-cineole concentration, with values of 0.59 and 0.73, respectively.

The Bayes B method assumes that each marker has its own variance,

and the phenotypic variance is explained by loci with effects of different

magnitudes (Wang et al., 2018). For aggregate traits such as total leaf oil

concentration, the study of Kainer et al. (2018) found that the predictive

value was comparatively lower (0.38). Our results indicate that theMLP

model with a Multi-trait approach and utilizing the combined “SNPs

+Haplotypes+NIR spectral absorbance” dataset presented superior

predictive values (0.699) for the essential oil content.

Although the comparison of prediction values may be biased due to

the differing omics datasets used in Bayesian models from previous

studies, our findings are consistent with those of Mora-Poblete et al.

(2023), who observed that Multi-trait deep learning models surpassed

Bayesian and GBLUP predictive models in both capturing genetic

variation and prediction accuracy. Regarding growth-related traits and

stem quality, our DL models (including CNN and MLP) exhibited

higher PA values for traits such as ST, DBH, TH, and BQ compared to

previous evaluations of the progeny trial. For instance, Ballesta et al.

(2019) used Bayesian genomic models (BA, BB, BC, BL, BRR)

incorporating the effects of haplotypes and SNPs to predict

quantitative wood-related traits, reporting PA values of 0.580, 0.460,

0.440, and 0.330 for ST, DBH, TH, and BQ, respectively. Maldonado

et al. (2020) employed DL techniques, specifically Long Short-Term

Memory Network (LSTM) and Bayesian Regularized Neural Network

(BRNN) models, focusing solely on the effects of SNPs in E. globulus.

Their study revealed that the DL model, particularly the LSTM variant,

achieved the highest PA values (0.460 to 0.557), demonstrating the

superior performance of DL methods in predicting wood-related traits

in E. globulus compared to traditional approaches. This underscores the

potential of DL techniques in enhancing the accuracy of genetic

prediction models for complex quantitative traits, thereby facilitating

more efficient breeding strategies in forestry applications. Deep learning

has become a powerful tool across various scientific domains, offering

innovative approaches to tackle complex problems. For instance, it has

been utilized to enhance the prediction of industrial yield phenotypes in

trees (Maldonado et al., 2020), classify proteins based on sequence data

(Kha et al., 2022), and develop diagnostic and treatment strategies for

cancer patients (Tran et al., 2024). Deep learning models, as end-to-end

systems, are capable of processing high-dimensional raw input data,

enabling superior feature extraction and learning capabilities compared

to traditional methods (Tran et al., 2024). This allows deep learning

models to excel in handling high-dimensional omics data, producing

more robust and accurate predictive results than conventional machine

learning approaches. Our findings corroborate the superiority of Multi-

trait models in terms of prediction accuracy, as demonstrated even for

uncorrelated traits (Mora-Poblete et al., 2023). These results could be

attributed to the ability of deep learning to capture intricate interactions

within its hidden layers, eliminating the need for explicit covariate

specification (Montesinos-López et al., 2018; Mora-Poblete et al., 2023).

Interestingly, NIR spectral data consistently yielded the highest average

prediction accuracy across traits in the Multi-trait approach. This

finding is consistent with other studies in which NIR spectral
Frontiers in Plant Science 10
absorbance increased the accuracy of predicting various traits in

Eucalyptus (Mora-Poblete et al., 2021; Ballesta et al., 2022; Mora-

Poblete et al., 2024). Additionally, this result aligns with Rincent et al.

(2018), who employed NIR reflectance as a method to indirectly

capture endophenotypic variants and compute relationship matrices

for predicting complex traits in breeding populations, demonstrating its

effectiveness in prediction models.

The success of deep learning in predicting Eucalyptus traits suggests

its potential applicability to other forest tree species. Additionally, it

highlights the potential of NIR spectral information as a low-cost

phenotyping tool (Rincent et al., 2018) that enables the acquisition of

omics data on a large scale and improves the prediction accuracy of

various traits of industrial interest. Furthermore, this study represents a

pioneering effort in experimentally testing deep learning models trained

on multi-omics datasets that combine genomic information (SNPs and

Haplotypes) withNIR spectral absorbance for phenotypic trait prediction.

We propose this innovative approach as a valuable complement to

traditional methods of genomic and phenomic prediction.
5 Conclusion

Accurate prediction of industrial traits inEucalyptus species is crucial

for selecting desirable genotypes and advancing genetic improvement.

Our results demonstrate that Deep Learning models (CNN and MLP),

incorporating a Multi-trait approach and NIR spectral absorbance, can

significantly improve prediction accuracy within tree breeding programs.

This has the potential not only to facilitate the production of genetically

improved seeds and individuals of E. globulus with enhanced growth

traits and stem quality but also to improve the traits related to essential

oil content, a key non-timber forest product. This, in turn, promotes

sustainable production and consumption across various industrial

applications. The insights and findings from this research significantly

contribute to understanding omics-assisted deep learning models as a

breeding strategy to improve traits of industrial interest in Eucalyptus

globulus, such as wood and essential oil production. These advancements

not only foster progress in the field of plant science but also enable more

efficient and targeted breeding efforts, ultimately driving innovation and

sustainability in Eucalyptus plantations.
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