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Submerged plants are an important part of aquatic ecosystems, and the

restoration of submerged plants is a key step in the reconstruction of aquatic

ecosystems. However, little is known about the role of modified sediments in

helping submerged plants recover under low light. In this study, we set up four

sediment types and two light intensities to explore the effects of modified

sediments on the growth of Vallisneria natans under two low light conditions.

The results showed that the independent and interactive effects of light intensity

and sediment type significantly affected the biomass, morphology,

photosynthetic pigment content and antioxidant enzyme activity of V. natans.

At 5% and 20% natural light intensity, the sediment modified with 40% peat soil

had a larger root biomass and the highest leaf and root C/N ratio, the sediment

modified with 40% vermiculite had a longer root length and more ramets. At 5%

natural light intensity, the sediments modified with fly ash had shorter root length

and smaller leaf biomass. The sediments modified with fly ash had the greatest

chlorophyll content at 20% natural light intensity. It can be concluded that the

addition of 40% peat soil or 40% vermiculite in sediment is conducive to the

growth of V. natans under low light conditions. Our study indicates the positive

effects of the modified sediment on the growth of V. natans under low light

conditions, and our study will provide a reference for the restoration of

submerged plants in aquatic ecosystems.
KEYWORDS

submerged plants , Val l i sner ia natans , modified sediment , low-l ight ,
vegetation reconstruction
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Introduction

In recent years, with the development of industry and

agriculture, people have discharged a large amount of pollutants

into the water body, resulting in the extinction of aquatic plants and

accelerating the degradation of the lake ecosystem (Abell et al.,

2019). Submerged plants are producers of aquatic ecosystems, and

they have an important impact on the structure and function of lake

ecosystems (Dhote and Dixit, 2009; Li et al., 2020a). At present, the

reconstruction of submerged plants in water bodies is an important

part of the prevention and control of lake eutrophication, which is

recognized by most scholars (Anda et al., 2016; Song et al., 2017;

Wang et al., 2019a). After the recovery of submerged plants, the rate

of nutrient cycling in the water body was reduced, and the

overgrowth of phytoplankton was controlled. Therefore, the

restoration of submerged plants is an important measure to

rebuild a healthy lake ecosystem (Su et al., 2019).

However, in heavily polluted water bodies, it is difficult for

submerged plants to survive and recover naturally (Zhu et al., 2016).

As the basis for the survival of submerged plants, lake sediments

provide various nutrients and inorganic elements for submerged

plants, but excessive sediment fertility may also become an

important factor limiting the growth of submerged plants (Xiao

et al., 2007). After being affected by wave disturbances, the

sediments will release pollutants and suspended particulate matter

into the water body again (Wang et al., 2024). The contents of

suspended particulate matter are the key factors affecting the

underwater light environment (Dong et al., 2021). Photosynthesis

is the most important metabolic activity of submerged plants, and

the weakening of light intensity is the main factor limiting the

growth and survival of submerged plants (Cao et al., 2019; Li et al.,

2023a). Therefore, reducing the pollution load in sediments and

improving the physicochemical conditions of sediments are the

basis for the restoration of submerged plants (Wang et al., 2022).

Sediment restoration technologies primarily consist of sediment

dredging, aeration, and chemical addition (Li et al., 2023b). However,

these methods often require significant manpower and material

resources, and they can also lead to secondary pollution (Zhong

et al., 2008). Therefore, more and more attention has been paid to the

in-situ improvement of sediments. Natural minerals such as

bentonite (Liu et al., 2021), zeolite (Yang et al., 2014), and

attapulgite (Yin and Kong, 2015) are common substrate

improvement materials, and environmental friendliness is a

common feature of these materials (Bai et al., 2022). Materials such

as attapulgite and calcite remodel the bacterial community structure

of sediments under iron-modified conditions and can affect the

microbial driven phosphorus cycling in sediments (Jin et al., 2023).

Bentonite and calcium peroxide modified with lanthanum can reduce

soluble iron in sediment pore water and enhance internal phosphorus

removal from sediments (Chen et al., 2024). The addition of biochar

to sediments promotes the growth of submerged plants (Li et al.,

2020b), while lanthanum-modified attapulgite combined with

Vallisneria natans can be used to fix phosphorus in various

sediments. The addition of these materials to the sediment

contributes to ecological restoration (Kong et al., 2024).
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Vermiculite is a product formed after high-temperature

calcination of natural minerals, with a special layered structure,

strong adsorption capacity and cation exchange capacity (Rama

et al., 2019). Peat soil is rich in organic matter, which can promote

plant growth and inhibit the migration of heavy metals in the soil

(Kumpiene et al., 2007; Wang et al., 2019b). Fly ash is a product of

burning pulverized coal in power station to generate electricity,

which can inhibit the uptake of arsenic and mercury by plants

(Sánchez et al., 2024). However, most of these materials are used in

the study of soil amendments, but their use as sediment

amendments to aid in the recovery of aquatic organisms is less

well known.

V. natans is a common submerged plant in freshwater

ecosystems, and it is often used for wetland and shallow lake

vegetation restoration due to its strong pollutant absorption

capacity and tolerance to low-light conditions. Due to its strong

fruiting ability, strong reproductive ability, and wide distribution, V.

natans often dominates the local aquatic ecosystem (Lin et al.,

2020). Therefore, V. natans was chosen for this experiment. In this

study, we set up four sediment types and two light intensities to

explore the effects of modified sediments on the growth of V. natans

under two low light conditions, in order to provide a scientific basis

for the ecological restoration of degraded aquatic ecosystems.
Materials and methods

Experimental design

The experiment was conducted from September 17 to

November 16, 2023 at the Datong Lake Sub-station of Dongting

Lake Wetland Ecosystem Research Station (N 29°12′7″, E 112°33′
28″). The sediment was collected from Datong Lake to remove

shells and larger impurities and bring it back to the laboratory. The

improved materials were peat soil, fly ash and vermiculite, and the

addition amount was 40% of the total volume. The total nitrogen,

total phosphorus and carbon content of the sediment were

determined after modification (Table 1).

The V. natans used in the experiment was purchased from a local

ecological company. In order to ensure the uniformity of the study, we

carefully selected healthy, intact, uniformly sized plants with no

offspring ramets for the experiment. The V. natans were

transplanted into a black bucket (opening diameter 20 cm, bottom

diameter 18 cm, height 23 cm), filled with 15 cm of modified sediment,

and then the black bucket was placed in a white bucket (diameter 110

cm, height 70 cm). The water depth was controlled at 60 cm and the

light intensity was controlled using a black shade net so that the

experiment was carried out under 5% natural light and 20% natural

light. Additionally, a transparent plastic canopy was erected above the

experimental setup to prevent rainwater ingress while allowing sunlight

penetration. There were eight treatment groups in the experiment

(Figure 1). Twenty replicates were set up for each treatment group, and

the experiment was carried out for a total of 60 days. Four replicates of

V. natanswere randomly collected from each treatment group every 12

days for analysis of morphological and physiological indicators.
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Determination of plant indicators
After each harvest, the first step was to wash the impurities from

the surface of the plant with water. Then, we used toilet paper to

remove excess water and proceeded to measure the plant height and

maximum root length, as well as record the number of clonal

ramets. Additionally, we weighed 0.1g of plant leaves and soaked

them in absolute ethanol for 48 hours in a lightless environment to

extract chlorophyll. After extraction, we measured the absorbance
Frontiers in Plant Science 03
at 645nm and 663nm wavelengths and used absolute ethanol as a

blank to calculate chlorophyll a (Chl a) and chlorophyll b (Chl b)

(Arnon, 1949).

And then, 0.5g of fresh plant leaves were placed in a pre-cooled

mortar, 1mL of pre-cooled phosphate buffer was added to the

mortar, 1mL of buffer was added after grinding in an ice bath, the

slurry was poured into a centrifugal test tube, the mortar was

washed with 2mL of buffer, and the remaining liquid was also

poured into the centrifuge tube. After all samples were grinded,

centrifuged at low temperature (0-4°C) for 20min (3000rpm), and

the supernatant was collected for the determination of the activities

of superoxide dismutase (SOD), peroxidase (POD) (Chen et al.,

2014) and catalase (CAT) (Asghari et al., 2013). Root vigor is

determined by measuring the amount of 2,3,5-triphenyltetrazolium

chloride (TTC) (Prajitha and Thoppil, 2017) present in the roots.

Finally, the leaves and roots of the plant were dried to a constant

mass (60°C, 48 h) and weighed for the determination of leaf

biomass, root biomass. The root/leaf ratio is calculated as the

ratio of root biomass to leaf biomass (Ma et al., 2021; Yang et al.,

2022). The samples of plants were ground into powder and filtered

through a 200-mesh sieve, and the carbon and nitrogen content of

plant leaves and roots, as well as sediments, was determined by an

elemental analyzer (Various MAX cube, Elementar, Germany), and

the C/N ratio of plant leaves and roots were also calculated. Due to

the small plant mass, several replicates of each treatment were

mixed to dry and grind, and three parallel samples were determined.

Sediments total phosphorus (TP) content was determined by the

HClO4-H2SO4 digestion-molybdenum antimony anti colorimetric

method (Parkinson and Allen, 1975).
FIGURE 1

Schematic diagram of the experimental design. LA, Lake sediment + 5%Natural light; LB, Lake sediment + 20%Natural light; PA, Lake sediment + 5%
Natural light + 40% Peat soil; PB, Lake sediment + 20%Natural light + 40% Peat soil; FA, Lake sediment + 5%Natural light + 40% Fly ash; FB, Lake
sediment + 20%Natural light + 40% Fly ash; VA, Lake sediment + 5%Natural light + 40% Vermiculite; VB, Lake sediment + 20%Natural light +
40% Vermiculite.
TABLE 1 Total nitrogen, total phosphorus and carbon content of the
modified sediments.

Indicator Group Mean ± SD

TN(mg/kg) Lake sediment (L) 1340 ± 69.28

Lake sediment + 40% Peat soil (P) 1640 ± 121.24

Lake sediment + 40% Fly ash (F) 1113.33 ± 32.15

Lake sediment + 40% Vermiculite (V) 1456.67 ± 20.82

TP(mg/kg) Lake sediment (L) 695 ± 52.27

Lake sediment + 40% Peat soil (P) 652.33 ± 18.62

Lake sediment + 40% Fly ash (F) 878.5 ± 46.59

Lake sediment + 40% Vermiculite (V) 768.67 ± 26.57

C(%) Lake sediment (L) 2.41 ± 0.31

Lake sediment + 40% Peat soil (P) 2.79 ± 0.2

Lake sediment + 40% Fly ash (F) 3.9 ± 0.01

Lake sediment + 40% Vermiculite (V) 2.16 ± 0.02
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Statistical analysis

SPSS 27.0 software was used for data analysis, and three-way

analysis of variance (ANOVA) was used to test the interactive and

independent effects of time (T), light intensity (L) and sediment

type (S) on the morphology, reproductive strategy and physiological

characteristics of V. natans. The LSD method was used to compare

the differences between different treatments. Before ANOVA, the

data that do not satisfy the normal distribution and homogeneity of

variance are transformed by square root, Ln and Box-Cox. Pearson

correlation analysis was used to correlate the indicators of V.

natans. The data images were plotted using Origin2022 software.
Results

Changes in biomass and reproductive
strategies indicators of V. natans

The biomass ofV. natans under different treatments increased with

time. At 60 days, there was a significant difference in leaf biomass under

different light treatments, and the leaf biomass of 20% light treatment

was 79.1% higher than that of 5% light treatment (Figure 2A). The

interaction of time and light intensity had a significant effect on leaf

biomass (Table 2). There was a significant difference in root biomass

under 20% light treatment at 48 days (P<0.05), the root biomass of the

treatment with peat soil was 133.2% higher than that of the control

group, and at the 60th day (Figure 2B). The interaction of light intensity

and sediment had a significant effect on root biomass (Table 2). At 60

days, there was a significant difference in the total biomass under

different light treatments (P<0.05), and the total biomass of 20% light

treatment was 85.4% higher than that of 5% light treatment

(Figure 2C). The interaction of time and light intensity had a

significant effect on total biomass (Table 2).

With the increase of experimental time, the root/leaf ratio of the

four groups under 5% light treatment showed a decreasing trend. At

day 60, the root/leaf ratio of peat soil was significantly higher than

that of the control group under the same light conditions

(Figure 2D). The interaction of time and light intensity had a

significant effect on root/leaf ratio, the interaction of light intensity

and sediment had a significant effect on root/leaf ratio (Table 2).

On the 12th day, the number of clonal ramets increased faster

with the 20% light treatment, and at the 60th day, there was a

significant difference in the number of clonal ramets with different

light treatments (P<0.05), and the number of clonal ramets with

20% light treatment was 114.5% higher than that under 5% light

treatment (Figure 2E).
Changes in morphological indicators of
V. natans

The plant height and root length under different treatments

increased with time. At the beginning of the experiment, the 20%

light treatment had a higher plant height than the 5% light
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treatment on day 12. But with increasing time, the plant height

growth rate of the 5% light treatment was greater than that of the

20% light treatment. On the 60th day, the plant height of 5% light

treatment was 32.8% and 25.2% higher than that of 20% light

treatment, respectively (Figure 3A). The interaction of time and

light intensity had a significant effect on plant height (P<0.001), the

interaction of light intensity and sediment had a significant effect on

plant height, and the interaction of time, light intensity and

sediment had a significant effect on plant height (Table 3).

On the 60th day, the root length of vermiculite treatment was

the largest under 5% light, and there was a significant difference

between vermiculite treatment and control group (P<0.05), which

was 36.1% higher than that of control group (Figure 3B). The

interaction of time, light intensity and sediment had a significant

effect on root length (Table 3).
Changes in chlorophyll indicators of
V. natans

The chlorophyll (a+b) of different light treatments had different

trends, the 5% light treatment had an increasing trend, which

increased by 26.7% on the 60th day compared with the 12th day,

while the 20% light treatment had a decreasing trend, and the 60th

day decreased by 38% compared with the 12th day. At day 60, there

was a significant difference in chlorophyll (a+b) between different

light treatments (P<0.05), and chlorophyll (a+b) was 98.7% higher

in 5% light treatment than in 20% light treatment. The trend of

chlorophyll a and chlorophyll b was similar to that of chlorophyll

(a+b) (Figures 4A–C). The interaction of light intensity and

sediment had a significant effect on chlorophyll indexes, and the

interaction of time, light intensity and sediment had a significant

effect on chlorophyll a (Table 3).
Changes in C/N ratio and root vigor of
V. natans

The C/N ratio of leaves in the peat soil treatment group under

20% light showed an upward trend, the C/N ratio of leaves in the

20% light treatment group was 39.8% higher than that of the control

group at 60 days. The C/N ratio of leaves in the fly ash treatment

group under 20% light showed a decreasing trend, the C/N ratio of

leaves in the fly ash treatment group under 20% light was 31.7%

lower than that of the control group at 60 days and there was a

significant difference (Figure 5A). The interaction of light intensity

and sediment type had a significant effect on the C/N ratio of leaves

and roots (Table 3).

The C/N ratio of roots in the peat soil treatment group showed

an upward trend. On the 36th day, the C/N ratio of roots in the peat

soil treatment group was significantly different from that of the

control group under 5% and 20% light, and increased to the

maximum value on the 60th day, which was 66% and 80% higher

than that of the control group, respectively (Figure 5B). The

interaction of light intensity and sediment type had a significant

effect on the C/N ratio of roots (Table 3).
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The root vigor of the fly ash treatment group under 5% light was

always at a high level and was significantly different from that of the

control group (P<0.05), while the root vigor of the peat soil and fly

ash treatment group under 20% light was more unstable

(Figure 5C). The interaction of time and sediment type had a

significant effect on root vigor (Table 3).
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Changes in physiological indexes of
V. natans

On the 24th day after the start of the experiment, the SOD

content in plant leaves in all treatment groups began to increase,

and the SOD content of plant leaves in 20% light treatment was
TABLE 2 F-value and significance of three-way analysis of variance (ANOVA) results for the effects of Time (T), Light intensity (L) and Sediment type
(S) on measures of biomass and reproductive strategies of V. natans.

T L S T*L T*S L*S T*L*S

F P F P F P F P F P F P F P

Total biomass 119.473 <0.001 99.361 <0.001 7.187 <0.001 15.880 <0.001 0.964 0.487 2.665 0.051 0.569 0.864

Leaf biomass 132.941 <0.001 100.402 <0.001 6.874 <0.001 14.437 <0.001 0.763 0.687 1.959 0.124 0.637 0.807

Root biomass 42.458 <0.001 64.998 <0.001 15.557 <0.001 17.203 <0.001 4.502 <0.001 10.614 <0.001 1.360 0.195

Root/leaf ratio 9.019 <0.001 0.284 0.595 6.132 <0.001 6.992 <0.001 1.384 0.183 4.080 0.008 0.606 0.833

Number of clonal ramets 162.720 <0.001 223.948 <0.001 17.509 <0.001 31.687 <0.001 1.956 0.034 1.551 0.205 1.624 0.094
frontier
Significant P-values are presented in bold.
FIGURE 2

Changes in leaf biomass (A), root biomass (B), total biomass (C), root/leaf ratio (D) and number of clonalramets (E) in different treatment groups
during the experiment. Different letters represent significant differences (P<0.05).
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24.1% higher than that in 5% light treatment (Figure 6A). The

interaction of time, light intensity and sediment type had a

significant effect on SOD (Table 3).

Contrary to the trend of SOD in plant leaves, from the 24th day

of the experiment, the POD content in plant leaves in all treatment

groups had a decreasing trend, and the POD content in plant leaves

treated with 20% light treatment was 29.7% lower than that in 5%

light treatment (Figure 6B).

There was no obvious change trend of CAT content in plant

leaves between different treatment groups, and the CAT content in

plant leaves treated with 5% light treatment was 26.7% higher than

that in 20% light treatment during the whole experiment, and the

difference in CAT content between groups was not significant and

statistically significant (Figure 6C).
Pearson correlation analysis of indicators
of V. natans

The biomass of V. natans had a significant positive

correlation with number of clonal ramets, leaf C/N ratio and

SOD, while the biomass of V. natans had a significant negative

correlation with chlorophyll (a+b) and plant height (Figure 7).

Plant height was significantly positively correlated with root

length and chlorophyll (a+b). The content of SOD was

significantly positively correlated with the number of clonal

ramets and leaf C/N (Figure 7).
Discussion

In this experiment, V. natans showed a series of responses to the

reduction of light intensity, including changes in biomass, number

of clonal ramets, plant height, and chlorophyll. And these response

differences gradually increased between different treatment groups
Frontiers in Plant Science 06
over time. V. natans is a common submerged plant in the middle

and lower reaches of the Yangtze River, it has a strong adaptability

to environmental changes, its growth strategy often changes with

the change of environment (Zhang et al., 2020), it has a rosette-type

base, disperses in the sediment through oblique stolons and spreads

horizontally above the ground (Xiao et al., 2006), so it has a strong

tolerance to low light (Yu et al., 2016). When the light intensity does

not reach the compensation point for plant growth, submerged

plants adapt to changes in the environment by changing their

growth patterns, such as increasing plant height, chlorophyll and

decreasing fresh weight (Chou et al., 2022). As the experiment time

increases and the light intensity decreases from 20% to 5%, the root

biomass, leaf biomass and ramets of V. natans decreased, while the

plant height and chlorophyll increased, so that more light energy

could be obtained under low light conditions. Submerged plants can

absorb most of the mineral nutrients from the sediment through

their roots. Studies have shown that fertile sediments stimulate

plant growth (Zhu et al., 2012), but too much nutrients in sediments

can also have direct or indirect negative effects on the growth of

submerged plants (Xu et al., 2016). In this experiment, the root

biomass and root length of V. natans were different among different

sediment types, with greater root biomass and root/leaf ratio in the

peat soil treatment group, smaller root length in the fly ash

treatment group, and larger root length in the vermiculite

treatment group. Some studies have found that the reason for the

decrease in root length may be that the nutrient concentration of

the sediment is sufficient for the growth of submerged plants and

does not require too much root development of plants (Wang et al.,

2023a). And the increase in root length is due to the addition of

vermiculite that makes the sediment loose, thereby promoting the

root growth of submerged plants (Wang et al., 2023b).

The difference in chlorophyll content between different light

treatment groups gradually increased with the increase of

experimental duration. Chlorophyll is the most important

pigment for photosynthesis of submerged plants (Yan et al.,
FIGURE 3

Changes in plant height (A) and root length (B) in different treatment groups during the experiment. Different letters represent significant
differences (P<0.05).
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2023), the content of chlorophyll in plant leaves reflects the

photosynthetic capacity and growth status of plants, the main

function of chlorophyll a is to convert light energy into electrical

energy for electron transfer, and finally into chemical energy,

chlorophyll b is the main component of plant photosynthetic

pigment system (Anderson and Aro, 1994). In this experiment,

when the light intensity was reduced from 20% to 5%, both

chlorophyll a and chlorophyll b increased significantly, and the
Frontiers in Plant Science 07
chlorophyll a and chlorophyll b in the 5% light treatment group

were 97.6% and 107.7% higher than those in the 20% light

treatment group, respectively, indicating that V. natans responded

to low light stress by increasing the content of photosynthetic

pigments and the efficiency of photosynthesis. Under the same

light intensity, the chlorophyll content of the peat soil treatment

group was lower, combined with the high root/leaf ratio of this

treatment group, it can be inferred that the lack of essential
TABLE 3 F-value and significance of three-way analysis of variance (ANOVA) results for the effects of Time (T), Light intensity (L) and Sediment type
(S) on measures of morphology and physiology V. natans.

T L S T*L T*S L*S T*L*S

F P F P F P F P F P F P F P

Height 173.551 <0.001 37.012 <0.001 11.565 <0.001 22.297 <0.001 1.435 0.159 3.851 0.011 2.443 0.007

Root length 68.942 <0.001 15.778 <0.001 38.418 <0.001 4.908 0.001 2.399 0.008 1.098 0.353 2.634 0.004

Chl(a+b) 0.723 0.578 188.631 <0.001 18.230 <0.001 25.266 <0.001 2.957 0.001 9.884 <0.001 1.660 0.084

Chla 0.578 0.679 179.435 <0.001 19.352 <0.001 28.857 <0.001 3.364 <0.001 10.340 <0.001 1.861 0.046

Chlb 11.785 <0.001 184.213 <0.001 14.030 <0.001 16.867 <0.001 2.363 0.009 7.853 <0.001 1.402 0.174

Leaf C/N 10218.9 <0.001 28722.6 <0.001 8391.3 <0.001 4955 <0.001 2754.2 <0.001 5575.9 <0.001 1355 <0.001

Root C/N 327.3 <0.001 262.6 <0.001 947.5 <0.001 160.5 <0.001 186.2 <0.001 283.8 <0.001 28.4 <0.001

TTC 0.958 0.434 0.757 0.386 5.529 0.001 1.542 0.208 2.027 0.028 2.408 0.071 0.951 0.485

SOD 85.166 <0.001 52.793 <0.001 2.648 0.052 11.563 <0.001 2.265 0.013 0.936 0.426 1.885 0.043

POD 47.687 <0.001 29.215 <0.001 4.830 0.003 2.271 0.066 1.723 0.070 1.189 0.317 0.837 0.612

CAT 0.772 0.545 4.849 0.030 3.060 0.031 1.821 0.129 1.078 0.384 0.587 0.625 1.593 0.102
frontie
Significant P-values are presented in bold.
FIGURE 4

Changes in Chl(a+b) (A), Chla (B) and Chlb (C) in different treatment groups during the experiment. Different letters represent significant
differences (P<0.05).
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FIGURE 6

Changes in superoxide dismutase (SOD) (A), peroxidase (POD) (B) and catalase (CAT) (C) contents of V. natans leaves in different treatment groups.
Different letters represent significant differences (P<0.05).
FIGURE 5

Changes in leaf C/N ratio (A), root C/N ratio (B) and root vigor (TTC) (C) in different treatment groups during the experiment. Different letters represent
significant differences (P<0.05).
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substances for chlorophyll synthesis in the sediment makes the

plants prioritize the root development to obtain sufficient nutrients.

Due to the addition of different amendments to the sediment,

some of the corresponding indicators of V. natans also changed

with the addition of different amendments. Nitrogen is one of the

most important elements for plant growth, and insufficient or

excessive nitrogen will affect the synthesis of photosynthetic

pigments and the imbalance of carbon and nitrogen metabolism,

thus further limiting the growth of plants (Shi et al., 2020). Under

the combined effect of low light and high nutrients, submerged

plants may have relevant reactions such as changes in carbon and

nitrogen ratio and oxidative stress (Cronin and Lodge, 2003; Zhang

et al., 2010). In this experiment, the difference between leaf C/N

ratio and root C/N ratio was small under different light treatments,

while the difference between leaf C/N ratio and root C/N ratio was

large under different sediment treatments. And the difference

between the peat soil treatment group and the control group

gradually increased with the increase of time. The results showed

that although the total nitrogen content in the peat soil treatment

group was the highest, the sediment in the peat soil treatment group

lacked nitrogen due to the non-decomposition of nitrogen-

containing substances, which led to the restriction of plant

growth, resulting in the phenomenon of large plant root biomass

and yellowing of leaves in the peat soil treatment group. Root vigor

is an important indicator to reflect the root status of submerged

plants, which can not only represent the growth status of plant

roots, but also reflect the stress resistance of plants (Liu et al., 2020).

In this experiment, different light intensities did not have a great

effect on root vigor, while the root vigor of plants treated with

different sediment types was quite different. At 20% light intensity,

the root vigor of the fly ash treatment was very high, and there were
Frontiers in Plant Science 09
significant differences between the control group on day 24 and day

36, and then slowly decreased, indicating that the plants may be

slowly adapting to the sediment environment brought by fly ash.

The root vigor of the treatment group using vermiculite was at a low

level under the two types of light, indicating that vermiculite could

provide a more suitable sediment environment for the root

development of V. natans. Through this experiment, it can be

inferred from the correlation of V. natans indicators that the

content of carbon and nitrogen in sediments may affect the C/N

ratio of plant tissues, thereby changing the biomass of plants under

low light, so that plants can better adapt to low light environment.

The three antioxidant enzymes (Zhou et al., 2019), SOD, POD and

CAT, play a key role in plant growth (Zhu et al., 2020), and changes in

antioxidant enzymes can also reflect whether plants are subject to

growth stress (Li et al., 2022). On the 12th day of this experiment, the

SOD activity of the 5% light treatment group was significantly lower

than that of the 20% light treatment group, and there was no significant

difference in the SOD activity of the two light treatments with the

increase of experimental time, indicating that at the beginning of the

experiment, the 20% light treatment group was under greater stress, but

with the increase of time, different treatment groups adapted to the

environment. In this experiment, the POD activity of 5% light

treatment was higher than that of 20% light treatment, but the

difference was not significant, and the POD activity of all treatment

groups decreased with the increase of experimental time, indicating

that different treatment groups were gradually able to adapt to the new

environment during the growth process. The CAT content of the fly

ash treatment group was always at a low level. The difference between

different light treatment groups was not significant, which was

consistent with the changes of SOD activity and POD activity,

indicating that 5% light intensity and 20% light intensity had little
FIGURE 7

Pearson correlation analysis of indicators of V. natans.
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effect on the antioxidant enzyme activity of V. natans. Time, as an

important factor in plant growth, plays an irreplaceable role, and

experiments in different periods or durations will have different results.

In this experiment, the changes in the various indicators of the V.

natans were mainly due to the change of time.
Conclusion

The growth status and physiological characteristics of V. natans

were significantly affected by the independent and comprehensive

effects of time, light intensity, and sediment type. As light intensity

decreases, V. natans adapted to environmental changes by adjusting

its morphological and physiological characteristics, such as

reducing the number of clonal ramets, decreasing the root/leaf

ratio, increasing the photosynthetic pigment content and plant

height. Different sediment types also affected the morphology and

physiology of V. natans. Under low light intensity and extremely

low light intensity, the sediment modified with peat soil had a larger

root biomass and a higher leaf and root C/N ratio, the sediment

modified with vermiculite had a longer root length and more

ramets. Under extremely low light intensity, the sediments

modified with fly ash had shorter root length and smaller leaf

biomass. Under low light intensity, the sediments modified with fly

ash had greater chlorophyll content. This study demonstrates that

incorporating peat soil, fly ash, and vermiculite into sediment under

low light stress alters its physical and chemical properties. These

amendments potentially facilitate the growth of the submerged

plant V. natans. Therefore, this study further clarified the role of

modified sediments in ecological restoration projects, which is of

great significance for the restoration of submerged plants and good

management of aquatic ecosystems.
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