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Trait-customized sampling of
core collections from a winter
wheat genebank collection
supports association studies
Marcel O. Berkner, Yong Jiang, Jochen C. Reif*

and Albert W. Schulthess

Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
Gatersleben, Seeland, Germany
Subsampling a reduced number of accessions from ex situ genebank collections,

known as core collections, is a widely applied method for the investigation of

stored genetic diversity and for an exploitation by breeding and research.

Optimizing core collections for genome-wide association studies could

potentially maximize opportunities to discover relevant and rare variation. In

the present study, eight strategies to sample core collections were implemented

separately for two traits, namely susceptibility to yellow rust and stem lodging, on

about 6,300 accessions of winter wheat (Triticum aestivum L.). Each strategy

maximized different parameters or emphasized another aspect of the collection;

the strategies relied on genomic data, phenotypic data or a combination thereof.

The resulting trait-customized core collections of eight different sizes, covering

the range between 100 and 800 accession samples, were analyzed based on

characteristics such as population stratification, number of duplicate genotypes

and genetic diversity. Furthermore, the statistical power for an association study

was investigated as a key criterion for comparisons. While sampling extreme

phenotypes boosts the power especially for smaller core collections of up to 500

accession samples, maximization of genetic diversity within the core collection

minimizes population stratification and avoids the accumulation of less

informative duplicate genotypes when increasing the size of a core collection.

Advantages and limitations of different strategies to create trait-customized core

collections are discussed for different scenarios of the availability of resources

and data.
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1 Introduction

About 7.4 million accessions of crop varieties, landraces, and

crop-wild relative species are preserved in more than 1,750 ex-situ

genebanks worldwide (FAO, 2010). Cereal crops dominate genebank

collections (Ramirez-Villegas et al., 2022), with wheat (Triticum spp.),

rice (Oryza spp.), and barley (Hordeum spp.) being on the leading

positions with more than 850 thousand, 770 thousand, and 460

thousand accessions, respectively (FAO, 2010). These accessions are

suspected to harbor beneficial alleles which are associated with an

agronomic trait and got accidentally vanished from breeding

germplasm due to selective bottlenecks (Tanksley and McCouch,

1997). For instance, 76% and 71% of the total variation in landraces of

barley and respectively, wheat is already preserved in genebank

collection (Ramirez-Villegas et al., 2022). The identification of

donor genotypes retaining these beneficial alleles is vital to exploit

the potential of genebanks for breeding. Nevertheless, this task

remains difficult even though the results of phenotypic screenings

and cost-effective high throughput genotyping are becoming

progressively available for many collections. Genome-wide

association studies (GWAS) benefit from, or even require, high-

quality phenotyping and genotyping. At the scale of an entire

collection, the all-encompassing evaluation of every single accession

remains however unrealistic in terms of resources required and the

sheer number of accessions. This aspect is especially valid for traits

demanding expensive phenotyping protocols or for low-heritable

traits as well as high-density genotyping such as whole-genome-

sequencing. Consequently, more precise examination should be

restricted to a targeted selection of accessions: a core-collection (CC).

Since the concept of CC was introduced (Frankel, 1984), CC

have been generated based on many genebank collection for crops

such as barley (Muñoz-Amatriaıń et al., 2014; Milner et al., 2019),

groundnut (Arachis hypogaea L.) (Upadhyaya et al., 2003), pepper

(Capsicum spp.) (Lee et al., 2016), potato (Solanum tuberosum L.)

(Esnault et al., 2016), soybean (Glycine max (L.) Merr.) (Bandillo

et al., 2015; Haupt and Schmid, 2020), and wheat (Pascual et al.,

2020; Phogat et al., 2021). Analyzing the literature spanning a recent

decade, Gu and collaborators (Gu et al., 2023) discovered CC for

146 species of crops, ornamentals and trees. In general, there are

two contrasting aims for selecting a CC: to represent the diversity

harbored in the total collections or to maximize the diversity

represented (Marita et al., 2000). Regardless of the aim, sampling

strategies of CC have relied on various types of pre-existing or

newly generated data such as genotypic (Esnault et al., 2016; Milner

et al., 2019; Haupt and Schmid, 2020; Guo et al., 2022) or

phenotypic data (Upadhyaya et al., 2003; Phogat et al., 2021);

occasionally, involving a stratification based in passport data

(Upadhyaya et al., 2003). Moreover, sampling of a CC may face

restrictions due to the attributes of the genebank collection, the

available resources, and the nature of the crop species per se.

Certainly, there is not a uniform and universal sampling strategy

for a CC (Gu et al., 2023).

Even though many CCs have been analyzed with modern

biometric approaches such as GWAS (Muñoz-Amatriaıń et al.,

2014; Bandillo et al., 2015; Milner et al., 2019), hardly any CC has
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been reported to be specifically optimized for this approach.

Therefore, sampling strategies for CC needs to be re-evaluated

and possibly redefined in order to increase the statistical power for

the identification of marker-trait-associations that are meaningful

for breeding. Based on theoretical knowledge, such a CC should

display specific characteristics which are summarized below.

First, the selection of accessions should be enriched with

distinct alleles associated with the trait of interest and not yet

present in the breeding germplasm. Extremely rare alleles with

moderate effect-sizes will probably remain unnoticed in an

association study; however, common variants are most likely

already present in breeding programs and therefore, not of

interest for the identification of donor genotypes. Generally, this

also implies that distinct sets of accessions would be sampled for

every trait since genetic architectures are in the best case only

partially shared and mostly mismatched between different non-

correlated traits. To distinguish from the classical CC, this study will

refer to a trait-customized core collection (TCCC).

Second, the characteristics of such a TCCC should enable high

statistical power in GWAS. The statistical power is defined as the

probability to prevent a type 2 error; meaning the probability to

correctly identify a marker’s association with the trait. The estimates

of statistical errors depend on the probability distributions of the

null hypothesis and the alternative hypothesis as well as the chosen

level of significance. While choosing a more relaxed significance

level will increase the power of GWAS, the specificity of a GWAS

will decline. Therefore, changing the probability distributions by the

constitution of the examined panel remains the only adequate way

of adjusting the statistical power. Using a Q + K model, Wang and

Xu (2019) demonstrated how the power can be deduced from the

non-centrality parameter of the c²-distribution. Proven based on

simulated data, the determinants of the power are the number of

genotypes in the sample, the polygenic contribution to the

phenotypic variance, and the effect size of the targeted

quantitative trait locus (Wang and Xu, 2019). In contrast, the

present work aimed at a practical-oriented evaluation based on

real datasets. Sampling extreme phenotypes, also known as selective

genotyping (Van Gestel et al., 2000; Xing and Xing, 2009), is known

to leverage the statistical power in GWAS (Xing and Xing, 2009;

Guey et al., 2011) and was therefore implemented in five out of eight

sampling strategies for TCCCs tested in the present report.

Third, population structure and genetic relationship

confounded with the variation in the targeted trait can strongly

interfere with GWAS results (Myles et al., 2009). Related genotypes

have many genetic variants in common; vice versa, genotypes from

different subpopulations share very few variants. While all of these

shared or unshared variants explain the relatedness, only few

variants are truly associated with the trait of interest. Therefore, a

higher number of false positive associations will be discovered if

population structure and genetic relationships are ignored. Myles

and collaborators (Myles et al., 2009) concluded that the covariance

of phenotypic similarity and relatedness describes this impact on

association mapping and therefore, the correlations between

phenotypic and genotypic distance can arguably be considered as

a measure of population stratification. The selection of a TCCC
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should limit the impact of population stratification, for example by

selecting accessions from the entire diversity space of the

collections. Active selection against stratification is, however,

complex and may negatively influence other aims such as a high

number of novel beneficial variants in the TCCC.

Increasing the number of accessions in the TCCC could mitigate

the negative impact of population stratification; simultaneously, the

power of GWAS will as a tendency increase with the number of

accessions (Wang and Xu, 2019). Moreover, the number of distinct

positively associated alleles in the TCCC should approach a collection-

specific maximum as the number of accessions in the TCCC increases.

In general, an unlimited increase in the number of accessions would

therefore be an easy, though unrealistically expensive approach to

address all problems identified above. Not only the costs of high-quality

phenotyping and genotyping, but also the cost for maintaining a TCCC

in pure constant conditions on the long-term, urge the need to limit the

size of a TCCC to the effective minimum. In addition, a larger TCCC

will increase the chance of sampling accessions which are genetic

duplicates. Some genebank collections have been reported to harbor

duplicate accessions with for instance an abundance of 37% (Schulthess

et al., 2022a) and even up to 54% (Singh et al., 2019), respectively.

Undoubtedly, the size of a TCCC has therefore an extreme impact.

Sizes of CC have mostly been defined relatively to the size of the

original genebank collection. Brown (1989a) recommended a

proportion of 10% of all available accessions and found to cover

about 70% of the entire genetic variations with this CC size. Depending

on the collection, these proportions can in practice vary a lot (Van

Hintum et al., 2000) and can be translated into a few or more than

thousand accessions (Gu et al., 2023). We advance the hypothesis that

the composition of the TCCC, as defined by the underlying sampling

strategy, determines the success of the identification of marker-trait-

associations and the corresponding donor genotypes, given a constant

size of the TCCC.

The main goal of the present study was to compare the effect of

different sampling strategies on the probability to identify donor

genotypes for two agronomic traits in the winter wheat collections

of the German Federal Ex situ Genebank hosted at the Leibniz

Institute of Plant Genetics and Crop Plant Research (IPK

Genebank). In particular, the objectives were to (1) elaborate

eight different selection strategies, relying on phenotypic and/or

genotypic information, to sample accessions for TCCCs of

increasing size for two traits, namely yellow rust susceptibility

(YR) and stem lodging (SL), (2) study the suitability of the

strategies to identify association in GWAS based on power

estimates of trait-specific panels of markers, genetic and

phenotypic diversity in the TCCC as well as population

stratification, and (3) investigate the impact of the size of the

TCCC on the power of quantitative trait locus detection.
2 Materials and methods

2.1 Plant material

The presented research relied on a previously published subset

of the Triticum collection stored at the IPK Genebank (Schulthess
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et al., 2022a, b). In total, 7,651 accessions were selected with the

intention to include most of the available winter wheat accessions.

While the vast majority were Triticum aestivum L., nine accessions

were classified as other species of the Triticum genus.
2.2 Genotypic data

Genotyping-by-sequencing profiles for all 7,651 accessions were

used as previously published by Schulthess and collaborators

(Schulthess et al., 2022a, b). Concisely, genotypic profiles were

generated by engaging a genotyping-by-sequencing approach as

follows. On the field, 7,745 distinct morphotypes were identified

among all 7,651 genebank accessions. Each morphotype was

transferred into an isolate line by bagging one characteristic ear

and propagation in an ear-to-row fashion; the isolate line is referred

to as accession sample. For each isolate line, DNA was extracted

from a 10-day-old seedling and subsequently digested using PstI

and MspI restriction enzymes followed by ligation to adapters

comprising barcode sequences. Digested samples were pooled into

genotyping-by-sequencing libraries and sequencing was performed

either on an Illumina Hiseq-2500 or a NovaSeq 6000 system. The

resulting reads were trimmed to a minimum read length of 30 bp

followed by SNP calling based on the wheat reference genome var.

Chinese Spring v. 1.0 (IWGSC, 2018). The resulting SNPmatrix was

further filtered: only markers with less than 10%missing values, any

of both alleles in homozygous state in at least 10 genotypes, and

heterozygosity ≤1% were retained for downstream analyses. Finally,

missing genotypic data was imputed marker-wise as the

predominant allele among all accession samples.
2.3 Phenotypic records and
performance estimation

Two phenotypic traits were considered in the present work:

susceptibility to yellow rust infections (YR) and stem lodging (SL).

Both traits were measured by following the standard protocols of

the German Federal Plant Variety Office (Bundessortenamt, 2020)

and based on 1-9 scoring scales, with 1 corresponding to YR

resistance or SL tolerance, and 9 indicating extreme YR or SL

susceptibility. YR and SL were recorded in 12 and 13 field

experiments, respectively, with ten experiments having records for

both traits simultaneously. YR was based on natural infections and

recorded when sufficient disease pressure was observed for an entire

experiment while SL was measured after heading stage. Field

experiments involved two German locations, Gatersleben (latitude

51° 49’ 19.74’’ N, longitude 11° 17’ 11.80’’ E) and Schackstedt

(latitude 51° 43’ 0’’ N, longitude 11° 37’ 0’’ E), as well as seven

consecutive growing seasons within the 2014-2020 period. Each

experiment was performed to large-scale test 1,428-1,698 entries

under an alpha-lattice design and considering a 0.4 m² plot as

experimental unit. All experiments were performed considering two

replications, but in two experiments phenotypes were recorded in

only one replication. Experiments were partially connected through

overlapping common entries. Crop management of all experiments
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considered only the chemical control against weeds, while no

fertilizers were additionally applied. Data quality assessment as

well as the computation of variance components for heritability

estimation and the average performance across experiments, best

linear unbiased estimates (BLUEs) for each trait and entry were

performed based on linear mixed models as implemented in the R

software package ASReml-R (v. 3) (Butler et al., 2009). Further

details on methods underlying these analyses can be found in past

works (Schulthess et al., 2022a, b), where YR phenotypic records

were originally published. SL data has not been either presented or

assessed previously. Out of the 7,745 accession samples with

genotyping-by-sequencing profiles, 6,300 and 6,251 have BLUEs

for YR and SL, respectively, and were used for downstream analyses.
2.4 Evaluation of genetic diversity and
population structure

Genetic diversity within groups of accessions was analyzed

based on genetic distances. With this intention, pairwise Rogers’

distances were calculated (Rogers, 1972) for all 7,745 accession

samples and condensed by principal coordinate (PCo) analysis

(Gower, 1966). Population structure was visualized by plotting

first and second PCos against each other.
2.5 Tested sampling strategies

Eight different strategies to sample a TCCC were contrasted in

the present study. The tested strategies differed with respect to the

data sources required for the selection decision as outlined in

Table 1. While four sampling strategies relied on phenotypic

information, one strategy required exclusively genomic profiles

and additional two strategies engaged both types of data. For the

latter, phenotypic data, as BLUEs per accession, were linked to the

existent genotypic data through accession samples. Only one

strategy did not need any data: completely random sampling

(All_random) of accessions was included as benchmark for the

most simplistic approach. In the second sampling strategy

(All_Pdiv), the range of phenotypic values of all accession

samples was subdivided into 10 equally-large quantiles, while the

total sample size was subdivided into individual drawings which

were randomly assigned to the 10 defined quantiles. During

implementation, restrictions due to fewer representatives toward

the extremes of distributions must be considered. Therefore, if the

number of drawings was larger than the total number of

representatives within the respective quantile, the surplus was

randomly distributed to the other quantiles. Thereafter, accession

samples were randomly sampled within the quantiles according to

the number of drawings. In this way, the whole range of phenotypic

diversity was covered as equally as possible. For the third sampling

strategy (All_Gdiv), the R software package corehunter (v. 3.2.1)

(De Beukelaer and Davenport, 2018) was used to maximize the

genetic diversity within the TCCC. The algorithm, as implemented

in the “sampleCore” function, was applied with the specification EN

(entry-to-nearest-entry distance) in combination with MR
Frontiers in Plant Science 04
(modified Roger’s distance) and allowing a maximum of 20

iterations without any improvement. This function run in

combination with rJava (v. 1.0-6) (Urbanek, 2021).

In the fourth sampling strategy (1T_rank), all accessions were ranked

based on the phenotypic values and the most resistant accessions, thus

with the lowest BLUEs, were successively selected. Similarly, the sampling

strategy (2T_rank) involved a ranking of accessions based on their

phenotypic values. However, accessions were chosen from the lowest and

highest phenotypic range in a 3:1 ratio. For both traits, low phenotypic

scores are the breeding target and thus, this last step allows the

accumulation of beneficial variants within the TCCC.

For the remaining three strategies, a positive and a negative tail

were defined based on the distribution of BLUEs. Each phenotypic

tail contained the 10% of all accession which have the lowest and

highest phenotypic values. Tails with low and high values are
TABLE 1 Description of the eight strategies applied for sampling of trait-
customized core collections.

Name Description
Phenotypic
data

Genotypic
data

All_random
Completely random
sampling from all
accession samples

No No

All_Pdiv

Sampling phenotypes
equally covering the
entire range of the
phenotypic diversity

Yes No

All_Gdiv

Sampling from all
accession samples in
order to maximize
genetic diversity

No Yes

1T_rank

Sampling from the
tail of best-
performing accession
based on
phenotypic ranking

Yes No

2T_rank

Sampling the most
contrasting
phenotypes from two
tails based on
phenotypic ranking

Yes No

2T_random

Random sampling of
accession samples
from two
phenotypic tails

Yes No

2T_Gdiv&Gsim

Maximizing genetic
diversity within the
tail of best-
performing accession
and sampling of
related genotypes
from the
contrasting tail

Yes Yes

2T_Gdiv&Gdiv

Maximizing genetic
diversity
independently within
both contrasting
phenotypic tails

Yes Yes
Depicted are the abbreviated names of the strategies, a short description of the underlying
procedure as well as an indication about the required data.
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referred to as positive and negative tail, respectively. Random

sampling in the positive and negative tail was performed for the

strategy called 2T_random, while the tails were considered in a 3:1

ratio. For the last two tested sampling strategies, the R software

package corehunter (v. 3.2.1) (De Beukelaer and Davenport, 2018)

was engaged to maximize the genetic diversity among the accessions

chosen from the positive tail. For this maximization, the same

software specifications were used as described above for All_Gdiv.

For the seventh sampling strategy (2T_Gdiv&Gsim), accessions

were sampled from the negative tail in a 3:1 ratio in such a way that

one accession from the negative tail was chosen due to the lowest

Rogers’ distances with three accessions of the positive tail. This

stepwise selection was repeated until all accessions from the positive

ta i l were covered. For the eighth sampl ing strategy

(2T_Gdiv&Gdiv), accessions were initially sampled from the

negative tail based on a low genetic distance in exactly the same

number as accessions were present in the positive tail. In a second

step, the number of accessions in the pre-selection from the

negative tail was reduced in order to achieve the 3:1 ratio between

the samples from the positive and negative tail. For the latter step,

the R software package corehunter (v. 3.2.1) (De Beukelaer and

Davenport, 2018) was used as described above to sample a lower

number of accessions in parallel to maximizing the genetic diversity

within the sample from the negative tail.

The described sampling strategies were implemented for eight

different sizes of TCCCs, measured in the number of accession

samples included. The sizes of TCCCs increased with a step size of

100. The minimum size was set at 100 because this is the widely-

accepted threshold in GWAS to yield publishable results; in contrast the

maximum of 800 reflects the size of the phenotypic tails and the 3:1

sampling ratio between both tails in some sampling strategies. The

sampling and later evaluation was performed with 50 independent

replications for each combination of strategy and size of TCCC.
2.6 Evaluation of trait-customized
core collections

The characteristics of theTCCCsdiffered depending on the compositions

of selected accession samples. Unbiased comparisons of TCCCs and the

associated sampling strategies were ensured by only contrasting TCCCs of the

same size. The comparison was based on six criteria which were namely the

phenotypic distribution, the correlation between phenotypic and genotypic

distances, the number of duplicate genotypes based on identity-by-state values

between sampled accessions, the genetic distinctness of the sampled TCCC

from the remaining accessions samples (Fst), the statistical power of GWAS

(Wang and Xu, 2019), and the average minor-allele-frequency (MAF) within

the TCCC and within the trait-specific panels of markers which are later on

referred to as Top10_MTAs.

For each trait, the Euclidean distances were computed

separately for all pairs of accession samples in the TCCC or in

the entire collection and the correlation between these values and

the pairwise Rogers’ distances from genomic data served as

diagnostic measure for population stratification. Identity-by-state

values were calculated for all pairwise comparisons within the

respective TCCC with the “snpgdsIBS” function of the R software
Frontiers in Plant Science 05
package SNPRelate (v. 1.24.0) (Zheng et al., 2012). A threshold of

identity-by-state values > 99% was applied to declare two accession

samples as duplicates, as similarly done by Schulthess and

collaborators (2022a). The pairwise Fst was calculated between all

accession samples in the TCCC and all remaining accession samples

of the genebank collection. The pairwise Fst was calculated with the

“fs.dosage” function of the R software package hierfstat (v. 0.5-11)

(Goudet and Jombart, 2022). The effective population size (Ne) was

calculated within each TCCC based on (Waples, 2006):

Ne =
1

3(r2linkage −
1
n )

  (1)

in which n is the number of sampled genotypes and r2linkage
denotes the mean linkage disequilibrium of unlinked markers in the

sampled genotypes. In order to ensure the unlinked state, linkage

disequilibrium was calculated as the average squared correlation

between markers located on different chromosomes.

The statistical power of GWAS was estimated following the

theoretical approach of Wang and Xu (2019). More precisely, we

first performed GWAS in the total set of accession samples and took

the 10 most significant markers as hypothetical QTL for each trait,

referred as trait-specific Top10_MTAs. The computations for GWAS

relied on the “GWAS” function of the R software package rrBLUP

(v.4.6.1) (Endelman, 2011); the minimum MAF was set to 1%. Then,

the approach ofWang and Xu (2019) was used to estimate the power of

detecting these markers in the TCCCs. For a GWAS study relying on a

Q+K model and involving n genotypes, the power of detecting a

specific marker can be estimated based on the non-centrality

parameter, d, of a c²-distribution, as follows (Wang and Xu, 2019):

d = (l + 1)on
j=1

1
(djl + 1)

r2marker
1 − r2marker

(2)

in which dj are the eigenvalues of the kinship matrix, r2marker is

the proportion of phenotypic variance explained by the marker

estimated within the TCCC and l represents the ratio of polygenic

variance to the residual variance. The genetic variance and residual

variance were calculated with the “kin.blup” function of the R

software package rrBLUP (v.4.6.1) (Endelman, 2011) and

considering all accession samples within the TCCC with BLUEs

for the trait of interest. A significance level of 0.05 was applied in

combination with the simpleMmethod (Gao et al., 2008) to account

for the bias due to multiple testing. The R software package ggplot2

(v. 3.4.4) (Wickham, 2016) was used for the visualization of the

results. Manhattan plots were created with the R software package

qqman (v. 0.1.4) (Turner, 2018). All computations were performed

in the R environment (v. 3.4.4, v. 4.0.2) (R Core Team, 2020).
3 Results

3.1 Phenotypic distributions and trait’s
association with population structure

Fifteen large-scale field experiments provided data with very

high heritabilities for YR (h² = 0.82) and SL (h² = 0.86)
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(Supplementary Table S1) as well as BLUEs for 6,300 and 6,251

accession samples for YR and SL, respectively. The distributions of

the traits were distinct: while BLUEs of YR followed a more

symmetric distribution (mean = 4.95, median = 4.79, standard

deviation = 1.40), SL had an L-shaped distribution which was

strongly skewed towards lower values (mean = 3.18, median =

2.61, standard deviation = 2.03) (Figure 1).

Population stratification can strongly bias GWAS results and

thus, the association of the phenotypic distributions with the

population structure was investigated for both traits in the entire

genebank collection. Strong correlations with the first PCo

from genomic distances were observed for both YR (r = 0.42) and

SL (r = 0.52), thus indicating a clear association of population

structure with trait variation (Table 2). The separation along the

first PCo can also be seen graphically based on the location of the

phenotypic tails, one with low and another with high BLUEs, in the

diversity space (Figure 1). The correlations with the second, third,
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fourth and fifth PCo were clearly lower in magnitude however still

statistically significant (p-values < 0.001).
3.2 Selection of a marker panel showing
association in the entire population

Based on all available data, GWAS was performed to identify

likely associated markers that were later investigated within the

sampled TCCCs. For both traits, some markers were identified as

having a high probability of being associated with the trait of

interest (Supplementary Figure S1) and the 10 markers with the

highest -log10(p)-value were selected for a trait-specific marker

panel and referred to as Top10_MTAs. For both traits, these

markers were located on several distinct chromosomes

(Supplementary Figure S2). The markers of the Top10_MTAs

panels were later categorized based on the effect size, i.e. large,
FIGURE 1

Genetic diversity and phenotypic distributions of the two contrasting phenotypic tails each containing 10% of the accessions samples with the
lowest (blue) and highest (orange) phenotypic values of yellow rust susceptibility (A, C) and stem lodging (B, D). The remaining 80% of all accession
samples are shown in gray color. The phenotypic distributions are plotted in relation to the genetic diversity (A, B) which is displayed as a biplot of
the first and second principal coordinates (PCo) from the Rogers’ distances between 7,745 accession samples of the IPK winter wheat collection.
Histograms display the abundance of best linear unbiased estimates (BLUE) for yellow rust susceptibility (C) and stem lodging (D) along the
phenotypic range. The phenotypic values exceed the 1-9 range of the phenotyping scale due to the non-orthogonal structure of characterization
experiments across locations and years and the computation of linear mixed models.
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medium, and small r² values, and the MAF (common, rare)

(Supplementary Table S2). With a size of 10 markers, the

Top10_MTAs marker panels comprised multiple markers per

category; however, not all combinations of effect size and MAF

were present in these panels. Common markers with a medium to

large effect are often already known to breeders and incorporated in

the germplasm. Four and five markers were of this type for YR and

SL, respectively. Markers with a small effect demand much more

effort from breeding to achieve a measurable improvement of the

germplasm; three small effect markers (r² ≤ 0.001) were found for

both traits. Markers with medium to large effects which are rather

rare are arguably the primarily target of genebank genomics. For

YR, markers 6A_135235117 and 2B_57683037 were classified as

such while markers 2D_186808122 and 2D_186808096 were

identified for SL (Supplementary Table S2). The latter two

markers could not be distinguished for the calculation of the r²

value due to complete collinearity.
3.3 Phenotypic distributions and
population stratification resulting from
sampling strategies

The phenotypic distributions of the sampled TCCCs showed the

expected strong differences between the sampling strategies. As an

example, the distributions are presented for two TCCC sizes: 300 and

600 accession samples (Figure 2). The sampling strategies can be

clustered into three groups: first, the random sampling (All_random)

as well as the sampling along the entire phenotypic range (All_Pdiv)

resulted in TCCCs that already cover the available phenotypic

diversity despite of the limited number of samples in TCCCs.

Similarly, All_Gdiv led to TCCCs that cover the phenotypic range

of the entire collection with increasing size of the TCCC. Second,

samples resulting from 1T_rank represent a small phenotypic range

in combination with overall low values. Third, the phenotypic

distribution associated with the strategies which relied on two

contrasting phenotypic tails combine in general a broad range of

phenotypic values with a high proportion of accessions with low

BLUEs and entirely lack intermediate phenotypes. Differences among

the latter four strategies can mostly be seen in TCCCs of smaller size

since almost the entire positive tail was included for extremely large

TCCCs regardless of the strategy.
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Within the sampled TCCCs, correlations between phenotypic

and genotypic distances were investigated as a possible indicator of

population stratification. For both traits, random sampling of

accessions (All_random) resulted in a positive correlation which

was fairly constant across different sizes of TCCCs. These

correlations could be seen as a benchmark for the comparison with

the other strategies since they represent the correlation present in the

entire population (Figure 3). For the entire collection, the base

correlations amount to 0.16 and 0.32 for YR and SL, respectively

and any correlation lower than this is arguably a moderation of

population stratification in the respective TCCC. For both traits,

strong positive correlations were found for the two-tail sampling

strategies which disregard genotypic diversity (2T_rank and

2T_random). These strategies did not only yield higher correlation

values than All_random but provided also the highest correlation per

trait in general: applying 2T_rank to the YR data resulted in a

correlation of 0.70 for a TCCC size of 100; for SL, an overall

maximum of 0.46 was found in 300 accession samples with the

same strategy. Therefore, these strategies probably fortify population

stratification. While 2T_Gdiv&Gsim and 2T_Gdiv&Gdiv resulted in

TCCCs with low or even negative correlations for smaller TCCCs,

positive correlations were found for larger TCCCs with a continuous

increase in magnitude as a function of TCCC size. Minimizing

phenotypic diversity including only low BLUEs (1T_rank) as well

as maximizing genetic diversity regardless of the phenotype

(All_Gdiv) results in TCCCs having moderate positive correlations

which are lower compared with All_random.
3.4 Genetic diversity and representativity of
the sampled TCCC

The genetic diversity within the TCCC and the representativity

for the entire genebank collection were evaluated with three

indicators that allow to rank the different sampling strategies for

a fixed TCCC size. Based on the estimated effective population size

(Ne), the sampling strategies could be clustered into two groups

(Supplementary Tables S3, S4): Sampling strategies that maximized

the genetic diversity by engaging the maximizing algorithm were

contrasting to strategies that do not rely on genotypic information.

For all evaluated sizes of TCCCs, the All_Gdiv sampling strategy led

by far to TCCCs with the highest Ne values. When sampling TCCCs

containing 300 accession samples, this sampling strategy led to

maximum Ne values of 361 and 355 for YR (Supplementary Table

S3) and SL (Supplementary Table S4), respectively. For both

2T_Gdiv&Gsim and 2T_Gdiv&Gdiv, the effect of the genetic

maximization on the effective population size was more dominant

for SL but less pronounced for YR. Another perspective on the

genetic diversity covered within TCCCs is given by the abundance

of duplicate genotypes defined by the identity-by-state measure

(Figure 4). Differences in the number of duplicates between TCCCs

became more obvious for TCCCs of larger size. For YR and SL,

differences could be observed starting with TCCC sizes of 200 and

300 accessions, respectively. As a general tendency, sampling

strategies which rely on genotypic information sampled a lower

number of duplicate genotypes which also demonstrated the
TABLE 2 Correlation coefficients for the relation between the five most-
explanatory principal coordinates (PCo) calculated from the Rogers’
distances between 7,745 accession samples of the IPK winter wheat
collection and the best linear unbiased estimates for the traits yellow
rust susceptibility (YR for 6,300 accession samples) and stem lodging
(SL for 6,251 accession samples).

PCo 1 PCo 2 PCo 3 PCo 4 PCo 5

(9.42%) (5.63%) (3.00%) (2.06%) (1.89%)

YR 0.4225*** 0.0473*** -0.2555*** -0.1322*** -0.0984***

SL 0.5196*** 0.0878*** 0.0444*** 0.3167*** -0.1050***
The percentages in brackets display the amount of molecular variance explained by the
respective PCo.
***p ≤ 0.001.
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opposing causal relationship with the higher Ne values. Regardless

of the trait, 1T_rank sampled by far the highest number of duplicate

genotypes. A high proportion of duplicates was still sampled by

applying strategies 2T_rank and 2T_random, especially for YR.

The genetic representativity of the TCCCs was evaluated based

on the pairwise Fst of the TCCC and all remaining accession

samples of the entire collection (Figure 5). Indicated by a value in

proximity to zero, random sampling (All_random) led on the one

hand to a perfect genetic representation of the entire collection. On

the other hand, a distinct genetic distribution in the TCCC was

sampled for YR with 1T_rank and for SL with All_Gdiv, while

applying 1T_rank for SL resulted in moderate values. These results

not only emphasize the impact of considering the phenotypic

diversity for the sampling strategy but also highlight the need to

focus on trait-customized approaches.
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3.5 Statistical power and further
requirements for association studies

While the aforementioned measures describe the entire

sampled TCCC, measures indicating the capability of identifying

association were investigated based on the two trait-specific

Top10_MTAs marker panels (Supplementary Table S2). As a

prerequisite to identify associations, respective markers need to be

in a polymorphic state within the TCCC. The ratio of polymorphic

markers within the Top10_MTAs differed between the sampling

strategies (Supplementary Tables S5, S6). As expected, more

Top10_MTAs markers appeared polymorphic with an increasing

size of the TCCC and restrictions in the ratio of polymorphic

markers were only present in TCCCs of smaller sizes. While

sampling strategy 1T_rank resulted in the overall lowest ratio of
FIGURE 2

Comparison of phenotypic distributions of yellow rust susceptibility (A) and stem lodging (B) within the trait-customized core collection generated
by eight different sampling strategies. Shown are the averaged distributions of best linear unbiased estimates (BLUE) seperately for 300 and 600
included accession samples. The phenotypic values exceed the 1-9 range of the phenotyping scale due to the solving of the linear mixed model.
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polymorphic markers and the sampling strategies 2T_rank,

2T_Gdiv&Gsim and 2T_Gdiv&Gdiv prevented such restriction

for all sizes of TCCCs and both traits.

A key parameter of the comparison was the statistical power for

the identification of the Top10_MTAs markers. For both traits, the

average power across these markers followed a general pattern

(Figure 6). Highest power resulted from sampling opposite

phenotypic extremes without considering the genotypic

information - strategies 2T_rank and 2T_random. Sampling

strategies which rely on phenotypic as well as genotypic
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information showed strong increase in the power with increasing

numbers of accession samples. Random sampling (All_random)

and sampling from the entire phenotypic range (All_Pdiv) led to

moderate high statistical power for 100 accession samples, followed

by a strong drop when increasing to 200 accession samples but

which did not alter much with increasing sizes of TCCCs further.

Sampling only accessions with beneficial phenotypes (1T_rank)

predominantly resulted in TCCCs with unfavorable power

estimates: the power decreased from a peak value at a TCCC size

of 100 with increasing sizes of TCCCs for SL, the power remained in
FIGURE 4

Number of duplicate genotypes, defined by an identity-by-state value higher than 0.99, depending on the number of accession samples included in
trait-customized core collections (TCCC) for yellow rust susceptibility (A) and stem lodging (B), respectively. Values are depicted separately for eight
different sampling strategies representing mean values of 50 independent replications; whiskers display the standard deviations.
FIGURE 3

Correlation between the genetic distance (Rogers’ distance) and the phenotypic distance (Euclidean distance) depending on the number of
accession samples included in trait-customized core collections for yellow rust susceptibility (A) and stem lodging (B), respectively. Values are
depicted separately for eight different sampling strategies representing mean values of 50 independent replications; whiskers display the
standard deviations.
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this case constantly low for YR. For TCCCs of smaller size, low

values of power might also originate from the fact that the

monomorphic state of a marker results in a power of zero and

thus, conclusions based on single markers can be diverging from the

general trend. Additionally, the proportion of the explained

phenotypic variance could not be calculated for some markers

within the TCCC for factors such as complete collinearity and

thus, power estimates were excluded in this specific case.
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Investigation of statistical power separately per marker was

dominated by strong fluctuation. As a general trend, the findings

described for the averaged power (Figure 6) were also found for the

single marker of the Top10_MTAs for SL (Supplementary Figure S3)

and for YR (Supplementary Figure S4). Contradicting to the general

assumption, decreasing power estimates were found for increasing

TCCC sizes for the strategies 2T_rank and T_random in combination

with several markers. For SL, the marker-specific MAF of six markers
FIGURE 6

Arithmetic mean of the statistical power for the identification of marker-trait-associations calculated based on 10 markers of the Top10_MTAs panel.
Power estimates were performed within trait-customized core collections for yellow rust susceptibility (A) and stem lodging (B), respectively. Values
are depicted for eight different sampling strategies representing mean values of 50 independent replications. For the calculation of the mean, the
estimated power of monomorphic markers was considered with a value of zero. The estimated power of a marker was excluded if the proportion of
the explained phenotypic variance could not be estimated within a specific trait-customized core collection.
FIGURE 5

Pairwise Fst calculated between the trait-customized core collections (TCCC) and the remaining part of the genebank collection depending on the
number of accession samples included in trait-customized core collections for yellow rust susceptibility (A) and stem lodging (B), respectively.
Values are depicted separately for eight different sampling strategies representing mean values of 50 independent replications; whiskers display the
standard deviations.
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among the Top10_MTAs was relatively high regardless of the

sampling which indicate that they are not associated with rare

alleles per se (Supplementary Figure S5). For YR, low MAF could

be observed for multiple markers among the Top10_MTAs

regardless of the sampling strategy as well as the size of the TCCC

(Supplementary Figure S6). One marker even showed a maximum of

MAF below 5% for all combination of sampling strategy and sizes of

the TCCC (4A_725504657). These rare variants risk to fall below a

MAF-threshold which is typically applied in GWAS studies and thus,

might not be detectable.
4 Discussion

The presented comparison of eight strategies to sample a TCCC

aimed to provide guidance for improved scrutinization of genebank

collections by engaging GWAS. The results suggest that not a single

approach can be optimally suited for all traits; however, some

strategies, such as 1T_rank, showed generalized disadvantages. In

consequence, the choice for a selection strategy is guided by a trade-

off between the presented six evaluated criteria. Undoubtedly, the

estimated statistical power, as defined by Wang and Xu (2019), is a

corner stone of evaluating selection strategies which should later be

analyzed engaging GWAS. Nevertheless, a mere focus on statistical

power might allow for genetic redundancies in the TCCC and

fortify the impact of population stratification. Thus, a case-

dependent weighing of criteria is needed.
4.1 Phenotypic contrast boosts power in
association studies

Sampling extreme phenotypes for association studies has been

reported to leverage detection power (Van Gestel et al., 2000; Xing

and Xing, 2009) and similarly, the presented results show an increase

in estimated power for TCCCs by incorporating phenotypic extremes

(Figure 6). As demonstrated by the comparison of 1T_rank with

2T_rank for YR, the contrast between positive and negative tails is in

particular important for GWAS; thus, a mere accumulation of

possible desired donor genotypes is hardly effective in this respect.

In addition, the variance components used for the calculation had a

strong impact: particularly for SL, 2T_rank and 2T_random

combined high genetic and low residual variances (Supplementary

Figures S7, S8), while 2T_Gdiv&Gsim and 2T_Gdiv&Gdiv resulted in

the opposite. Due to the minimization of Rogers’ distances between

the positive and negative tails in the latter two sampling strategies,

variation is assigned as residual variance even though the genetic

diversity was maximized within the positive tail. This finding

highlights the importance of the relative magnitude of polygenic

variance compared with the residual variance. The ratio of polygenic

variance to the residual variance is given by l in Equation 2. The

larger the value for l gets, the greater the non-centrality parameter d
can become and as a consequence, a high statistical power could be

expected. Representing phenotypic extremes could result in an
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enlarged genetic variance and thus in an elevated polygenic

contribution to the phenotypic variance. Therefore, one can

conclude that data with high genomic heritability has the potential

for high statistical power in GWAS.
4.2 Limitations for the identification of rare
variants within TCCCs

The identification of rare variants is a well-known problem in

GWAS (Myles et al., 2009; Kosmicki et al., 2016) and grouping of

genotypes was proposed as a method to increase the frequency of

rare variants (Kosmicki et al., 2016). In the present study, sampling

extreme phenotypes was implemented following the assumption

that accessions with advantageous phenotypes have genotypes that

are enriched with rare beneficial variants. In particular for SL,

trends confirmed this assumption because the average MAF of the

markers in the Top10_MTAs panel were augmented by the strategy

1T_rank, but also mildly augmented by the strategies 2T_rank and

2T_random, compared to All_random (Supplementary Figure S9).

This trend was however not similarly present for YR and may even

revert to the opposite at the level of individual Top10_MTAs

markers, like for instance in case of marker 7A_367972613

(Supplementary Figure S5). A possible explanation could be the

contrasting underlying genetic architectures assumed from the

Gaussian-like (YR) and L-shaped (SL) distributions. Based on two

disease traits in humans, Xing and Xing (2009) investigated the

effect of extreme phenotype sampling on GWAS. The authors

reported that common variants benefit in particular from this

strategy and less prominent effect was reported on rare variants.

This could arguably be the case for some of the markers in the

Top10_MTAs panel in the present study.

Assuming that a targeted enrichment for rare variants would be

difficult for specific traits, a selection strategy increasing the overall

MAF could have its merits to avoid problems joint with rare

associated variants. For both traits, sampling a TCCC with

All_Gdiv clearly increased the overall mean MAF compared to the

other sampling strategies (Supplementary Figure S10). The selected

accession samples would not be specifically optimized for one trait

but rather suits for all traits moderately. On the other hand, such a

general approach would demand extremely large TCCC sizes,

arguably larger than the sizes tested in the present report, in order

to allow for a suitable statistical power and therefore, remains rather

theoretical given the limitation in funding and capacities often-faced

by genebank institutions.

In addition to the MAF, the effect sizes of a variant determine the

success of the identification in GWAS (Kosmicki et al., 2016; Wang and

Xu, 2019). Uncommon variants of large or at least medium effect size in

the total collection are the only reasonable target of a GWAS in order to

justify the high costs of creating and deeply characterizing a TCCC.

When focusing on such markers across the Top10_MTAs panel (e.g.

YR: 2B_57683037, 6A_135235117; SL: 2D_186808096), the power

estimates per sampling strategy revealed that sampling from the

phenotypic extremes based on the rank (2T_rank) outcompetes the
frontiersin.org

https://doi.org/10.3389/fpls.2024.1451749
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Berkner et al. 10.3389/fpls.2024.1451749
other sampling strategies (Supplementary Figures S3, S4). The

differences between 2T_rank and 2T_random were however small in

these cases. It should be mentioned that a drop in estimated power was

observed for the sampling strategy 2T_rank in combination with larger

TCCCs for some markers with low effect sizes (e.g. YR: 4A_725504657;

SL: 7A_367972613) (Supplementary Figures S3, S4).While the sampling

strategy 2T_rank showed higher power only for some particular TCCC

sizes for variants with a low effect size, strategies which did not rely on

the phenotypic extremes (All_random, All_Pdiv and All_Gdiv) showed

an overall low performance in these cases. Similarly, Wang and Xu

(2019) found an asymptotic increase of estimated power when

increasing the effect size of a simulated QTL in a hybrid population

as well as in a set of recombinant inbred lines of rice. These findings

highlight that rather the effect size of a variant determines the success of

GWAS than the composition of the TCCC. Identification of small effect

variants cannot be a predictable aim of creating a TCCC; they will

probably remain unnoticed.
4.3 Reduction of population stratification
by maximizing genetic diversity

Sampling a TCCC exclusively from the phenotypic extremes

increases the magnitude of population stratification exceeding the

base level present in the genebank collection. For GWAS in general,

this concern was already raised by Guey and collaborators (Guey

et al., 2011) and later proven based on simulations by Panarella and

Burkett (2019) who reported on a substantial increase in false-

discovery rate compared with random sampling. The presented real

data scenario is in accordance with these previous findings.

Sampling from the two phenotypic extremes, specifically based on

the rank (2T_rank), forces a boost in the correlation between

phenotype and genotype when compared to the random sampling

which is a stable representation of the characteristics of the entire

population (Figure 3). Two options of accounting for population

stratification were presented here; either minimize the phenotypic

diversity (1T_rank) or maximize the genetic diversity

(2T_Gdiv&Gsim, 2T_Gdiv&Gdiv and All_Gdiv). While the first

option leads to a low averaged power estimate for the Top10_MTAs

panel (Figure 6), the latter option seems to be vital to subdue

population stratification in genebank genomics.
4.4 Maximizing genetic diversity avoids less
informative duplicates

Maximizing the genetic diversity within the TCCC is negatively

associated with the number of duplicate genotypes accumulated

(Figure 4). As mentioned earlier, duplicate genotypes occur

widespread across genebank collections proven for many

institutes and crops (FAO, 2010). Without any doubts, the

identification of completely identical duplicate genotypes is

difficult due to the simplifying nature of marker data and

therefore, the definition of a threshold value for similarity will

always be disputable. Moreover, the threshold value in the present

study might not only include identical but also highly similar
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genotypes. In theory, including completely identical genotypes

within a collection is costly with respect to maintaining an

additional accession in a pure and safe manner without gaining

additional information for breeding and research. Therefore,

discussions on removing duplicates from the collection could be

a long-term perspective for easier exploitation of genebanks,

expressly including the development of TCCCs. However,

including duplicates in TCCCs is in particular an even more

substantial waste of resources. In the first years after

establishment of the TCCC, costs will be high due to more

thorough genotyping, such as whole-genome-sequencing,

phenotyping with more replications or at more locations, and

the creation of crosses with elite germplasm. Duplicates will

however be in every respect less informative for pre-breeding

purposes. Additionally, TCCCs are only a meaningful

contribution to the exploration of genebank collections if

preserved on at least a medium-term and made publicly available

to breeders without considerable burdens. For both duplicates and

unique accessions, these costs incur continuously year after year

and are probably often underestimated in the initial funding.

Moreover, duplicate genotypes could increase the MAF of rare

associated variants in GWAS without improving the resolution for

the specific QTL due to strong linkage within haplotypes. Finally,

having approximately or exactly duplicated columns and rows in

the matrix used for kinship correction in GWAS could increase

collinearity issues during mixed model computation. Already at the

early times of creating CCs, Brown (1989b) stated that the

sampling of core collections should not tolerate redundant

entries. Nowadays, the identification of such accessions is more

accurate having genomic data at hand and genebank genomics

should take advantage of this.
4.5 Impact and considerations of a suitable
size of a TCCC

The size of a TCCC is the key variable affecting all parameters

discussed above and no size was determined leading to an adequate

optimization of all the parameters simultaneously. However, the

benefits of sampling strategies were associated with certain ranges of

TCCC sizes. As a general trend, sampling strategies which do not rely

on any genotypic information do not benefit of larger sizes of TCCC.

Especially, large-effect variants can be identified within small TCCCs of

just 100 accession samples if the phenotypic contrast is maximized.

With a TCCC size of about ≥8% of the entire collection (corresponding

to ≥500 accession samples), duplicated genotypes are getting

accumulated in the TCCC (Figure 4) while the statistical power is

stagnating or even decreasing (Figure 6). In contrast, sampling

strategies engaging an algorithm for genetic maximization allow for

the incorporation of more accession samples into the TCCC. Up to

11% of all accession samples can be selected without accumulating

many duplicated genotypes within the TCCC for both traits (Figure 4).

These additional accessions could allow to charge the TCCCwith more

beneficial variants at higher frequency. While increasing the TCCC size

to the aforementioned maximum is favorable with respect to the

constantly increasing statistical power found for 2T_Gdiv&Gsim and
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2T_Gdiv&Gdiv, smaller TCCC sizes should preferably be chosen to

account for population stratification (Figure 3).

Utilizing simulated data in research allows for a targeted

alteration of a single parameter. As a consequence, dependency of

statistical power on the number of genotypes was found to be very

clear and only increasing trends were detected by Wang and Xu

(2019). In contrast, the present real-data scenarios demonstrated

that additional genotypes can severely change the characteristics of

a GWAS population, such as the variance component for the

genotype (Supplementary Figure S7), and may even lead to

reverting trends for the statistical power (Figure 6). Considering

the complexity faced in genebank genomics with broad genetic

diversity, these unexpected deviations from assumed trends should

be considered in future.

The presented study demonstrates opportunities and obstacles in

selecting a TCCC specifically for the identification of donor genotypes

based on the example of a relatively large wheat germplasm collections

at the IPKGenebank. In practice, much smaller or genetically narrower

genebank collections may require different approaches. In general, the

selection strategy will largely depend on the availability of phenotypic

and genotypic data as well as the present resources to gather more data

in advance for the sampling of a TCCC. As a clear guidance for

genebank curators we can summarize that knowing the phenotypic

distribution is most important and will indicate the possible scope of a

later GWAS. TCCC should be interpreted as a top-down strategy: a

large-scale phenotypic evaluation using cheaper, however mostly less

accurate, methods would be a suitable start before creating a TCCC.

For most genebanks, this might rely on the curation of historical

records originating from past field trials or taken during seed

multiplication. If a TCCC of moderate size is intended, sampling

accessions with extremely contrasting phenotypes might be most

promising. In most genebanks, genotypic data might not be at hand

for entire collections and relying on genotypic information for the

sampling strategy will increase the costs tremendously. However,

TCCCs of large size will especially profit of strategies such as

2T_Gdiv&Gdiv in order to avoid genetic redundancies. Once a

TCCC has been established for one trait, a shrewd strategy for the

enlargement considering additional traits is the following step.

Depending on the selection strategy, the ratio of accessions samples

overlapping between TCCCs could help to reduce costs for the

leveraging of genebank collections for many traits in future.
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