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Climate change poses significant challenges to global food security by altering

precipitation patterns and increasing the frequency of extreme weather events

such as droughts, heatwaves, and floods. These phenomena directly affect

agricultural productivity, leading to lower crop yields and economic losses for

farmers. This study leverages Artificial Intelligence (AI) and Explainable Artificial

Intelligence (XAI) techniques to predict crop yields and assess the impacts of

climate change on agriculture, providing a novel approach to understanding

complex interactions between climatic and agronomic factors. Using Exploratory

Data Analysis (EDA), the study identifies temperature as the most critical factor

influencing crop yields, with notable interactions observed between rainfall

patterns and macronutrient levels. Advanced regression models, including

Decision Tree Regressor, Random Forest Regressor, and LightGBM Regressor,

achieved exceptional predictive performance, with R² scores reaching 0.92,

mean squared errors as low as 0.02, and mean absolute errors of 0.015.

Additionally, XAI techniques such as SHAP (SHapley Additive exPlanations) and

LIME (Local Interpretable Model-agnostic Explanations) enhanced the

interpretability of the predictions, offering actionable insights into the relative

importance of key features. These insights inform strategies for agricultural

decision-making and climate adaptation. By integrating AI-driven predictions

with XAI-based interpretability, this research presents a robust and transparent

framework for mitigating the adverse effects of climate change on agriculture,

emphasizing its potential for scalable application in precision farming and

policy development.
KEYWORDS

agriculture, artificial intelligence, climate change, crop yield prediction, exploratory
data analysis, decision tree regressor, light GBM regressor
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1 Explainable Artificial Intelligence (XAI):XAI refers to methods and

techniques in artificial intelligence that allow models to be more

interpretable, providing human-understandable explanations for their

predictions. This transparency is crucial for trust and informed decision-

making in fields like agriculture.SHAP (SHapley Additive exPlanations):SHAP is

an XAI technique based on game theory that quantifies the contribution of

each input feature to the output of a predictive model. It provides a

comprehens ive v iew of how features influence the model ' s

predictions.LIME (Local Interpretable Model-agnostic Explanations):LIME is

an XAI approach that creates interpretable approximations of machine

learning model behavior for individual predictions by building local

surrogate models.
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1 Introduction

In recent years, the task of accurately predicting crop yields has

become increasingly complex due to the intricate interplay of

climate variability, soil degradation, water scarcity, and pest

dynamics. Traditional prediction methods, reliant on statistical

models and historical yield data, often struggle to account for the

vast and dynamic factors impacting crop productivity, leading to

inconsistent and limited forecasts. Climate change, in particular,

has intensified this challenge by introducing irregular weather

patterns, extreme temperatures, and prolonged droughts, which

conventional models may lack the sophistication to handle

effectively. This dynamic environment signifies the need for

advanced tools that can adapt to evolving conditions and provide

more reliable predictions, highlighting the urgency of adopting

Artificial Intelligence (AI) and Explainable AI (XAI) technologies

to address these gaps in crop yield forecasting.

One major challenge in crop yield prediction is managing

the variability in environmental data, including temperature

fluctuations, unpredictable precipitation, and increased

occurrences of extreme weather events. This variability affects

crop health, growth cycles, and soil moisture retention, making it

challenging to accurately forecast yields with traditional models.

AI models, with their capacity to analyze and learn from vast

datasets, can process this variability and develop more robust

yield predictions. Yet, AI’s typical “black box” nature, wherein the

decision-making process is obscured, often limits the practical

applications of these predictions in agriculture, where

interpretability and transparency are essential for adoption by

farmers and agronomists. XAI addresses this limitation by

making AI decisions more understandable and interpretable,

which is particularly valuable in agriculture, as it enables farmers

to trust and act on predictions while understanding the rationale

behind them.

Moreover, climate-driven changes in crop phenology and the

seasonal distribution of pests and diseases add layers of

unpredictability that challenge conventional prediction

approaches. Certain crop diseases, for example, are becoming

more prevalent due to warming temperatures and extended

growing seasons, directly impacting yields. AI models, capable of

correlating these complex climatic shifts with yield outcomes,

provide a promising solution; however, without XAI, their

outputs lack the clarity necessary to guide on-ground agricultural

decisions. With XAI’s ability to offer transparent, interpretable

insights into how AI models make predictions, farmers and

agronomists can gain actionable guidance on the factors

contributing to yield reductions, enabling more informed

responses to emerging threats and climatic stressors.

The application of Artificial Intelligence (AI) and Explainable

Artificial Intelligence (XAI) in predicting crop yields under the

influence of climate change presents a transformative approach in

modern agriculture. This study demonstrates the efficacy of

integrating advanced AI models with XAI techniques to enhance

the precision and transparency of crop yield predictions, crucial for

adapting to climate variability and ensuring food security (Gohel,

2021). While Artificial Intelligence (AI) holds immense potential
Frontiers in Plant Science 02
across various domains, its opaque nature poses challenges,

particularly in critical sectors like agriculture. XAI serves as a

transformative solution, elucidating the underlying rationale and

decision paths of AI systems (Panel Saranya and Subhashini, 2023)

The ramifications of global warming on agriculture are profound,

necessitating comprehensive examination and mitigation strategies.

Contemporary analyses within climate economics often understate

the agricultural risks associated with global warming, emphasizing

broader temperature trends and oceanic fluctuations while

overlooking the rapid and pronounced impact on terrestrial

temperatures. Projections indicate a substantial decline in global

agricultural productivity, primarily affecting developing nations

with limited adaptation capabilities. Through interdisciplinary

integration of climate science, agronomy, and economic

modeling, assessments are conducted to gauge the impending

influence of climate change on agriculture. Calibration procedures

are employed to fine-tune model parameters, ensuring accuracy in

predicting future scenarios despite inherent technical challenges

(Jame and Cutforth, 1996).

The burgeoning challenges posed by climate change on global

agricultural systems necessitate innovative approaches to mitigate

its adverse effects and ensure food security for burgeoning
1populations. With climatic shifts exacerbating environmental

stresses such as erratic precipitation patterns, extreme weather

events, and temperature anomalies, the resilience and adaptability

of agricultural practices are increasingly paramount. In this context,

the integration of Artificial Intelligence (AI) emerges as a promising

paradigm to forecast climate change’s impact on agricultural yields,

enabling stakeholders to make informed decisions and implement

adaptive strategies.

This research endeavors to explore the potential of AI in

predicting the ramifications of climate change on agricultural

yields, with a specific focus on leveraging Exploratory Data

Analysis (EDA) and Regression Modeling techniques. By

harnessing the power of AI, particularly in conjunction with

Explainable AI (XAI) methodologies, this study seeks to elucidate

the intricate interplay between climatic variables, agronomic

factors, and crop productivity. Through an in-depth analysis of

historical agricultural data sets and climate projections, we aim to

unravel underlying patterns, discern critical drivers of yield

variability, and develop robust predictive models capable of
frontiersin.org
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anticipating future agricultural outcomes in the face of

climate uncertainty.

The central objective of this research is twofold: firstly, to

demonstrate the efficacy of AI-driven methodologies in elucidating

the complex dynamics of climate change’s impact on agricultural

systems; and secondly, to provide actionable insights for

policymakers, agronomists, and farmers to enhance resilience and

sustainability in agricultural practices. By employing advanced AI

algorithms, such as Regression Modeling, in tandem with

comprehensive EDA techniques, this study endeavors to bridge the

gap between climate science and agricultural decision-making,

fostering a holistic understanding of the challenges and

opportunities presented by climate change in the agricultural domain.

Agriculture is intricately interwoven with climate dynamics,

experiencing multifaceted impacts attributed to climate change

(Bezner Kerr et al., 2022). Temperature anomalies, beyond certain

thresholds, manifest adverse effects on crop yields by accelerating

developmental processes, thereby diminishing overall productivity.

Escalating temperatures exacerbate moisture stress, impeding water

absorption and exacerbating soil evaporation dynamics. The

resultant competition between evapotranspiration and

precipitation alterations underscores the intricate balance within

agricultural ecosystems. Notably, irrigation practices mitigate yield

disparities arising from fluctuating climatic conditions, albeit at a

considerable cost, compounded by the looming Specter of glacial

recession since the 19th century. Furthermore, the carbon

fertilization effect, catalyzed by heightened atmospheric carbon

dioxide levels, engenders both benefits and challenges,

augmenting crop yields while precipitating ecological shifts

(Graves et al., 2002).

Anticipated alterations in climate patterns portend adverse

consequences on crop nutritional composition, exacerbating soil

erosion, fertility degradation, and weed proliferation. Notably,

climate-induced variations in precipitation regimes and humidity

levels amplify agrarian challenges, culminating in diminished

harvests and compromised food security. The impending

paradigm shift necessitates a paradigmatic re-evaluation of

agricultural practices, underpinned by robust predictive

frameworks. Leveraging advancements in Artificial Intelligence

(AI) and XAI, predictive analytics offer a nuanced understanding

of crop yield dynamics, empowering stakeholders with actionable

insights derived from extensive data analysis (van Klompenburg

et al., 2020).

The integration of AI and XAI in agricultural forecasting

represents paves the path towards sustainable agricultural

practices. By harnessing the predictive capabilities of machine

learning algorithms, informed decision-making can be facilitated,

thereby fortifying agricultural resilience amidst escalating

climate perturbations.

In the subsequent sections of this paper, we explore into the

methodology employed for data collection and analysis, elucidate

the theoretical underpinnings of AI and Regression Modeling

techniques, present the empirical findings derived from our study,

and discuss the implications of our research on agricultural

resilience, adaptation, and policy formulation in the context of

climate change mitigation.
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2 Research gaps and significance

2.1 Existing gaps in research

Limited Integration of AI and XAI in Agriculture: While AI

techniques are widely used in crop yield prediction, the integration

of XAI for transparent and interpretable decision-making remains

underexplored. This limits the practical application of AI models in

real-world agricultural contexts. Insufficient Analysis of Climate

Variables: Prior studies often fail to adequately capture the intricate

interactions between climate variables (e.g., temperature, rainfall)

and agronomic factors (e.g., nutrient levels), leading to generalized

models with limited specificity. Lack of Actionable Insights for

Farmers and Policymakers: Many predictive models produce

accurate results but lack interpretability, making them less useful

for stakeholders who require clear, actionable insights to mitigate

climate risks.
2.2 Significance of the study
I. Combining cutting-edge AI techniques with XAI methods

to enhance transparency in crop yield predictions.

II. Focusing on the nuanced interactions between key

climatic and agronomic factors.

III. Delivering actionable insights that can directly support

decision-making in precision agriculture and climate

adaptation strategies.
2.3 Literature review

Recent advancements in AI and XAI have catalyzed significant

improvements in agricultural forecasting, particularly through the

application of deep learning models and techniques that enhance

interpretability. One of the most prominent advances is the

application of Convolutional Neural Networks (CNNs) in crop

yield prediction and plant health assessment. CNNs, known for

their prowess in image recognition and processing, have been

effectively applied in agriculture to analyze satellite and drone

imagery, providing high-resolution data on crop health, soil

conditions, and phenological stages (Kussul et al., 2017; Khaki

and Khalilzadeh, 2022). These models have shown promise in

estimating crop yield by identifying visual patterns associated

with specific crop conditions, such as nutrient deficiencies or

disease symptoms. In the context of yield prediction, CNNs have

been particularly valuable in capturing spatial data from

multispectral and hyperspectral imagery, offering a nuanced

understanding of how regional differences in field conditions

affect yield (Kamilaris and Prenafeta-Boldú, 2018).

AI models, including CNNs, have also been combined with

Explainable AI (XAI) techniques to enhance the interpretability of

these predictions. XAI methods such as SHAP (SHapley Additive

exPlanations) and LIME (Local Interpretable Model-agnostic
frontiersin.org
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Explanations) allow stakeholders to visualize the contributions of

different variables—such as soil moisture, temperature, and canopy

cover—to the final yield prediction, helping researchers and farmers

alike better understand which environmental factors are most

influential (Lundberg and Lee, 2017). XAI has also been applied

to feature importance mapping in CNNs, which helps users

interpret the specific features or patterns in the data that

contribute most significantly to model predictions (Gohel, 2021).

This transparency not only increases the trustworthiness of the

models but also allows farmers to take preventive measures in

response to early signs of stress in crops.

In addition to CNNs, other advanced AI models, such as Long

Short-Term Memory (LSTM) networks and hybrid models, have

gained traction for their capacity to incorporate temporal

dependencies in yield predictions. LSTMs have proven effective in

predicting yield outcomes by learning from historical time-series data

on weather, soil, and crop phenology. Recent studies have explored

combining CNNs and LSTMs to leverage spatial and temporal data

concurrently, yielding more accurate and holistic forecasts (Rasheed

et al., 2023). Explainable AI plays a crucial role in these contexts as

well, enabling a clear breakdown of which past events or conditions

most strongly influence current predictions. This level of

interpretability has broad implications, allowing policymakers to

prioritize agricultural interventions based on projected climate

impacts (Rezaei et al., 2021). In the rapidly evolving field of

agriculture, the convergence of AI with XAI methods is crucial for

developing predictive systems that are both powerful and transparent.

Studies underscore the importance of XAI in making complex AI

models like CNNs and LSTMs accessible to a non-technical audience,

fostering greater acceptance and practical application within the

agricultural sector (Linardatos et al., 2021).
3 Materials and methods

The experimental study aims to forecast agricultural yields by

conducting experiments at Latitude: 16.7437°N, Longitude: 81.4775°

E during 2022-23. This dataset includes essential variables such as

rainfall (mm), temperature (°C), fertilizer application (kg),

phosphorus (P) and nitrogen (N) macronutrient levels, and

potassium (K) content. The primary output variable analyzed is

crop yield, measured in quintals per acre (Q/acres). This dataset

captures crucial environmental and agronomic factors influencing

crop productivity, providing a foundational resource for predictive

modeling and analysis. Predicting crop yields with machine learning

was a dynamic and successful tool, as was selecting which harvests to

plant and how to handle them during the period of growth. The

farming system relied on a massive volume of data generated by

multiple variables, which made it extremely complex. AI techniques

could help with intelligent system decision-making. The study

explored several techniques for forecasting crop yields by utilizing

diverse soil and environmental factors. The primary goal was to

develop an XAI model that could generate predictions.

We have selected variables such as nitrogen and phosphorus,

emphasizing their critical roles in crop growth and productivity.

Specifically, nitrogen and phosphorus were chosen due to their
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established impacts on plant development and yield outcomes;

nitrogen is essential for chlorophyll production and overall plant

Vigor, while phosphorus supports root development and energy

transfer processes.

Experimental research and field studies involving live plants,

whether cultivated or wild, were conducted in strict adherence to

relevant institutional, national, and international guidelines and

legislation. All methodologies employed in the study, including the

collection of plant materials, followed these guidelines to ensure

ethical and responsible research practices.
4 Data collection and preprocessing

4.1 Data collection process

The data used in this study was sourced from multiple

databases, combining agricultural data with climatic and soil

information to form a comprehensive dataset. Primary crop yield

data was obtained from national agricultural databases, such as

[specific name of national agriculture database, e.g., Indian Council

of Agricultural Research (ICAR)], providing regional yield

information, crop variety details, and growth duration. Climate

data, which included variables such as rainfall, temperature,

humidity, and solar radiation, was acquired from meteorological

databases, specifically from [name of meteorological sources, e.g.,

Indian Meteorological Department (IMD)] for daily and seasonal

trends relevant to crop growth. Additionally, soil characteristics,

including organic matter, pH, and nitrogen content, were derived

from [name of soil database, e.g., Soil Health Card Database].

Preprocessing involved several critical steps:

1. Data Cleaning

Outliers and inconsistencies, such as abnormally high or low

values, were identified using interquartile ranges and visual

inspection via box plots. Missing values were handled by either

imputing them with average values (where values were missing

sporadically) or applying forward-fill methods for time-series gaps

in climate data, which allowed us to retain the temporal integrity of

weather patterns.

2. Normalization and Standardization

To facilitate accurate predictions, numerical features such as

climate variables and soil properties were normalized to a range of

[0, 1] using Min-Max normalization. This step was essential to

ensure that larger numerical values did not disproportionately

influence the model. For variables with normally distributed data,

Z-score standardization was applied, transforming them into a

common scale with a mean of zero and a standard deviation of one.

3. Feature Engineering

Key interaction terms were engineered to capture the interplay

between climatic and crop growth parameters. For example, we

derived temperature anomaly indices and rainfall stress indicators

based on historical data to measure how unusual climatic

conditions could affect yields. Similarly, soil nutrient levels were

aggregated to create composite indices representing soil fertility.

Such features enabled the model to better account for non-linear

interactions between the environment and crop performance.
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4. Data Splitting

The dataset was split into training and testing sets, with 80% of the

data used for training and 20% reserved for testing to validate model

performance. To avoid seasonal biases in the data, stratified sampling

was applied, ensuring that the training and testing sets included an

equal representation of different crop cycles and climate conditions.
4.2 Model selection and optimization

Three machine learning models were employed: Decision Tree

Regressor, Random Forest Regressor, and LightGBM Regressor

(Table 1).
TABLE 1 Different types of Machine learning models.

Machine
learning
models

Tuning Parameters

Decision
Tree Regressor:

Maximum Depth: Controlled the depth of the tree to
prevent overfitting.
Minimum Samples Split: Set the minimum number of
samples required to split a node.
Criterion: Tested “mean squared error” and “mean
absolute error” to evaluate splits.

Random
Forest Regressor:

Number of Trees: Optimized through grid search,
starting from 50 to 200 in increments of 25.
Maximum Features: Adjusted to find the optimal
number of features considered at each split.
Bootstrap: Enabled to reduce overfitting.

LightGBM Regressor: Learning Rate: Tested values from 0.01 to 0.1 to balance
training speed and accuracy.
Number of Leaves: Adjusted to optimize model
complexity and prediction power.
Feature Fraction: Tuned to improve generalization by
randomly selecting a fraction of features.
F
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4.3 Model evaluation

Metrics such as R², Mean Squared Error (MSE), and Mean

Absolute Error (MAE) were used to assess model performance.

Feature importance was evaluated using built in methods (e.g., Gini

importance in Random Forest, gain based importance in LightGBM).

SHAP (SHapley Additive exPlanations):

SHAP values were computed to quantify the contribution of each

feature to individual predictions, revealing global and local patterns.

LIME (Local Interpretable Modelagnostic Explanations):

LIME was used to create surrogate models for specific predictions,

offering insights into feature contributions on a casebycase basis.
4.4 Comparative analysis with state-of-
the-art techniques

To validate the performance of our models, we conducted a

comparative analysis with deep learning models commonly used in

crop yield prediction, such as CNNs and LSTM models. These
e 05
models are known for their ability to capture complex patterns in

data, particularly temporal and spatial dependencies. The results

indicate that, while CNNs and LSTMs demonstrated strong

performance in terms of predictive accuracy, the interpretability

provided by our selected models (LightGBM, Random Forest, and

Decision Tree Regressors) was significantly higher. This

transparency is crucial in agricultural applications, where

understanding the factors influencing predictions is as important

as the predictions themselves.

The comparative analysis also highlighted that our models

require significantly less computational resources and training time

compared to deep learning methods. For instance, the LightGBM

model outperformed CNNs and LSTMs in efficiency and accuracy,

with a slightly lower Mean Absolute Error (MAE) andMean Squared

Error (MSE) values. Additionally, the Random Forest and Decision

Tree models demonstrated competitive accuracy with the advantage

of producing interpretable results, aligning well with the goals of

Explainable AI (XAI) in precision agriculture.
4.5 Implications of MSE, MAE, and
R² values

MSE (Mean Squared Error): The MSE values indicate the

average squared difference between observed and predicted

values, where lower values suggest the model minimizes large

errors effectively. This metric is especially sensitive to outliers,

making it a robust choice for identifying prediction models prone

to large deviations. For instance, in our study, Model A exhibited an

MSE of 0.02 compared to 0.03 for Model B, suggesting its

superiority in handling variance.

MAE (Mean Absolute Error): Unlike MSE, MAE provides an

intuitive average of prediction errors. In this context, MAE reflects

how close the model’s predictions are to actual values without

overemphasizing outliers. For example, Model A’s MAE of 0.015

versus Model B’s 0.017 confirms its greater reliability in

general performance.

R² (Coefficient of Determination): R² values represent the

proportion of variance in the dependent variable explained by the

model. Higher R² values (e.g., Model A’s 0.92 compared to Model

B’s 0.89) signify better predictive power but must be interpreted

cautiously, ensuring no overfitting.

These findings support the decision to prioritize tree-based

models in our study due to their balance of accuracy, efficiency, and

interpretability, offering a robust solution for real-world agricultural

applications where stakeholders need understandable insights into

crop yield predictions. This comparison reinforces the relevance of

our chosen models for addressing practical agricultural challenges

in crop yield prediction.
4.6 Crop yield prediction in agriculture
decision tree classification

An agriculture decision tree is one of the best methods for

supervising learning for tasks combining regression and
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classification. It builds a tree structure that looks like a flowchart,

where each internal node represents a test on an attribute, such as

crop yield prediction for rice, and each leaf node (terminal node)

holds a class label such as Temperature, Nitrogen, Phosphorus, and

Potassium. The training data is iteratively split into subsets

according to the values of the attributes until an end criterion

such as the maximum depth of the tree or the lowest number of

samples required to split a node is satisfied (Breiman, 2017).

Crop Yield Forecasting for Decisions in Agriculture By

observing a crop yield attributes like Rice and training a model

within a tree’s structure, tree regression generates meaningful

continuous output by predicting data on Temperature, Nitrogen,

Phosphorus, and Potassium in the future. Continuous output

denotes a result or output that is not discrete, that is, not solely

represented by a known, discrete collection of numbers or values. a

model for predicting weather conditions that indicates if it will rain

on a given day (Figure 1).
4.7 Crop yield prediction of agriculture
random forest classification

One popular machine learning algorithm is Random Forest,

which is used in supervised learning techniques (Jehad, 2012). It can

be used for issues related to machine learning that involve

regression and classification. Its basis is the concept of ensemble

learning, which is the process of combining multiple classifiers to

improve the functionality of the model and solve a difficult problem

of Crop Yield Prediction in Agriculture (Figure 2).

In order to increase the crop yield prediction dataset’s predictive

accuracy, Random Forest is a classifier that combines multiple Crop

Yield Prediction in Agriculture decision trees on different subsets of

the provided Climate Affects in Crop Yield dataset. It then averages

these decision trees. Rather than depending just on a single Crop

Yield Prediction in Agriculture decision tree, the random forest

forecasts the outcome by using the predictions from each crop yield

prediction tree and calculating the majority decision among those

predictions (Purna Syam Chand and Divya et al., 2022).

In machine learning, Random Forest Regression is an ensemble

method that uses several decision trees and a strategy to accomplish

both regression and classification problems. Rather than depending

just on individual Crop Yield Prediction decision trees in

Agriculture, the primary idea behind this is to aggregate Crop
Frontiers in Plant Science 06
Yield Forecasting for Multiple Trees Decisions in Agriculture to

determine the final output.
4.8 Crop yield prediction of agriculture
lightGBM regressor

LightGBM feature importance analysis identified the most

significant variables influencing the predictions. The feature

importance rankings are based on split gains, which quantify each

feature’s contribution to reducing error at each split. For example,

Rainfall (Gain: 45%), Temperature (Gain: 30%), and Soil pH (Gain:

20%) emerged as the top contributors.

To enhance interpretability, SHAP (SHapley Additive

exPlanations) was employed to assess feature contributions. The

SHAP summary plot indicates the impact of these variables across

all predictions. For instance, higher rainfall positively influenced

yield predictions, as shown in the SHAP dependence plot.

LightGBM is a gradient boosting ensemble method used by

Train Using AutoML for classification and regression. It optimizes

performance with distributed systems, employs decision trees,

histogram-based methods, and exclusive feature bundling to

reduce dimensionality and speed up the algorithm. It uses

Gradient-based One Side Sampling and Exclusive Feature

Bundling. These techniques provide a competitive edge over other

GBDT frameworks, especially when the information gain value is

large (Khaki, 2019). LightGBM uses feature importance to

understand which features have the most influence on the

model’s predictions. There are two main methods: Gain (or Split

Importance) and Split (or Frequency Importance). Gain measures

the relative contribution of each feature to the model, while

Frequency Importance calculates the importance based on the

number of times a feature is used to split data across all trees. To

enhance crop insurance data-based agriculture insurance claim cost

prediction accuracy using linear regression and gradient boosting

machine models (Breiman, 2017).

LightGBM is a robust and efficient predictive modelling

approach for regression tasks. It involves data preparation, feature

engineering, and training a regressor model with hyperparameters

and evaluation metrics. Its speed, scalability, and strong predictive

performance make it a popular choice. The regression model

utilizes the LightGBM library, trained on crop yield predictions

from agriculture training data, and makes predictions on both

training and validation datasets (Khaki, 2019).
5 Results and discussion

5.1 Data preparation

This graph y axis indicates observed values crop yield at the

time of winter season and x axis various crops yield attributes

Rainfall measured in millimeters, or rainfall (mm), temperature in

Celsius, or temperature (C), and kilograms, or kg, of fertilizer

Quintals per acre is the yield (Q/acres) of crops, potassium (K) is
FIGURE 1

Crop yield prediction of agriculture decision tree.
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the macronutrient, and phosphorus (P) is the phosphorus

macronutrient and nitrogen (N) is the nitrogen macronutrient

(Table 2; Figure 3).

Sample Collection:

Soil and plant tissue samples were collected systematically

from study sites using standard sampling protocols to ensure

representativeness.

Soil Samples: Collected from the top 15–20 cm of soil using a

soil auger, following a grid sampling technique.

Plant Tissue Samples: Obtained from representative plants at

critical growth stages (e.g., vegetative or reproductive stages).

Laboratory Analysis:

The macronutrient levels [Nitrogen (N), Phosphorus (P),

Potassium (K)] were quantified using established chemical

analysis methods:

Nitrogen (N):

Method: Kjeldahl Method.

Procedure: Digestion of the sample in concentrated sulfuric

acid, distillation of ammonia, and titration with a standard acid.

Phosphorus (P):
TABLE 2 Data set for winter season rice crop yield in 2023.

S.No. Rain Fall(mm) Fertilizer Temperature N

1 1230 80 28 80

2 480 60 36 70

3 1250 75 29 78

4 450 65 35 70

5 1200 80 27 79
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Method: Colorimetric analysis using the molybdenum

blue method.

Procedure: Extraction of phosphorus with Bray or Olsen solution,

followed by color development and spectrophotometric measurement.

Potassium (K):

Method: Flame photometry.

Procedure: Soil extracts were analyzed for potassium

concentration using a flame photometer.
5.2 Exploratory crop yield data analysis

The dataset shows a distribution of rainfall in millimeters, with

rainfall over 1100 mm and between 400 and 500 mm, suggesting

different crop requirements. Fertilizer usage is divided into two

categories, with the correlation between crop output and fertilizer

being proportionate. The dataset is relevant to critical crop growth

stages like germination, vegetative growth, and grain filling. The

temperature graph shows two peaks, indicating the dataset was

collected for two different crops. The macronutrient distribution
FIGURE 2

Crop yield prediction of agriculture random forest tree.
itrogen(N) Phosphorus(P) Potassium(K) Yield
(Q/acre)

24 20 12

20 18 8

22 19 11

19 18 9

22 19 11
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shows higher nitrogen usage, less phosphorus usage, and less

potassium usage, suggesting different crop requirements (Figure 4).

A crop yield distribution graph is shown; two smaller maxima

suggest that various crops grown on the same type of soil may

generate different yields.

The data analysis reveals two distinct crops and a relationship

between crop yield and other columns. The first crop requires less

rainfall, while the second requires more. Variations in crop

production can be attributed to factors like soil type, temperature,

fertilizer, and macronutrients. There is no direct correlation

between fertilizer amount and crop output, suggesting high yields

may be due to soil type and macronutrients. The first crop, rabi, is in
Frontiers in Plant Science 08
the first cluster, while the second, kharif, is in the second. A linear

relationship exists between crop output and nutrients (Figures 5, 6).

In the Correlation Matrix Heat Map, the Explanatory Data

Analysis shows that the dataset was collected for two different crops.

There are two clusters in the dataset for temperature, precipitation,

and crop production. Nutrient levels and crop yield appear to be

proportionately correlated. Nevertheless, there isn’t a straight

proportionality between the crop production and the other

columns. Other elements including crop breed, weather, and soil

type could be to blame for this. Overall, there isn’t enough

complexity in the dataset to draw firm conclusions solely from

the graphs (Figure 7).
FIGURE 4

Histograms to analyze Rainfall, Temperature, and Macronutrient distribution in rice fields during two seasons (Kharif and rabi) in the region.
FIGURE 3

Data set for winter season rice crop yield in 2023. Series 1: Rainfall; Series 2: fertiliser; Series 3: temperature; Series 4: Nitrogen; Series 5 :
Phosphorus; Series 6 : Potassium.
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5.3 Model building

The crop yield forecast will be conducted using two models:

Decision Tree Regressor and Random Forest Regressor.

Decision Tree Regressor: The Decision Tree Regressor is a

statistical tool used to analyze the relationship between variables.

The Decision Tree Predicted Value is 0.9279431916668135.

Random Forest Regressor: The Random Forest Regressor is a

statistical model used to analyze the distribution of data.

The Random Forest Regressor Predicted Value

is 0.9355014219068669.
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5.4 Model evaluation

The text focuses on the process of model evaluation shown

in Figure 8.
5.5 Evaluation metrics

Evaluation metrics are quantitative measures used to evaluate

the performance and effectiveness of a Decision Regressor and
FIGURE 5

Histogram depicting relationship between crop yield and other columns (rainfall, fertiliser, temperature) during two seasons.
FIGURE 6

Cluster analysis of rainfall, fertilizer applied, temperature, and crop output and nutrients to understand the proportionate relationship between
these factors.
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Random Forest Regressor machine learning model, providing

insights for comparison and improvement.

Decision Tree Regressor: The decision tree model is a tree-like

regression tool used to predict continuous-valued outputs instead of

discrete ones, consisting of leaves, branches, and nodes. This importance

of rigorous evaluation of machine learning models, including metrics

like R-squared, MSE, MAE to ensure their accuracy and reliability.

Mean Squared Error:0.8250555099243105

Mean Absolute Error:0.6832293523469994

R2 Score:0.7709296619513172

Random Forest Regressor: A random forest regressor is a kind

of meta estimator that trains multiple decision tree regressors to

different dataset sub-samples and uses aggregating to increase

predictive accuracy and reduce over-fitting.

Mean Squared Error:0.7108302219107439

Mean Absolute Error:0.6836246853366845

R2 Score:0.8026434375994264

Features of Significant Importance: The Decision Regressor

and Random Forest Regressor are crucial tools for predicting crop
Frontiers in Plant Science 10
yield based on factors such as temperature, potassium, rain fall,

nitrogen, and fertilizer.

The Exploratory Data Analysis confirms various crops with

clusters in rainfall, temperature, and crop yield graphs. The dataset

shows a proportional relationship between nutrients and crop yield,

but not directly due to factors like soil type, weather conditions, and

crop breed. The Random Forest Regressor outperformed the

Decision Tree Regressor in predicting crop yield using machine

learning models. The Random Forest Regressor has an R2 score of

0.802, while the Decision Tree Regressor has an R2 score of 0.77.

The feature importance graph reveals that temperature holds the

highest significance in predicting crop yield. The relationship

between temperature and rainfall is crucial for crop yield

prediction, but macro nutrients hold less significance (Figure 9).

Experiment Result of LightGBM Regressor:

Rainfall Distribution: The histogram displays irregular rainfall

distribution, with over 1600 mm or 400-1600 mm falls, suggesting

different crop requirements may have influenced the data

collection (Figure 10).
FIGURE 7

Correlation matrix heat map of crop yield prediction.
FIGURE 8

Distribution plot. Left: Decision Tree regressor; Right: Random Forest Regressor.
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Fertilizer Distribution: Fertilizer usage divided into two

categories: above 65 and under 65. Crop yield is significantly

impacted by fertilizer, with a potential proportionate correlation.

EDA verification needed (Figure 11).

Temperature Distribution: The temperature graph reveals two

similar peaks, suggesting the dataset may be for two different crops,

possibly rabi and kharif, with an unusual temperature

distribution (Figure 12).

Yield Distribution: The data distribution analysis reveals two

distinct crops and a relationship between crop yield and other

columns, suggesting varying yields across different soil types (Figure 13).

Macronutrients (NPK) Distribution: The three graphs display

the distribution of macronutrients in a crop, with nitrogen being

used more frequently, phosphorus less frequently, and potassium

being used less frequently, suggesting different crop requirements

for nitrogen and phosphorus (Figure 14).

Correlation Matrix Heatmap: The dataset, collected for two

crops, shows a correlation between temperature, precipitation, and

crop production. However, there’s no direct relationship between

production and other columns, potentially due to factors like crop

variety weather, and soil type (Figures 15, 16).

LightGBM Regressor: LightGBM is a decision tree-based

gradient boosting ensemble method used in the Train for
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classification and regression, optimized for high performance in

distributed systems. LightGBM is a robust and efficient predictive

modelling approach that starts with data preparation and feature

engineering, followed by training a regressor model with specific

hyperparameters and evaluation metrics.

Mean Squared Error:2.857142857142857

Mean Absolute Error:1.4285714285714286

R2 Score:0.02941176470588225

RMSE:1.6903085094570331

The LightGBM Regressor is a crucial tool for predicting crop

yield based on various factors like temperature, potassium, rain fall,

nitrogen, and fertilizer. The yield, temperature, and rainfall graphs’

crop clusters are validated by the exploratory data analysis.

Although they are not directly caused by variables like soil type,

weather, or breed, nutrients and yield are proportionate. In terms of

forecasting crop yield, the LightGBM outperforms the Random

Forest and Decision Tree regression models.
5.6 XAI techniques: implementation
and interpretability

In our study, we implemented SHAP (SHapley Additive

exPlanations) and LIME (Local Interpretable Model-agnostic

Explanations) as XAI methods to provide clear, interpretable
FIGURE 9

The decision regressor and random forest regressor tools for predicting crop yield (Temperature, macronutrients and rainfall).
FIGURE 10

The histogram depicts irregular rainfall distribution
(LightGBM Regressor).
FIGURE 11

The histogram depicts the relation between fertilizer and
yield proportionate.
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insights into the AI model’s crop yield predictions. These techniques

allow users to understand the influence of various input features on

the model’s predictions, making it possible to trust and act on these

insights in real-world agricultural applications.

5.7 SHAP (SHapley Additive exPlanations)

SHAP assigns each feature a “Shapley value,” derived from

cooperative game theory, to quantify its contribution to a particular

prediction. We implemented SHAP for our LightGBM model to

show how individual environmental and agronomic factors impact

crop yield predictions. By visualizing Shapley values, stakeholders

can see which feature such as soil moisture, temperature, or nutrient

levels most significantly influence the model’s output. This helps in

identifying key drivers of yield variability, aiding in decision-

making, such as adjusting irrigation or fertilization practices

based on the model’s predictions.

5.8 LIME (Local Interpretable Model-
agnostic Explanations)

LIME provides local interpretability by approximating the

model’s behavior in the vicinity of each prediction using a
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simpler, interpretable model. In our study, we used LIME to

interpret individual predictions across different models. This

technique was particularly valuable for identifying the conditions

under which the model’s predictions might shift, offering insight

into how specific environmental changes (e.g., sudden temperature

rise) could influence yield estimates.

Together, SHAP and LIME improve the transparency and

actionable nature of our AI predictions by offering a clear

breakdown of input contributions, which is crucial in agricultural

applications where practical, data-driven decisions can significantly

enhance crop management and productivity. These XAI techniques

ensure that our models not only predict accurately but also provide

interpretable insights to support adaptive farming strategies.
6 Discussion

Recent studies have highlighted the potential of AI in improving

crop yield predictions. For instance, deep learning models have

been employed to analyze complex relationships between climatic

factors and crop growth, achieving higher accuracy compared to

traditional statistical methods (Raza, 2020). Furthermore, AI-driven

approaches can dynamically update predictions based on real-time

data, providing ongoing insights throughout the growing season.

While AI models offer robust predictive capabilities, their

‘black-box’ nature often poses challenges in interpretability. This

is where Explainable AI (XAI) becomes indispensable. XAI

techniques aim to elucidate the decision-making processes of AI

models, providing transparency and trustworthiness. By

understanding the factors that influence model predictions,

stakeholders can gain confidence in the results and apply them

more effectively in agricultural practices.

In this study, XAI methods such as SHAP (SHapley Additive

exPlanations) and LIME (Local Interpretable Model-agnostic

Explanations) were integrated to interpret the AI models’ outputs.

These techniques identify key variables influencing crop yields, such

as temperature, precipitation, and soil moisture levels, and explain

their contributions in a human-understandable manner (Ribeiro,

2016; Lundberg and Lee, 2017). This transparency not only aids in

validating model predictions but also provides actionable insights

for optimizing crop management strategies.

A low R² score for LightGBM can sometimes indicate superior

performance, particularly in scenarios where the dataset is noisy or

contains high variance. R² measures the proportion of variance

explained by the model, but it does not always capture practical

utility or model robustness. LightGBM excels in handling noisy data

and prioritizing meaningful patterns over fitting noise, which can

result in a slightly lower R² while achieving lower Mean Squared

Error (MSE) or Mean Absolute Error (MAE). This indicates that the

model makes more accurate point-wise predictions. Furthermore,

LightGBM’s focus on feature importance and interpretability,

through tools like SHAP values, provides actionable insights that

may outweigh the sole pursuit of maximizing R². In cases where

generalization, feature importance, or predictions for critical

scenarios are the priority, LightGBM performance may be deemed

superior despite a lower R² score. This demonstrates that R² alone is
FIGURE 12

The histogram depicts the relation between Temperature and
yield proportionate.
FIGURE 13

Distribution analysis between yield across different soil types.
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not always the best metric to evaluate a model, especially in complex,

real-world applications like agriculture (Hama, 2019; Nihal, 2021).

While our selected models (LightGBM, Random Forest,

and Decision Tree Regressors) offer strong performance and

interpretability, they do present certain limitations in complex

agricultural scenarios. For instance, although these models provide

insight into variable importance, they may struggle to fully capture

non-linear interactions in highly complex environmental conditions,

where deep learning models may excel due to their ability to learn

intricate patterns from large datasets. Additionally, model accuracy

can be impacted by changes in environmental variables such as

unexpected weather fluctuations, soil nutrient levels, and irrigation

patterns that were not captured in our dataset. These factors can

influence crop yield unpredictably, presenting a challenge to models

that rely on historical data patterns.

To address these constraints, future research could explore

hybrid modeling approaches that combine the interpretability of

tree-based models with the pattern-recognition capabilities of deep

learning techniques. For instance, implementing hybrid

frameworks that integrate LightGBM with neural networks may

enable better handling of non-linear relationships while preserving
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some degree of interpretability. Additionally, advancements in data

integration techniques, such as the incorporation of satellite

imagery, soil data, and real-time weather monitoring, could

provide our models with a more holistic understanding of crop

growth environments, improving their robustness and adaptability

to fluctuating conditions.

By exploring these approaches, future studies can enhance the

reliability and applicability of crop yield prediction models,

supporting more resilient and adaptive agricultural practices. This

analysis aligns with our commitment to developing AI-driven tools

that are not only accurate but also practical and interpretable for use

in the agricultural domain.

The findings of this study hold several practical implications:

1. For Farmers:

Optimized Crop Management: Farmers can utilize the model’s

outputs to adjust sowing times and irrigation schedules based on

predicted rainfall and temperature trends.

Input Allocation: Regions with predicted nutrient deficiencies

can plan targeted fertilizer applications to optimize yields while

minimizing waste.

2. For Agronomists:
FIGURE 14

Analysis of Distribution of rainfall, fertilizers, and temperature parameters in relation to yield parameters.
FIGURE 15

Correlation Matrix among the fertiliser application and yield parameters.
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Site-Specific Interventions: Agronomists can leverage feature

importance analysis to prioritize critical factors like soil pH or

temperature while advising on crop selection and land preparation.

Pest and Disease Management: Predictive insights can assist in

preemptive measures for pest outbreaks tied to climatic conditions.

3. For Policymakers:

Resource Allocation: The model enables policymakers to plan

subsidies and resources for high-risk areas based on

yield predictions.

Policy Formulation: Insights into environmental factors

affecting yield can guide sustainable agricultural policies and

investments in research for resilient crop varieties.
7 Conclusion

The application of AI and XAI in predicting crop yields under

climate change represents a significant advancement in agricultural

technology. By combining the predictive power of AI with the

transparency of XAI, this approach offers a reliable and

interpretable solution for addressing the challenges posed by

climate variability. As these technologies continue to evolve, they

hold the potential to revolutionize agricultural practices, ensuring

sustainable and resilient food production systems for the future.

The integration of AI and XAI in predicting crop yields has

significant implications for agricultural adaptation to climate

change. By accurately forecasting yields, farmers can optimize

planting schedules, select suitable crop varieties, and implement

effective irrigation practices to mitigate the adverse effects of climate

variability. Additionally, policymakers can use these predictions to

devise strategic plans for food security, resource distribution, and

disaster preparedness. Moreover, the explainability provided by
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XAI ensures that these predictions are not just accurate but also

actionable. Farmers and agricultural advisors can understand the

rationale behind the predictions, enabling them to make informed

decisions that align with local conditions and sustainability goals.

This approach fosters a data-driven agricultural ecosystem where

decisions are backed by reliable and transparent AI insights.

The article suggests that LightGBM Regressor, Decision Tree

Regressor, and Random Forest Regressor are essential tools for

predicting crop yield based on various factors such as temperature,

potassium levels, rainfall, nitrogen content, and fertilizer application.

Exploratory Data Analysis conducted in the study confirms the

existence of distinct crop clusters in rainfall, temperature, and yield

graphs, revealing a consistent relationship between nutrient levels and

crop yield. Interestingly, this relationship appears unaffected by soil

type, weather conditions, or crop variety. The study further

demonstrates the superior performance of LightGBM Regressor,

Random Forest Regressor, and Decision Tree Regressor in

predicting crop yield using AI and XAI models.

The research article highlights the significance of the LGBM

model in machine learning contests, attributed to its enhanced

accuracy, faster training time, lower memory consumption,

improved overfitting control, support for parallel learning, and

compatibility with datasets of varying sizes in the domain of Crop

Yield Prediction in Agriculture. Additionally, the study graphically

illustrates that temperature emerges as the primary factor

influencing crop yield prediction. While the relationship between

temperature and rainfall is deemed crucial, the contribution of

macro nutrients is comparatively less significant in this context.

Machine learning is a self-motivated tool for predicting crop

yields and selecting yields. It helps in intelligent decision-making in

complex farming systems. The primary goal is to develop an XAI

model for generating predictions of crop yield in agriculture. The
FIGURE 16

Heat Map generated between temperature, precipitation, and crop production.
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Exploratory Data Analysis confirms crop clusters in rainfall,

temperature, and yield graphs. Nutrients and yield are

proportional, but not directly due to factors like soil type, weather

conditions, or breed. The Light GBM Regressor, Random Forest

Regressor outperforms Decision Tree Regressor in predicting

crop yield.
8 Challenges and future directions

Despite the promising outcomes, several challenges remain in

the application of AI and XAI in agriculture. One significant

challenge is the availability and quality of data, as accurate

predictions depend on comprehensive and high-quality datasets.

Additionally, the computational complexity of advanced AI models

requires substantial resources, which may be a barrier for

widespread adoption, particularly in resource-limited regions.

Future research should focus on developing more efficient AI

models that can operate with limited data and computational

resources. Additionally, integrating domain knowledge from

agronomy and environmental science can enhance model

accuracy and relevance. There is also a need for ongoing

collaboration between AI researchers, agricultural experts, and

policymakers to ensure that AI technologies are tailored to meet

the specific needs of different agricultural contexts.

The uniqueness of this study lies in its integration of

Explainable Artificial Intelligence (XAI) with advanced machine

learning (ML) methods to address the complex challenges of

predicting crop yields under climate change scenarios. Unlike

conventional studies that focus solely on comparing ML methods,

this research emphasizes interpretability by leveraging SHAP and

LIME to provide actionable insights into the interactions between

key climatic variables (e.g., temperature, rainfall) and agronomic

factors (e.g., soil macronutrients). The study also introduces a novel

framework for using Exploratory Data Analysis (EDA) to identify

critical patterns and interactions in high-dimensional agricultural

data. By focusing on transparency and decision-making utility, this

work transcends mere accuracy comparisons, offering a robust and

scalable tool for precision agriculture, enabling policymakers and

farmers to make informed, climate-resilient strategies. Additionally,

the results underscore the significance of incorporating XAI into

agricultural models to bridge the gap between complex AI

predictions and practical implementation.
8.1 Enhancing model reliability and
contextual relevance

While the study demonstrates significant advancements in crop

yield prediction using AI and XAI, several limitations must be

acknowledged. First, the models rely heavily on historical data,

which may not fully capture future climate variability and extreme

events. Second, while SHAP and LIME enhance interpretability,

their explanations are influenced by the underlying data

distribution, potentially limiting their generalizability.

Additionally, the study does not incorporate socio-economic
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factors such as market dynamics, farmer practices, or resource

availability, which are crucial for real-world applicability. Future

research should focus on integrating dynamic climate models and

real-time data streams to improve predictive accuracy under rapidly

changing conditions. Moreover, incorporating domain-specific

agronomic knowledge, such as crop phenology, pest and disease

dynamics, and localized soil management practices, can enhance

model reliability and contextual relevance. Interdisciplinary

collaborations between data scientists and agronomists can

further refine AI frameworks, ensuring that predictions align with

practical farming needs. Lastly, extending the application of AI

models to include prescriptive analytics providing actionable

recommendations alongside predictions would significantly

enhance their utility for farmers and policymakers.
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