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Apple is a significant economic crop in China, and leaf diseases represent a major

challenge to its growth and yield. To enhance the efficiency of disease detection,

this paper proposes an Adaptive Cross-layer Integration Method for apple leaf

disease detection. This approach, built upon the YOLOv8s architecture,

incorporates three novel modules specifically designed to improve detection

accuracy and mitigate the impact of environmental factors. Furthermore, the

proposed method addresses challenges arising from large feature discrepancies

and similar disease characteristics, ultimately improving the model's overall

detection performance. Experimental results show that the proposed method

achieves a mean Average Precision (mAP) of 85.1% for apple leaf disease

detection, outperforming the latest state-of-the-art YOLOv10s model by 2.2%.

Compared to the baseline, the method yields a 2.8% increase in mAP, with

improvements of 5.1%, 3.3%, and 2% in Average Precision, Recall, and mAP50-95,

respectively. This method demonstrates superiority over other classic detection

algorithms. Notably, the model exhibits optimal performance in detecting

Alternaria leaf spot, frog eye leaf spot, gray spot, powdery mildew, and rust,

achieving mAPs of 84.3%, 90.4%, 80.8%, 75.7%, and 92.0%, respectively. These

results highlight the model’s ability to significantly reduce false negatives and

false positives, thereby enhancing both detection and localization of diseases.

This research offers a new theoretical foundation and direction for future

advancements in apple leaf disease detection.
KEYWORDS

foliar disease, object detection, YOLOv8s, feature fusion, task-aligned,
intelligent agriculture
1 Introduction

Apple leaf diseases are one of the primary factors affecting apple growth and yield (Jiang

et al., 2019). Accurate and rapid identification of leaf diseases is crucial for farmers to take

timely measures. Traditional diagnostic methods mainly rely on expert observation and
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analysis, such as judging diseases based on the color, size, and shape of

leaf spots. These methods are not only time-consuming but also

require a high level of expertise, making large-scale operations difficult.

In recent years, with the rapid development of artificial

intelligence technology, object detection has become a popular

research direction for apple leaf disease detection. Object detection

technology locates and identifies objects in images, enabling

classification and definition of the objects (Zhao et al., 2019).

Typically, object detection algorithms are divided into two-stage

and one-stage algorithms. Although two-stage algorithms are more

accurate, they have limitations in computational cost and real-time

performance. In contrast, one-stage algorithms are more suitable for

resource-constrained environments due to their speed and efficiency

(Kamath and Renuka, 2023). YOLO (You Only Look Once) is a one-

stage object detection algorithm proposed by Redmon et al (Redmon

et al., 2016). It achieves rapid object detection by using DarkNet, a

convolutional neural network framework.

YOLOv8, introduced by Ultralytics in 2023, combines the

advantages of previous versions and incorporates new backbone

networks and detection heads, significantly improving detection

speed and accuracy.YOLOv8 is divided into five models: n, s, m, l,

and x, with increasing network depth and detection accuracy,

suitable for various hardware platforms, including low-end

mobile devices.

In this study, we trained and tested our model using the ALDD

dataset, which was fusion from two open-source datasets. The

dataset includes not only dense and small disease targets but also

larger targets that affect the leaf veins and even entire leaves.

Additionally, there are challenges related to similar features

among diseases of similar sizes, which poses a significant test for

the feature extraction capabilities of the model. Moreover, in

mainstream methods, the detection head typically optimizes two

subtasks: object classification and localization, using a dual-branch

task approach. This often leads to unreasonable label assignment

between the two tasks, retaining incorrect results and affecting

detection performance.

To address these challenges, we propose a disease detection

network based on YOLOv8s. Experiments conducted on images

with complex backgrounds demonstrate that the proposed

algorithm has practical value in apple cultivation and production.

The main contributions and innovations of this work are

summarized as follows:
Fron
1. We enhance the original Path Aggregation Network with

Feature Pyramid Network (PAN-FPN) structure in

YOLOv8s by adding an Adjacent Feature Fusion (AFF)

module. This module strengthens cross-layer feature fusion

and integrates shallow features into a small target detection

layer to address the issue of significant target shape variation.

2. The C2f module in the neck of the network is replaced with

a Cascade Attention Module (CAM) that employs iterative

attention mechanisms. This enhancement improves feature

extraction and fusion capabilities to tackle the problem of

similar disease characteristics.

3. The traditional decoupled head is replaced with a Dynamic

Tack-Aligned Head (DTAH), which enhances task
tiers in Plant Science 02
alignment in the detector and increases interaction

between classification and localization tasks. This

approach guides the model to dynamically adjust its

receptive fields while retaining results with high localization

and confidence.

4. A comparative analysis of several typical object detection

algorithms was conducted. Experimental results show that

our algorithm achieves an mAP of 85.1% on the ALDD

dataset. This algorithm provides support for precise

planting, visual management, and intelligent decision-

making in apple production.
The structure of this paper is as follows: Section 2 summarizes

related work; Section 3 introduces the dataset composition and the

YOLOv8s network; Section 4 presents the proposed apple leaf

disease detection model; Section 5 details the experimental setup,

including the experimental environment and evaluation metrics;

Section 6 showcases and analyzes the experimental results; and

Section 7 provides conclusions and suggestions for future research.
2 Related work

The field of fruit tree disease detection is similar to that of crop

disease detection, with early research primarily relying on traditional

image processing techniques and machine learning algorithms. With

the rapid development of deep learning, convolutional neural

networks (CNNs) have been increasingly applied in disease

detection. Researchers have achieved significant detection results by

constructing various CNN architectures and training them on large-

scale datasets. Common deep learning models include AlexNet

(Krizhevsky et al., 2017), VGG (Simonyan and Zisserman, 2014),

and ResNet (He et al., 2016). Additionally, in the field of object

detection, models such as Faster R-CNN (Ren et al., 2015), YOLO

(Redmon et al., 2016), and SSD (Liu et al., 2016) have been widely

used in fruit tree disease detection.

Due to the importance of detection efficiency and real-time

performance, one-stage models have gradually become the focus.

Among these, the YOLO series has received considerable attention

for its performance in disease detection. Numerous studies have

improved YOLO models to enhance detection accuracy

and efficiency.

One example is the work by Yiweng Wang et al (Wang et al.,

2022), who proposed the MGA-YOLO model for apple leaf disease

detection by integrating the Ghost module and Convolutional Block

Attention Module (CBAM) into the YOLOv5 network. They

achieved an mAP of 89.3% with a model size of only 10.34MB.

Weishi Xu et al. (Xu and Wang, 2023) introduced Mobilenet-V3’s

basic blocks and utilized group convolution and depthwise

convolution for downsampling, designing ALAD-YOLO, which

significantly improved the accuracy of tea leaf disease detection

while reducing computational costs. Another example is the work

by Zhenyang Xue et al (Xue et al., 2023), who enhanced tea leaf

disease detection performance by integrating self-attention and

CBAM into YOLOv5 and replacing YOLOv5’s original modules

with Receptive Field Blocks (RFB).
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In the domain of tea leaf disease detection, Md. Janibul Alam

Soeb et al. (Soeb et al., 2023) addressed the issue of sample scarcity

through data augmentation methods. They compared various

object detection and recognition networks, confirming that

YOLOv7 outperformed others in detecting and recognizing tea

leaf diseases in natural scene images. Similarly, Xiaoqiang Yang

et al. (Yang and Guo, 2023) chose the YOLOv7 algorithm for

detecting apple diseases, improving model accuracy using the

DCNV3 module and enhancing downsampling through a

combination of Space-to-Depth (SPD) and Depthwise Separable

Convolution (DSConv), resulting in a 3.3% accuracy increase, a

parameter reduction of 0.38M, and a 1.5 FFLOPS (Fused Floating

Point Operations Per Second) computational reduction.

With the release of YOLOv8, researchers have shifted their

focus to this latest object detection model. Houda Orchi et al. (Orchi

et al., 2023) evaluated YOLOv8 for crop leaf disease detection,

assessing its accuracy, recall, precision, F1 score, confusion matrix,

Frames Per Second(FPS), inference time, and performance in terms

of bounding box, classification, and distribution loss, proving

YOLOv8’s feasibility and capability in crop leaf disease detection.

Consequently, Rujia Li et al. (Li et al., 2024) conducted research on

YOLOv8 for maize leaf disease detection. They designed GhostNet

Triplet YOLOv8s by integrating a lightweight GhostNet structure

into YOLOv8, achieving a 0.3% increase in mAP, a 50.2% reduction

in model size, and a 43.1% reduction in FLOPs for maize leaf disease

detection. These research findings indicate that the YOLO model

has broad application prospects in detecting diseases on fruit tree

leaves. However, in reality, the morphological characteristics of

apple leaf diseases vary significantly. Although the YOLO series

algorithms have achieved satisfactory results in agricultural disease

detection, the accuracy of some existing lightweight networks still

needs improvement when it comes to detecting apple leaf diseases.
3 Materials and methods

3.1 Dataset description

In the field of apple leaf disease detection, data plays a crucial

role. We obtained two publicly available datasets from the internet:

PlantDoc (Singh et al., 2020) and AppleLeaf9 (Yang et al., 2022).

The PlantDoc dataset includes three classes of disease images

related to apple leaves, captured under real-world conditions in

cultivated fields. The authors utilized deep learning methods to

classify and test the dataset, confirming the importance of complex

background data in advancing disease detection towards practical

applications. AppleLeaf9 is a combination of datasets from Plant

Village (Hughes and Salathe, 2016), ATLDSD (Feng and Chao,

2022), PPCD 2020, and PPCD 2021 (Thapa et al., 2020). Guided by

domain experts, the authors clearly classified apple leaves into nine

disease categories, including healthy leaves. The dataset was also

tested using the proposed EfficientNet-MG algorithm, achieving

high accuracy. These studies demonstrate the reliability and

separability of the categories in both datasets.
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However, we found that while the PlantDoc dataset features apple

leaf diseases with complex outdoor backgrounds, it contains relatively

few categories. Conversely, the AppleLeaf9 dataset offers a larger

number of categories but suffers from significant class imbalance in

disease occurrences. This imbalance can bias the model towards

frequently occurring categories, making it easier to detect these

targets while potentially missing or incorrectly detecting low-

frequency categories. Such biases can affect the overall mean average

precision (mAP), leading to evaluation metrics that may not fully

reflect the model’s performance across all categories.

To address these issues, we made manual adjustments by first

removing low-quality images and those that did not match the complex

outdoor backgrounds required.We then integrated images with complex

backgrounds from the PlantDoc dataset into the corresponding

categories. Finally, we randomly deleted images from overrepresented

categories to balance the dataset with underrepresented ones as much as

possible. We named the resulting dataset the ALDD dataset.

In total, the dataset used in this study covers eight types of apple

leaf diseases: Alternaria leaf spot, brown spot, frog-eye leaf spot, gray

leaf spot, mosaic, powdery mildew, rust, and apple scab, with a total of

3,638 images of diseased leaves. The ALDD dataset presents several

challenges for apple leaf disease detection in complex backgrounds: (1)

Apple leaf disease images captured in real-world scenarios often

include multiple leaves and complex backgrounds, such as branches

and fruits, which can interfere with the localization of diseased areas;

(2) Disease features are similar, and early-stage disease targets are small;

(3) Lighting conditions vary with time of day. Images taken in the

morning have weaker light, while those taken at noon can be

overexposed with prominent shadows. These lighting issues may lead

deep learning algorithms to mistakenly identify spots or shadows as

disease features. Figure 1 illustrates the various apple leaf diseases.

Based on the descriptions and classifications of diseases in the dataset

by Yang et al (Yang et al., 2022), and after discussions with domain

experts, we have summarized the main symptoms and causes of apple

leaf diseases, as shown in Table 1.
3.2 YOLOv8s model description

The YOLOv8s network is similar to YOLOv5, consisting mainly

of the Backbone, Neck, and Head. The Backbone part inherits the

CSP (Cross Stage Partial) module concept (Wang et al., 2020) but

replaces the C3 module in YOLOv5 with the C2f module, which

improves network efficiency and performance through more effective

feature fusion and gradient flow transmission. Additionally, YOLOv8

modifies the SPP (Spatial Pyramid Pooling) module (He et al., 2015)

into the SPPF (Spatial Pyramid Pooling-Fast) module, making

detailed adjustments to different scales of the model, instead of

using a unified parameter setting. This strategy significantly

enhances model performance. In the Neck part, YOLOv8 simplifies

the PAN (Path Aggregation Network) structure (Liu et al., 2018) to

reduce computational burden while maintaining effective feature

fusion. The Head part adopts the currently popular decoupled head

structure, which separates the classification and detection heads.
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Moreover, it transitions from an anchor-based approach to an

anchor-free design, enhancing the model’s ability to adapt to

targets of different sizes and shapes. Figure 2 shows the architecture

of the YOLOv8 model.

During network training, the loss function is a tool used to

represent the difference between predicted and actual values. It plays

a crucial role in the training of disease detection models. In YOLOv8s,

multiple loss functions are combined for training bounding box

regression, classification, and confidence. The loss functions used are

as follows:
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Lcls + Lloc = Lconf (1)

where Lcls represents the classification loss, Lloc represents the

bounding box regression loss, and Lconf represents the confidence

loss. The classification loss Lcls uses Varifocal Loss, which combines

Focal Loss and binary cross-entropy (BCE):

Lcls = −at(1 − pt)
gyt log(pt) − (1 − at)P

g
t (1 − yt)log(1 − pt) (2)

where pt is the model’s predicted probability for the correct

class, yt is the ground truth label (1 if the sample belongs to the
TABLE 1 Symptoms and etiology of eight apple leaf diseases.

Disease Symptom Etiology

Alternaria leaf spot Early stages show circular or oval brown spots with distinct concentric rings or “target” appearance, accompanied by
reddish-brown or purple edges. Later stages see spots enlarge and merge, leading to leaf yellowing, wilting, and
even defoliation.

Alternaria Nees

Brown spot Early stages show small brown spots with light red or purplish edges. In later stages, spots gradually enlarge, causing leaves
to yellow, wilt, and even fall off.

Diplocarpon mali

Frogeye leaf spot Early stages show small circular spots with a gray-white center and dark brown or purplish-brown edges, resembling “frog
eyes.” Later stages see spots enlarge and merge, causing leaf yellowing, curling, and severe defoliation.

Cercospora sojina

Grey spot Early stages show small gray-white spots with possible brown or reddish-brown edges. Later stages see spots enlarge and
merge, causing large areas of leaf discoloration and even perforation.

Phyllosticta pirina

Mosaic Early stages show mottled or striped patterns in light green, yellow-green, or white on leaves. Later stages may cause leaf
deformation and curling.

Apple mosaic
virus

Powdery mildew Early stages show white powdery substances on the affected areas, with leaf edges curling upward and becoming erect.
Later stages see black specks near leaf axils and main veins, potentially causing leaf shrinkage and premature defoliation.

Podosphaera
leucotricha

Rust Early stages show shiny orange-red small spots that gradually enlarge, forming circular orange-yellow lesions with red
edges. In severe cases, a single leaf may have dozens of spots.

Gymnosporangium
yamadai Miyabe

Scab Early stages show light yellow-green circular or radial spots that gradually turn brown and eventually black.
Infected leaves often show several merged spots.

Venturia inaequalis
FIGURE 1

Sample Illustrations from the Dataset:(A) Alternaria leaf spot; (B) Brown spot; (C) Frogeye leaf spot; (D) Grey spot; (E) Mosaic disease; (F) Powdery
mildew; (G) Rust; (H) Scab; Figure redrawn from (Yang et al., 2022).
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current class, otherwise 0), and at and g are scaling factors to

control sample weight and focusing degree. The localization loss Lloc
considers the position and shape of the bounding box:

Lloc = l1 · CIoU  Loss + l2 · DFL Loss (3)

where l1 and l2 are hyperparameters that adjust the relative

importance of the two losses in the total loss.

CIoU = 1 − IoU +
r2 bcenter , b

gt
center 

� �
c2

+ a · v (4)

where represents the Intersection over Union, is the distance

between the center points of the predicted box and the ground truth

box, c is the diagonal length of the smallest enclosing box covering

both the predicted and ground truth boxes, v is the aspect ratio

consistency term, and is a proportionality coefficient.

DFL = −o
n

i=1
wilog(pi) (5)
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Where wi is the weight, usually adjusted according to the

position of the true bounding box. pi is the probability of each

class in the predicted probability distribution.

The confidence loss uses Binary Cross-Entropy:

Lconf = −½y · log(ŷ ) + (1 − y) · log(1 − ŷ )� (6)

where y is the ground truth label (1 if there is an object within

the bounding box, otherwise 0), and ŷ is the model’s predicted

confidence, representing the probability of an object being within

the bounding box, usually the output processed by a sigmoid

activation function.
4 Proposed algorithm

Leveraging the strengths of the YOLOv8s algorithm, we

propose an enhanced algorithm for identifying apple leaf diseases.

This improved algorithm increases the accuracy of disease detection
FIGURE 2

Schematic diagram of the YOLOv8s model.
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in complex backgrounds while maintaining real-time performance.

The enhancements focus on three key aspects: small target feature

extraction, cross-layer feature fusion, and task alignment of the

detection head. Figure 3 illustrates the overall framework of the

apple leaf disease identification model.
4.1 Multilayer feature fusion

YOLOv8s utilizes the PAN-FPN network. In simple terms, the

Feature Pyramid Network (FPN) enhances the entire pyramid with

top-down transmission of high-level semantic features but only

enhances semantic information without passing on localization

information. To address this, PAN supplements FPN by adding a

bottom-up pyramid after FPN, allowing strong localization features

from lower levels to be transmitted upwards. This approach further

enhances the multi-scale feature representation, making PAN
Frontiers in Plant Science 06
perform exceptionally well in object detection tasks. When the

stride of the backbone network is set to 2, the network increases the

downsampling ratio, thereby obtaining richer semantic

information. This information is crucial for understanding the

extensive context and structure of the target, significantly

improving the detection capability of the overall object. However,

in this study, the diseases of interest are mostly captured in real

outdoor environments, with each image containing multiple targets

of varying sizes, even within the same class. The increased

downsampling ratio can lead to the loss of a substantial amount

of detailed feature information. The output layer of the YOLOv8s

object detection model only fuses features from the P3, P4, and P5

layers. Therefore, we considered utilizing the features from the P2

layer to enhance small object detection capabilities while expanding

the model’s receptive field. The specific idea is to fuse the P2 layer

features with other layers and design the P2 layer as a separate small

object detection layer, as shown in Figure 3. This approach not only
FIGURE 3

Schematic diagram of the improved model.
FIGURE 4

The Adjacent Feature Fusion.
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strengthens the model’s ability to detect small targets but also avoids

overfitting caused by the model’s excessive reliance on features of a

particular size.

To better utilize shallow features, we designed an Adjacent

Feature Fusion (AFF) module, as shown in Figure 4. This module

cascades information from large, medium, and small layers,

providing clearer and richer feature information, especially in

complex backgrounds or densely overlapping objects. The module

first adjusts the channel numbers of feature maps of various scales

to be consistent with the main scale features.

Large Feature Map Processing: A convolution module adjusts

the channel number of the large feature map to 1C to reduce

computational complexity. It employs a hybrid structure of max

pooling and average pooling for down-sampling, aiming to reduce

the spatial dimension of features while retaining key information,

thereby enhancing the model’s translation invariance and

adaptability to spatial changes in the input image.

Small Feature Map Processing: Similarly, the channel number

is first adjusted through a convolution module. Nearest neighbor

interpolation is used for up-sampling to retain more local feature

details, which is crucial for densely overlapping small objects. This

interpolation method leverages adjacent pixel information to

minimize feature information loss.

Feature Map Fusion: The processed large, medium, and small

feature maps are first convolved along the channel dimension and

then concatenated. This method fully integrates information of

different scales, enhancing the expressiveness of features. The

output feature map has the same resolution as the medium-scale

feature map, and the channel number is tripled, ensuring that the

information from different scale features is effectively fused

and strengthened.
4.2 Cascade attention module

In this study, images often contain multiple leaves and complex

backgrounds, such as branches and fruits. To address this issue, we

considered ways to enhance the model’s ability to localize disease

regions, distinguishing target areas from background areas. At the

same time, we could not overlook previously mentioned challenges

such as target dispersion and varying sizes. Therefore, we
Frontiers in Plant Science 07
considered using adjacent layer feature fusion while incorporating

attention mechanisms to strengthen target localization. However,

traditional global channel attention mechanisms, such as those used

in SKNet and ResNeSt, primarily focus on soft feature selection

within the same layer and do not address cross-layer fusion. They

also tend to aggregate global information, which can weaken the

features of small objects. This is because these methods overly

emphasize global context while neglecting the scale differences of

objects of various sizes. To address the aforementioned issues, we

propose a Cascaded Attention Mechanism feature fusion module

(CAM), as shown in Figure 5A. CAM utilizes a Hierarchical

Channel Attention Module (H-CAM) for refined feature

processing, as illustrated in Figure 5B, to better capture the

relationships between features during the fusion process. H-cam

extracts multi-scale channel attention features by combining global

pooling and local convolution methods. Specifically, the H-cam

module consists of two components: global context and local

context. Global context is obtained through Global Average

Pooling (GAP), while local context is extracted using Point-wise

Convolution. These two contextual pieces of information are then

used to generate attention weights.

In implementation, CAM initially performs feature fusion

through simple addition, then adjusts the fused features using

attention weights generated by H-cam to improve fusion

accuracy. The specific calculation formula is as follows:

Ffused = M(F1 ⊕ F2) ⊗ F1 +  (1  −Hcam(F1 ⊕ F2)) ⊗ F2 (7)

Among them, Ffused represents the fused feature, F1 and F2 are

the two input features, Hcam represents the attention weights

generated by H-CAM, ⊕ denotes the initial feature fusion

operation (such as addition or concatenation), and ⊗ represents

element-wise multiplication. The core of H-CAM lies in its multi-

scale channel attention mechanism, which is implemented through

the following steps:

Global Context Extraction: Perform global average pooling on

the input features. The value at the i-th row and j-th column of the

c-th channel, Xc,i,j is averaged to obtain the global pooling result

G(X)c for the c -th channel. By averaging all elements of each

channel, the global feature vector G(X) is obtained.

Local Context Extraction: Perform two point-wise convolution

operations W, two batch normalization operations BN and a ReLU
FIGURE 5

Structure diagram of cascade attention module. (A) Cascade Attention Module; (B) Hierarchical channel attention module.
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function d on the input features to extract local context features,

resulting in the local context feature L(X).

Multi-scale Attention Weight Generation: Add the global and

local context features, pass them through a ReLU function and a

point-wise convolution, and then generate the multi-scale attention

weights M(X) through a sigmoid function.

The specific formula is as follows:

L(X) = BN2(W2 � d (BN1(W1 � X))) (8)

G(X)c =
1

H �Mo
H

i=1
o
W

j=1
Xc,i,j (9)

M(X) = s (L(X) + G(X)) (10)
4.3 Dynamic task-aligned head

Object detection is typically formulated as a multi-task learning

problem by jointly optimizing object classification and localization.

The classification task is designed to learn distinctive features

focused on the key or prominent parts of objects, while the

localization task is used to precisely locate the entire object with

its boundaries. In the domain of disease detection, the accuracy of

both tasks is indispensable. The YOLOv8s detection head structure

adopts the mainstream decoupled head (Ge et al., 2021), where
Frontiers in Plant Science 08
classification and localization operate in parallel. In the context of

apple leaf diseases, the localization task, facing complex and

irregular disease features, requires the ability to adapt to local

variations in the data. However, when the classification task runs

parallel to the localization task, there can be discrepancies in the

spatial distribution of learning features between the two tasks. Using

two separate branches for prediction can lead to a certain degree of

misalignment, resulting in lower detection accuracy.

To enhance the model’s generalization ability and address the

misalignment issue between the two tasks, we propose the DTAH

head structure, as shown in Figure 6. We address the above

problems by considering the following three points: (1) enhancing

the alignment learning capability of the two detectors; (2) using

Deformable Convolution in the localization task branch; (3)

increasing interaction between the two tasks.

As shown in Figure 6, it features a simple feature extractor with

two Task-Aligned Predictor branches (TAP/DTAP). To enhance the

interaction between classification and localization while controlling

the number of model parameters, grouped convolution is employed

to learn task interaction features from multiple convolutional layers.

This design not only controls the model size and facilitates task

interaction but also provides multi-level features with multi-scale

effective receptive fields for both tasks. Here, H, W, and C represent

the height, width, and number of channels, respectively. The feature

extractor uses N consecutive convolutional layers with activation

functions to compute task interaction features:
FIGURE 6

Dynamic task-aligned head.
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Hinter
k =

d (convk(Hfpn)), k = 1

d (convk(Hinter
k−1 )), k > 1

, ∀k ∈ 1, 2,…,Nf g
(

(11)

Among them, convk and d refer to the k-th convolutional layer

and the ReLU function, respectively. Therefore, we use a single

branch in the head to extract rich multi-scale features from the FPN

features. The computed task interaction features are then fed into

the two task-aligned branches for aligning classification

and localization.

In the localization task, to more effectively capture complex and

irregular feature information, deformable convolutions are used to

dynamically adjust the convolution kernels, improving localization

performance, as shown in Figure 7. This involves adding learnable

parameters DPn. Similarly, for each output y(p0), nine positions are

sampled from x. These nine positions are obtained by spreading out

from the central position x(p0), but with the added Dpn, allowing
the sampling points to spread into a non-grid shape.

YP0 = o
Pn∈R

wpn · x(P0 + Pn + DPn) (12)

Here, wpn is the weight, x is the input feature layer, and DPn is

the offset learned by convolving the original feature layer, used to

adjust the sampling positions of the convolution kernel. Perform

object classification and localization on the computed task

interaction features, allowing the two tasks to effectively perceive

each other’s states. The use of the layer attention mechanism aims

to avoid functional conflicts caused by the different objectives of the

object classification and localization tasks. This is achieved by

dynamically computing task-specific features at the layer level,

encouraging task decomposition. Task-specific features for each

classification or localization task are calculated separately as follows:

Tk = ak · H
inter
k , ∀k ∈ 1, 2,…,Nf g (13)

Among them, ak is the k-th element of the learned layer

attention a ∈ RN . The attention a is computed from the cross-

layer task interaction features and is capable of capturing
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dependencies between layers:

a = s (c2(d (c1(H
inter)))) (14)

Among them, c1 and c2 refer to the two fully connected layers. s
is the sigmoid function, and Hinter is obtained by applying average

pooling to Hinter
1∼N , which is the concatenated feature of. Finally, the

classification or localization results are predicted from each T:

Z = conv2(d (conv1(T))) (15)

Among them, T is the concatenated feature of T1∼N , and conv1
is a 1×1 convolutional layer used for dimensionality reduction. The

sigmoid function is then used to convert Z into dense classification

scores P ∈ RH�W�8, or to process object bounding boxes through

the distance-to-bbox B ∈ RH�W�4 transformation.

In the prediction step, the computed task interaction features

are used to jointly consider the two tasks, applying the alignment

method to each task separately. A spatial probability map M ∈
RH�W�1 is used to adjust the classification predictions:

Palign =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P �M

p
(16)

Among them, M is computed from the interaction features,

allowing it to learn the degree of consistency between the two tasks

at each spatial location. Simultaneously, to achieve alignment in

localization predictions, a spatial offset map O ∈ RH�W�8 is learned

from the interaction features to adjust the predicted bounding boxes

at each location. Specifically, the learned spatial offset enables the

most aligned anchor points to identify the best boundary

predictions around them:

Balign = B(i + U2c
ij , j + U2c+1

ij , c) (17)

Among them, (i, j, c) represents the spatial location (i, j) in the c-

th channel of the O tensor. The aligned bounding box Balign is

achieved through bilinear interpolation, and due to the very

small channel dimension of B, its computational overhead is

negligible. The offset for each channel is learned independently,
FIGURE 7

Deformable conv module.
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making the prediction of the four boundaries more precise, as each

can independently learn from its most accurate nearby

anchor points.

The alignment maps M and U, which are automatically learned

from the stack of interaction features:

M = s (conv2(d (conv1(H
inter)))) (18)

U = conv4(d (conv3(H
inter))) (19)

Among them, conv1 and conv3 are two 1×1 convolutional layers

used for dimensionality reduction.

Within the framework of Task-Aligned Learning, the learning

of M and U is executed through a dynamic sample allocation

strategy, which selects high-quality anchors based on predefined

criteria. This selection involves not only the allocation of anchors

but also the weighted processing of these anchors. To effectively

address the challenges of Non-maximum Suppression (NMS), the

allocation of anchors should follow these rules: First, well-aligned

anchors should be able to jointly predict objects with high

localization accuracy and high classification scores; second,

misaligned anchors should have low classification scores and

should be suppressed in subsequent processes.

Based on these considerations, we designed a new anchor

alignment metric to explicitly evaluate the task alignment

degree of each anchor. This alignment metric takes into account

both the classification score and the Intersection over Union (IoU)

between the predicted and actual bounding boxes, which

together indicate the quality of the task prediction. Specifically,

we calculate the anchor-level alignment degree for each instance by

combining the classification score and the high-order combination

of IoU:

t = pj � qw (20)

Among them, p and q represent the classification score and the

IoU value, respectively. The parameters j and w are used to control

the influence of the two tasks in the anchor alignment metric. From

the perspective of joint optimization, t encourages the network to

dynamically focus on task-aligned anchors, playing a crucial role in

achieving the alignment of the two tasks.
5 Experimental details

5.1 Experimental setup

In this study, we used PyTorch with a GPU (Graphics

Processing Unit) to build the leaf disease detection model. The

experiments utilized the SGD (Stochastic Gradient Descent)

optimizer, and the details of the hardware and software

configurations are shown in Table 2. Based on experience from

previous related studies and considering the performance of the

equipment, we set the training to 150 epochs, with a batch size of 16

and an input image size of 640×640 pixels. Other parameters were

kept at their default values.
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5.2 Experimental data

The proposed algorithm was validated on the ALDD dataset,

which includes eight common apple leaf diseases captured in either

laboratory settings or complex outdoor environments. The dataset

consists of 3,638 disease images, and the lesions on the images were

annotated using the LabelImg tool under the guidance of domain

experts. Figure 8 illustrates the annotation process. As shown in

Figure 8A, distinct disease targets were annotated individually.

However, when disease features overlapped, as seen in Figure 8B,

it was decided to annotate them as a whole to prevent missed

annotations. Figures 8D, E show disease manifestations that cover

entire leaves, prompting us to annotate the entire leaf. Figures 8C, F

display different manifestations of the same disease; we decided to

annotate the dispersed form separately while annotating the form

that invades the leaf veins or entire leaf as a whole. After annotation,

we randomly allocated 80% of each category’s data for training and

the remaining 20% for testing. Table 3 shows the number of training

and testing samples for each category, along with their

corresponding label names.
5.3 Evaluation metrics

To select the optimal model, the experiments used metrics such

as Average Precision (AP), Recall (R), and Mean Average Precision

(mAP) to evaluate the performance of the object detection model. R

represents the proportion of true positive cases correctly identified

by the model out of all actual positive cases, indicating the model’s

ability to retrieve relevant instances. AP is calculated as the area

under the Precision-Recall curve at various thresholds. mAP is the

average of the AP values for all categories and serves as a measure of

the overall performance of the object detection algorithm.

Parameter count (Params) refers to the number of trainable

parameters in a neural network model. Frames Per Second (FPS) is

a measure of the model’s processing speed, indicating the number of

image frames the model can handle per second.

The evaluation metric formulas are as follows:

Precision =
TP

TP + FP
(21)
TABLE 2 Experimental environment information.

Item Type

CPU Intel(R) Core(TM) i7-9700 CPU @
3.00GHz 3.00 GHz

Ram 16.0GB

GPU NVIDIA GeForce RTX 3090

Operating System Windows 11

Cuda CUDA 13.0

programming language Python 3.8

Deep learning Frame PyTorch 1.11.0
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Recall =
TP

TP + FN
(22)

AP =
Z 0

1
p(r) dr (23)

mAP =
1
mo

m

i=1
APi (24)

FPS =
1

Tframe
(25)

In the formulas:

TP (True Positive) refers to the number of correctly identified

positive samples. This means the model correctly classifies actual

positive cases as positive.
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TN (True Negative) refers to the number of correctly identified

negative samples, meaning the model correctly classifies actual

negative cases as negative.

FP (False Positive) represents the number of negative samples

incorrectly identified as positive, indicating the model incorrectly

predicts actual negative cases as positive.

FN (False Negative) refers to the number of positive samples

incorrectly identified as negative, meaning the model incorrectly

predicts actual positive cases as negative.

In addition, p(r) represents the function relationship where

Precision changes with Recall, which can be used to plot the

Precision-Recall curve. The variable m denotes the number of

classes, which equals 8 in this study. The variable Tframe indicates

the processing time per frame.
6 Experimental results

6.1 Ablation study results

To verify the impact of each improvement module in the

proposed YOLO-ACT algorithm on the performance of apple leaf

disease detection, we individually integrated the AFF, CAM, and

DTAH modules and evaluated the model performance on the

ALDD dataset, maintaining the same training environment as

previously described. When all improvement modules work

synergistically, the model’s convergence speed significantly

increases. The training and testing loss function curves are

detailed in Supplementary Figure S1.

Table 4 presents the average precision (AP), recall (R), and

mean average precision (mAP) metrics after incorporating each

improvement module. The results indicate that the mAP improved
TABLE 3 Annotation names and quantities of apple diseases.

Category Train Test Sum Label Instances

Alternaria leaf spot 307 77 384 Als 682

Brown spot 463 116 579 Bs 690

Frogeye leaf spot 330 82 412 Fls 830

Grey spot 300 75 375 Gs 741

Mosaic 478 119 597 M 695

Powdery mildew 276 69 345 Pm 557

Rust 292 73 365 R 722

Scab 465 116 581 S 814

Sum 2911 727 3638
FIGURE 8

Illustration of the data annotation process. (A–F) Display annotations for different disease conditions.
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from 82.3% to 83.7% after adding the AFF module, demonstrating

the module’s significant role in enhancing feature extraction and

fusion. To investigate the effectiveness of the CAM attention

module, we generated heatmaps via channel activation to observe

the attention mechanism’s focus areas in disease images. Figure 9

compares heatmaps before and after incorporating the attention

module, with red indicating regions of primary focus, yellow as

secondary, and blue as redundant areas. It is evident that the model

exhibits higher activation values in diseased regions after

integrating the attention mechanism, indicating that the

attention mechanism improves the model’s focus on important

features while ignoring redundant areas, leading to more accurate

decision-making. The mAP increased by another 0.7% when CAM
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and AFF worked together, further confirming the CAM

module’s effectiveness. Finally, after adding the DTAH module,

the model achieved the highest performance metrics, with an

AP of 84.4%, R of 78.6%, mAP of 85.1%, and mAP@[.50:.95] of

58.3%. This indicates that the DTAH module enhances the

interaction between classification and localization tasks, thereby

improving the model’s detection performance. The line charts

visualizing the training process are shown in Supplementary

Figure S2, clearly illustrating that each improvement module

proposed in this study enhances YOLOv8’s performance in apple

leaf disease detection. Additionally, the final algorithm

demonstrates a noticeably faster convergence speed compared to

the baseline.
TABLE 4 Annotation names and quantities of apple diseases.

Baseline AFF CAM DTAH AP(%) R(%) mAP(%) mAP50-95(%)

✓ 79.3 75.3 82.3 56.1

✓ ✓ 83.9 76.1 83.7 56.7

✓ ✓ 83.0 76.9 83.2 56.5

✓ ✓ 82.5 76.6 84.0 56.7

✓ ✓ ✓ 83.9 78.3 84.4 57.1

✓ ✓ ✓ 81.7 78.0 84.5 57.4

✓ ✓ ✓ 83.8 77.1 84.1 56.8

✓ ✓ ✓ ✓ 84.4 78.6 85.1 58.3
FIGURE 9

Add CAM heatmaps comparison. (A) baseline; (B) Baseline + CAM.
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6.2 Comparison of experimental results

To evaluate the performance of our proposed YOLO-ACT

algorithm, this study compares it with several classic algorithms.

We utilized the same dataset, training settings, and evaluation

criteria across all models to ensure a fair comparison. The specific

comparison results are as follows: Table 5 presents the results of

various versions of the YOLO series algorithms. Table 6 shows the

mAP of eight different disease categories on the ALDD dataset for

the YOLO series algorithms.

The comparative experimental results indicate that after

incorporating the three improvement modules, our proposed

YOLO-ACT algorithm shows a trade-off in terms of parameter

count and frame rate but demonstrates significant advantages in

mAP and related metrics for apple leaf disease detection. Compared

to the baseline, our algorithm improved mAP by 2.8%, with increases

of 5.1%, 3.3%, and 2% in AP, R, and mAP50-95, respectively. Among

the compared algorithms, including YOLOv5s, YOLOv6s (Li et al.,

2022), YOLOv7-tiny (Wang et al., 2023), YOLOv8s, YOLOv9s

(Wang et al., 2024b), and YOLOv10s (Wang et al., 2024a), our

model achieved the highest mAP. Compared to the latest YOLOv10s,

our model’s mAP is 2.2% higher.

In this experiment, Mosaic and Powdery mildew are the most

complex categories, with all models showing suboptimal detection

accuracy, with the best mAP around 80%. This is due to their high
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intra-class variability: the colors can be light or dark, and the disease

symptoms do not follow traditional spot patterns. Additionally, the

high similarity between Alternaria leaf spot and Gray spot makes

them difficult to distinguish. On the other hand, the symptoms

caused by Rust and Apple scab are relatively consistent, and their

lesion shapes are distinct from other types, making them easier to

identify visually. Consequently, all models maintain high detection

accuracy for these diseases. Specifically, our model achieved the

highest detection accuracy in Alternaria leaf spot, Frog-eye leaf spot,

Gray spot, Powdery mildew, and Rust, with mAPs of 84.3%, 90.4%,

80.8%, 75.7%, and 92.0%, respectively. These results indicate that

the improvement modules (AFF, CAM, DTAH) introduced in our

model significantly enhance its feature extraction and fusion

capabilities, improving the model’s adaptability in handling

complex backgrounds and multi-scale objects. Moreover,

YOLOv5 performed well in distinguishing Apple scab, achieving a

95.5% mAP, while our model achieved over 90% accuracy in

detecting multiple diseases. Overall, our YOLO-ACT model not

only excels in detection accuracy but also demonstrates superior

robustness and adaptability, providing a more reliable and efficient

solution for disease detection in apple cultivation.

To further demonstrate the effectiveness of our algorithm in

apple leaf disease detection, we trained second-stage and

transformer advanced algorithms using the MMDetection

toolbox, with the results for each metric shown in Table 7.
TABLE 5 Comparison of detection results of YOLO series classic algorithms on ALDD.

Method AP(%) R(%) mAP(%) mAP50-95(%) Params(m) FPS

Yolov5s 83.6 76.4 79.1 54.2 7.1 103

Yolov6s 80.5 69.0 78.5 50.5 17.9 68

Yolov7-tini 74.8 73.4 76.6 46.8 6.0 112

Yolov9s 82.0 76.0 83.7 56.9 9.6 40

Yolov10s 81.1 76.3 82.9 54.2 8.1 94

Yolov8s 79.3 75.3 82.3 56.3 11.1 117

Ours 84.4 78.6 85.1 58.3 9.9 76
TABLE 6 mAP for eight disease categories on ALDD.

Label Yolov5s Yolov6s Yolov7-tini Yolov8s Yolov9s Yolov10s Ours

Als 80.6 71.7 82.7 78.5 83.6 79.8 84.3

Bs 72.3 83.4 65.8 83.1 87.2 87.6 86.9

Fls 87.0 82.8 87.6 89.9 89.2 89.4 90.4

Gs 74.5 74.8 80.8 76.2 79.3 79.9 80.8

M 69.1 73.9 80.4 80.0 81.1 78.4 78.6

Pm 64.6 68.1 64.2 72.1 75.5 74.0 75.7

R 89.1 87.6 90.5 89.9 91.8 88.0 92.0

S 95.5 86.0 61.2 89.0 82.3 85.8 92.3
The values in bold indicate the highest mAP achieved by each label across various models.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1451078
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1451078
Compared to the Dynamic Head (Dai et al., 2021), Cascade R-CNN

(Cai and Vasconcelos, 2018), Sparse R-CNN (Sun et al., 2021),

DAB-Detr (Liu et al., 2022), and Conditional Detr (Meng et al.,

2021) algorithms, our algorithm not only achieves the highest mAP

but also meets the requirements for mobile devices in terms of

parameter quantity and frame rate, making it suitable for mobile

devices. From the per-category mAP in Figure 10, our research

algorithm achieves the highest average precision in six categories:

Glomerella leaf spot, Frog eye leaf spot, Gray mold, Powdery

mildew, Rust, and Black spot. The other two categories also

perform well , demonstrating the effectiveness of our

research algorithm.
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The results clearly indicate that while our proposed algorithm is

less lightweight compared to other algorithms, it still meets the

requirements for real-time detection and excels in detection

capabilities, ranking first among all compared algorithms.

However, we observed a common pattern across all experimental

data: R is consistently lower than AP. This suggests that when

dealing with leaf disease data in complex backgrounds, the model

tends to ignore background interference and classify uncertain areas

as background to reduce false positives. Therefore, selecting results

with higher confidence is more advantageous for leaf disease

detection in complex backgrounds.
6.3 Visualization and discussion

Figure 11 illustrates the visual detection results of the latest

YOLO series algorithms on the ALDD dataset, compared with our

proposed algorithm and baseline models. The first three rows in

Figure 11 showcase the detection performance of YOLOv8s,

YOLOv9s, and YOLOv10s under complex background

conditions, while Figure 11D displays the performance of our

proposed algorithm under the same conditions. In the first

column, YOLOv8s and YOLOv9s exhibit significant missed

detections due to the tendency to overlook extremely small

targets in such complex backgrounds. The second column shows

that YOLOv10s also has missed detections, indicating variability in

detection performance across different diseases. In the third

column, strong lighting interferes with the models’ detection of
TABLE 7 Results of other advanced algorithms on ALDD.

Method AP(%) R(%) mAP
(%)

Params
(m)

FPS

Dyhead 61.1 40.7 61.3 38.9 30

Cascade R-CNN 77.9 60.2 77.8 69.4 66

Sparse R-CNN 78.1 59.6 78.1 42.4 35

DAB-Detr 78.8 66.4 78.8 43.7 19

Conditional
Detr

79.5 63.7 79.5 43.45 45

Ours 84.4 78.6 85.1 9.9 60
FIGURE 10

Comparison of mAP for eight disease categories identified by different algorithms.
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mosaic disease, with YOLOv8s and YOLOv9s showing better

detection results under these conditions. The fourth column

illustrates the detection results for powdery mildew, where all

models perform poorly. Specifically, YOLOv8s is misled by the

strong light, resulting in the misclassification of healthy leaves as

diseased. In the fifth column, lighting interference in the scab

disease areas causes other algorithms to miss the disease. This

highlights that complex backgrounds and lighting conditions

increase the demand for model generalization capabilities in

disease localization. However, YOLO-ACT can still make accurate

judgments under these conditions. In summary, YOLO-ACT

demonstrates superior performance in detecting apple leaf

diseases in natural environments, regardless of the interference

from complex surroundings or the difficulty in recognizing

disease characteristics.

Since this study focuses on the localization and classification of

diseases on leaves, healthy leaves without diseases were not included

in the training process. However, to evaluate the model’s
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performance on healthy leaves, we randomly selected 300 healthy

leaf images for testing. Among them, 233 images showed no

significant changes, indicating the absence of disease in the images,

as shown in Figure 12A. We classified these as correct results. In the

remaining 67 images where diseases were detected, three different

outcomes were observed. The first type of false detection, shown in

Figure 12B, occurred due to light reflections; even with very low

confidence level, the model still framed healthy areas. The second

type of false detection, illustrated in Figure 12C, involved the model

mistakenly identifying tangled petioles as disease areas. In the third

scenario, shown in Figure 12D, the model successfully identified the

main leaf in the image as a non-disease area, but it framed and

classified disease regions on other leaves in the background of the

image. We meticulously reviewed these images and discussed

the classification results with domain experts, manually assessing

the model’s classification outcomes. Correct classifications were

counted as correct results, while incorrect classifications were

considered false detections. Ultimately, the testing accuracy for
FIGURE 11

Visualization of detection results on ALDD. (A) YOLOv8s; (B) YOLOv9s; (C) YOLOv10s; (D) YOLO-ACT.
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these 300 healthy leaf images was 87.7%. Using the same approach to

test YOLOv8s yielded an accuracy of 83.7%, indicating that our

model has also improved its performance in distinguishing healthy

leaves compared to the baseline model.
7 Conclusion

In this study, we proposed an improved detection algorithm

named YOLO-ACT to enhance the accuracy of apple leaf disease

detection in complex backgrounds. We integrated the AFF cross-

layer feature fusion module and a small target detection layer into

the Neck of YOLOv8s, which improved the model’s ability to

extract features from small targets. The C2f module was replaced

with the CAM module featuring a cascaded attention mechanism,

which, in conjunction with AFF, significantly enhanced feature

fusion capabilities. The addition of the DTAH detection head

improved task interaction and alignment, leading to enhanced

model performance. On the ALDD dataset, our model achieved

an AP of 84.4%, a Recall of 78.6%, and an mAP of 85.1%,

outperforming YOLOv5s, YOLOv6s, YOLOv7-tiny, YOLOv8s,

YOLOv9s, and YOLOv10s, thus demonstrating its effectiveness.

The model’s parameter count is 9.9 m with a frame rate of 76

FPS, making it suitable for deployment on mobile platforms,

enabling intelligent perception, early warning, decision-making,
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analysis, and expert online guidance in agricultural environments.

However, some challenges remain; results indicate that lighting

significantly affects detection accuracy. While the improvements

enhanced mAP, they also led to a reduction in FPS. Future work will

aim to further improve detection capabilities for apple leaf diseases

while also focusing on model speed and size, with an exploration of

deployment on mobile devices.
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