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UAV image acquisition and deep learning techniques have been widely used in field

hydrological monitoring to meet the increasing data volume demand and refined

quality. However, manual parameter training requires trial-and-error costs (T&E), and

existing auto-trainings adapt to simple datasets and network structures, which is low

practicality in unstructured environments, e.g., dry thermal valley environment (DTV).

Therefore, this research combined a transfer learning (MTPI, maximum transfer

potential index method) and an RL (the MTSA reinforcement learning, Multi-

Thompson Sampling Algorithm) in dataset auto-augmentation and networks auto-

training to reduce human experience and T&E. Firstly, to maximize the iteration speed

andminimize the dataset consumption, the best iteration conditions (MTPI conditions)

were derivedwith the improvedMTPImethod, which shows that subsequent iterations

required only 2.30% dataset and 6.31% time cost. Then, theMTSAwas improved under

MTPI conditions (MTSA-MTPI) to auto-augmented datasets, and the results showed a

16.0% improvement in accuracy (human error) and a 20.9% reduction in standard error

(T&E cost). Finally, theMTPI-MTSAwas used for four networks auto-training (e.g., FCN,

Seg-Net, U-Net, and Seg-Res-Net 50) and showed that the best Seg-Res-Net 50

gained 95.2% WPA (accuracy) and 90.9%WIoU. This study provided an effective auto-

training method for complex vegetation information collection, which provides a

reference for reducing the manual intervention of deep learning.
KEYWORDS

vegetation detection, segmentation deep learning, network training automatic, data
augmentation automatic, reinforcement learning for DL, auto-DL method
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Highlights
Fron
• The MTPI method was improved to auto gain best transfer

learning conditions.

• A reinforcement learning algorithm under MTPI (MTPI-

MTSA) was proposed for dataset auto-augmented.

• Four deep vegetation detection networks were auto-trained

with the MTPI-MTSA.
1 Introduction

Vegetation detection with DL (deep learning) in field UAVS

[Unmanned Aerial Vehicle System(s)] images is an important

fundamental technology, which has been widely used in regional

hydrological information monitoring (Ang and Seng, 2021; Yang

et al., 2022). Although (DL) networks, simulating animal neural

structures [e.g., human or mammalian visual systems (Hassabis

et al., 2017)], can accurately extract image features for (semantic)

segmentation after training iterations, the training process may

require lots of human experience and T&E cost (Li et al., 2020). In

particular, those vegetation detection networks in unstructured

environments [e.g., DTV (dry thermal valley)], which have

numerous network layers, complex structures, convolutional

kernels, and weighting/bias values (Saleem et al., 2021;

Gentilhomme et al., 2023). Therefore, many scholars have been

focusing on the DL practicality and effectiveness, such as network

structure improvement (Lin et al., 2023; Liu et al., 2023; Towfek and

Khodadadi, 2023), data improvement (Salcedo-Sanz et al., 2020;

Kamarudin et al., 2021; Li et al., 2021), and operation methods (Al-

Hyari and Abu-Faraj, 2022).

The network structure determines the functional

implementation and affects the overall feature extraction ability,

generalization ability, computational efficiency, and parameter

number (Niu et al., 2021). So, network optimization enhances the

network accuracy, improves the training effect, reduces the training

iterations, and reduces the labor experience and T&E costs in

training process (Shrestha and Mahmood, 2019). For example,

Ouyang, S. (Ouyang et al., 2024) developed an LSBP-net

structure, which incorporated a U-Net structure to reduce the

vegetation influence on the lithological spectral characteristics of

optical remote sensing, and the result showed a 13.94% accuracy

improvement. Zhao, S.Y. (Zhao et al., 2021), Wang, P. (Wang et al.,

2021) and Yang, L. (Yang et al., 2023) pointed out that adding an

attention mechanism, which mimics a human vision or cognitive

focus, can enhance network performance. The attention

mechanisms might enhance the network performance by

increasing the task-related information weight through selective

reinforcement mechanisms (Ni et al., 2023). In addition, LSTM

(Long Short-Term Memory) structure that mimics biological

memory (Xia et al., 2020; Chen X. et al., 2023), PPM (Pyramid

Pooling Module) structure (Lu et al., 2021; Pu et al., 2022), and AE

(autoencoder or Self-Encoder) structure (Yang et al., 2019; Yu et al.,

2023) are also common methods, when they reduce the gradient

vanishing problem and improve the training effect by improving the

patterns and information transmission pathways (Hu et al., 2022).
tiers in Plant Science 02
However, optimizing the network structure still requires a great deal

of human experience and T&E (Xu et al., 2023) in complex field

environmental dataset conditions.

On the other hand, the data improvement can increase the

network training rate, thus it can increase the validity of the dataset

to improve the network accuracy (Nikolados et al., 2022) and reduce

the time consumption (Garcıá et al., 2016). Firstly, a higher validity

dataset can make it easier for the network to learn the desired

features, and secondly, a valid dataset can reduce the dataset size

(Ali et al., 2021), which reduces the DL training time (Rosende et al.,

2023). However, when in unstructured environments, many

researchers fusing on multiple data sources (Gao et al., 2020) in

nowadays. Including the multi-scale same data type (Garcıá et al.,

2016), multi-source data in the same form (Ding et al., 2022), and

multiple data (Wang Y. et al., 2020). For example, Wei, D. P.

(Weit et al., 2022) and Marzougui, A. (Marzougui et al., 2023) used

multi-scale images to detect the vegetation health status, and the

fusion scale method showed better performance than the traditional

detection. Similarly, DL is available for fusion of different data

sources, e.g., Mu, C. H. (Mu et al., 2020) used fused information

from imagery and hyperspectral data, Maimaitijiang, M. (Fritschi,

2020) used fused satellite and UAV data, and Kang and Wang (Kang

and Wang, 2023) used fusion multispectral and SAR (Synthetic

Aperture Radar) data. In addition, DL for fusing multimodal

methods is also rapidly developing field in recent years, e.g.,

Patil, R. R. (Patil. and Kumar, 2022) proposed a CNN network

fusing meteorological and image data, Nasir, I. M. (Nasir et al., 2021)

proposed a VGG 19 fusing temperature, wind speed acquired by IoT

(Internet of Things), and image information, and Zheng, W. Q.

(Zheng et al., 2022) proposed a Point-Net with RGB (Red/Green/

Blue) images and LiDAR (Light Detection and Ranging) data.

Although data fusion methods complement the network features in

different dimensions to improve their performance, the data

accumulation process and the data validity verification process

require a lot of T&E cost and human experience.

The DL automated method implementation represents an

effective approach to reducing T&E cost, and human experience.

For example, the auto-PyTorch framework introduced by Zimmer, L.

(Zimmer et al., 2021), the cloud auto-ML (automated Machine

Learning) platform introduced by Santu, S. K. (Santu et al., 2021),

and the auto-CVE system introduced by David, R. (Reyer, 2022) have

been identified as effective development platforms that shorten

training time, and reduced T&E. But, the simplicity necessity and

performance requirements of platform constrain the DL flexibility

and efficacy in complex vegetation environments. In addition, auto-

DL based on intelligent algorithms could be an effective approach

with minimal human intervention and T&E costs, as exemplified by

the genetic algorithm proposed by Srivastava, A. (Srivastava et al.,

2021), and Xiao, X. L. (Xiao et al., 2020). Furthermore, the swarm

algorithm (Yeh et al., 2021), auto-stopping genetic algorithm (Montes

et al., 2023), and evolutionary algorithm (Al-Hyari and Abu-Faraj,

2022) can be employed to reduce the necessity for human

intervention and T&E. However, these existing auto methods

involve relatively simple network structures and datasets (need to

improve the practicality of those auto methods), for instance, Sun, Y.

(Sun et al., 2020) designed an auto method for 10-layer networks. In
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conclusion, his study has proposed an automated training process for

dataset augmentation and deep vegetation detection networks using

transfer learning (Chen Y. et al., 2023) and reinforcement learning

algorithms. Even in the complex vegetation of DTV, the proposed

auto-training method requires no human intervention, ensuring

network versatility and practicality.
2 Materials

2.1 Data collection and dataset

Data collection was carried out in June 2021 near Qiaojia County,

Yunnan Province, China (east 102° 53’ 11”, north 11° 9’ 10”, as

Figure 1A), on a sunny, windless day, with steady humidity and

barometric pressure. A small consumer-level 4-rotor UAVS,

Phantom 4 v2 (DJI Innovation Technology Co., Shenzhen, China,

as shown in Figure 1B), was used for the data collection. The CMOS

(Complementary Metal Oxide Semiconductor) sensor of the UAVS

camera is 4800×6400 p² (pixels×pixels), the lens is 3.5 mm and the

image resolution is 43.4 mm². During image acquisition, the UAV

flight altitude was 200 m, and the control mode was automatic

control + manual model. The data collection consisted of 300 images

with random occurrences in each image including mountains,

buildings, water, trees, shrubs, grass, and sand.

During data collection, the UAV was operated by path planning

and automatic flight control, and the remote-control system was an

Android smartphone (HUAWEI P20 PRO, Huawei, Shenzhen,

China) + DJI Pilot APP. The remote control was equipped with

an “ON/OFF” switch, which could be switched to a manual remote

controller + human judgment in the case of emergencies

(encountering bird flying objects or high-altitude obstacles).

Table 1 shows the parameters set by the UAV system during data

acquisition, including positioning accuracy, UAV parameters, and

camera parameters (RGB camera).

All the 300 UAV-acquired field images were split into 30,000

subregions of size 250×250 p2, noted as imi, (i = 1, 2,…,M); M =
Frontiers in Plant Science 03
30, 000. The image content consists of various vegetated and non-

vegetated elements including four categories, TR (Tree Region), SR

(Shrub Region), GR (Grass Region), and NVR (Non-Vegetation

Region), where the NVR may appear as buildings, water, roads,

rocky, sandy, etc. The pixel regions of the dataset samples were

manually labeled to distinguish different classes, such as TR (blue,

(0,0,255), meaning RGB= (0,0,255), RGB means Red/Green/Blue

channel values), SR [green, (0,255,0)], GR [red, (255,0,0)], and NVR

[magenta, (255,0,255)], notated as labi, (i   =   1, 2,…,M). All the

obtained image examples imi and labels mapping labi were

correspondingly combined into a dataset (D, D   = imi, labif g),
and Figure 2 shows several random samples of imi in D. The data

in D was randomly divided into three parts (rounding up to the

nearest integer) by 6:2:2 for networks training, validation, and

testing, denoted as the training set (TD), validating set (VD), and

testing set (SD).
2.2 The four deep networks and five
evaluating parameters

Figure 3 gives the four common deep network structures used in

this study, including Seg-Net (He et al., 2015; Badrinarayanan et al.,

2017), FCN (Long et al., 2015), U-Net (Ronneberger et al., 2015),

and Seg-Res-Net 50 (He et al., 2016; Chen et al., 2018) (the resnet 50

for segmentation). Among them, FCN is a (semantic) segmentation

network with a full convolutional structure proposed by Long, J.,

which is fast and has less memory consumption. The Seg-Net is a

convolutional neural network with encoder-decoder structures,

which provides high resolution and detail preservation capability

when processing large-scale images or increasing the layer depth.

The U-Net is a network structure with U-shape down-sampling and

up-sampling, which is simple and effective. The Seg-Res-Net 50

(Chen et al., 2018) is a high accuracy and few parameters

segmentation network using residual blocks, obtained by further

modification of the classified Res-Net 50 (Mandal et al., 2021).

Compared with the Res-Net 50, it contains additional components
ba

FIGURE 1

Data collection site in map and the UAVS. (A) the data collection environment (region marked by red rectangle). (B) the Phantom 4 v2 UAV.
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used to implement pixel processing capabilities, such as the inverse

convolution part and the jump-joining part in Figure 3D.

In this study, the runtime environment used to construct, train,

optimize and evaluate the network was MATLAB 2023b, running on

a PC with Win10, equipped with a 24GB NVIDIA GeForce RTX

4090 GPU (graphics card) (12GHz), a 12th generation Intel (R) Core
Frontiers in Plant Science 04
(TM) i5-12600KF CPU (3.70 GHz) and 64GB DDR4

RAM (3600MHz).

To evaluate the performance of the four networks, five

parameters were evaluated in this study, including WPA

(Weighted Pixel Accuracy), WPP (Weighted Pixel Precision),

WPR (Weighted Pixel Recall), WPF1 (Weighted Pixel F1 Score),

and WIoU (Weighted Intersection over Union). Among them,

WPA characterizes the totally correctness effect of pixel detection,

as shown in (Equation 1).

WPA =oC
i=1(pi � acci)

= 1=CoC
i=1pi � (TPi + TNi)=(TPi + FPi + TNi + FNi) (1)

Where, i is the type of vegetation and i  =  1, 2,…,C (C=4). TPi is

the number of true positive pixels, TNi is the number of true negative

pixels, FPi is the number of false positive pixels, and FNi is the number

of false negative pixels. pi is the probability that the i-th planted pixel

accounts for the overall dataset images as shown in (Equation 2).

pi =oM
i=1j Ccf gji=oC

j=1oM
i=1j Ccf gji (2)

when j Ccf gji means the total number of pixel eligible for the i-

th image in the dataset (e.g., dataset D). j means the j-th vegetation

types (C= 4). The WPP characterizes the correctness effect of pixel

detection, as shown in (Equation 3).

WPP =oC
i=1(pi � precisioni)

= 1=CoC
i=1   pi � (TPi)=(TPi + FPi) (3)

The WPR characterizes the ability of networks to find all

positive pixels, as (Equation 4).
a b                           c                                          d

FIGURE 2

Several sample images. (A) random samples of pure GR. (B) pure SR. (C) pure TR. (D) pure NVR.
TABLE 1 The parameters of UAVS for data acquisition.

UAVS Phantom 4 v2

Lens FOV 84

Equivalent focal length 35 mm

Positioning mode GPS/GLONASS

Vertical positioning accuracy ± 0.1 m

Horizontal positioning accuracy ± 0.3 m

Image acquisition mode no hover shooting

Resolution of location Less than 50 mm

Flight altitude <500 m

Flight speed 6 m/s

Aperture f/2.8–f/11

Camera model FCS400

Shutter 1/2000

Resolution 4800 × 6400

ISO range 100–12,800

Photo format JPEG/DNG*
*Only JPEG was used in this study.
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WPR =oC
i=1(pi � recalli) =oC

i=1   pi � TPi=(TPi + TNi) (4)

And the WPF1 is the harmonic mean of precision and recall

(0 ≤ WF1 ≤ 1), with higher values showing better method
Frontiers in Plant Science 05
performance. When the precision and recall of the method are both

high, the WF1 achieves a maximum value of 1. Therefore, theWF1 is a

metric thatcombines theprecisionandrecallofnetworksandcanbeused

to evaluate the overall network performance, expressed as (Equation 5).
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FIGURE 3

The four deep networks for vegetation detection in DTV. (A) The structure of FCN. (B) The structure of Seg-Net. (C) The structure of U-Net. (D) The
structure of Seg-Res-Net 50. (E) Legends of networks. The size of each network layer in networks was labeled as (N2, C) or (N, N, C), where the
(N2, C) means the layer filter size equivalent to N×N×C. The C is the convolution layer, DC means the deconvolution layer, MP denotes the max
pooling layer, B denotes the batch normalization layer, S is the SoftMax layer, R is the relu activation layer, and Re means the resize or scaling layer.
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WPF1 = 2oC
i=1   pi � (precisioni � recalli)=(precisioni + recalli) (5)

The WIoU is the intersection over union metric, which

measures the overlap between the predicted and ground truth

masks, expressed as (Equation 6).

WIoU =oC
i=1   pi � TPi=(TPi + FPi + FNi) (6)
3 Methods

The Figure 4 shows the main auto-training method process

presented in this manuscript consists of three main parts, including

the MTPI conditions derivation, auto dataset augmentation with

MTPI-MTSA (multi-TSA based on the MTPI method), and auto

network training with MTPI-MTSA.
3.1 Optimization of the MTPI transfer
learning for deep networks auto-training

Since DL training is time-consuming and re-training of automatic

methodsmultiplies the time consumption, it is necessary to reduce the

training time to ensure automation usefulness. So, theMTPI (Chen Y.

et al., 2023) (Maximum Transfer Potential Index method), which was

proposed in the previous researchworkwas improved and used in this

study, to minimize the manual experience bias in complex field

environments. The MTPI implements a comprehensive evaluation

of the potential for a network training (TPI, Transfer Potential Index)

index in both accuracy and time consumption. The minimum dataset

and iteration times would be determined by obtaining the maximum

TPI corresponding to the transfer training condition under low

overfitting risk.

The MTPI conditions [dataset and time, or TDS and LT

(learning time)] determining was obtained by maximizing the

quotient of the TPIacc (Accuracy Transferable Index) and the

TPItime (Time Transferable Index), as shown in (Equation 7).

TPI  = TPIacc=TPItime (7)

In this manuscript, the MTPI has been improved so that the

potential indices expressed in TPIacc and TPItime refer to the actual

results of the pre-training process, whereas the original MTPI

(MTPI0) was used to derive the TPI indices for each network layer.

To obtain the MTPI conditions, TDS = 0:01,   0:02,   0:05,   0:1,   0:2,

  0:5,   1 (×100%) were set and the TPIacc and TPItime corresponding

to TDS were derived. The relationship between TDS and TPIacc was

solved by logarithmic fitting to obtain TPICacc (TPIacc curve), and the

correlation between TDS and TPItime was exponentially fitted to

obtain TPICtime (TPItime curve). Thereafter, the TPIC (TPI curve) was

obtained from TDS in the range of 0 to 1 by using (Equation 7) and

the corresponding training conditions (including TDS and LT) for

the maximum value of TPIC (MTPI) were obtained for the

subsequent automatic training process based on the MTPI.

In this study, only the vegetation segmentation problem in the

DTV environment was been discussed, so the structural complexity
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and task complexity of the network would be constant. Therefore, it

can be assumed that the size of LT is related to TDS and TPIacc is

expressed as (Equation 8).

TPIacc =  WPA(TDS) (8)

Where TDS is the migrated dataset size and WPA is the

previously mentioned accuracy obtained through (Equation 3). In

addition, TPItime is expressed as the relative number of iterations

corresponding to TPIacc.
3.2 The MTPI-based reinforcement
learning for dataset auto-augmentation

Data augmentation techniques (Shorten and Khoshgoftaar,

2019) is a common methods to improve the data effectiveness

and reduce the overfitting risk for network training, such as

Abayomi-Alli, O.O. (Abayomi-Alli et al., 2021), Ottoni, A.L.C.

(Ottoni et al., 2023), and Ayhan, B. (Ayhan et al., 2020) pointed

out. However, the processes and range parameters they used in data

augmentation were obtained based on manual experience, and such

inclusion of human intervention might easily introduce cognitive

biases and manual errors. For this reason, we combined the

previously described MTPI and reinforcement learning (Watkins

and Dayan, 1992; Russo et al., 2018) [e.g., TSA (Russo et al., 2018;

Dai et al., 2022)] to automatically determine the optimal processing

methods and parameter ranges in the data augmentation process.

The TSA is a common reinforcement learning algorithm for solving

the optimal strategy problem for intelligence in DTV.

Since the data auto-augmentation process involves two-

dimensional strategy problems with different processing method

processes (M) and different value ranges (N), the traditional TSA

was improved to MTSA (Multi-Thompson Sampling algorithm)

with multiple levels of inputs for implementation (M×N). Where

the inputs can be represented as an input matrix Q, as represented

in (Equation 9).

Q = ½Q1,…,QM � =
q1,1 … qM,1

⋮ qn,m ⋮

q1,N … qM,N

2
664

3
775   (9)

where, m is the number of augmentations method, with m = 1,

…,  M, e.g.,M   =   10 for this study. Wherem = 1 denotes a random

reduction with a magnification of 0 to 1, m = 2 denotes a random

enlargement with a magnification of larger than 1, m = 3 denotes an

inverse rotation with a rotation angle of less than 0, m = 4 denotes a

forward rotation with a rotation angle of larger than 0,m = 5 denotes

left-biased horizontal cropping,m = 6 denotes right-biased horizontal

cropping,m = 7 denotes vertical cropping in the downward direction,

m = 8 denotes vertical cropping in the upward direction, m = 9

denotes horizontal translation in the left direction, and m = 10

denotes horizontal translation in the right direction. N is the value

range of each column matrix Qm = ½q1,…, qN �Tm which is evenly

partitioned into N value accuracies, in this study, it is assumed to use

a variable with 8-bit storage space to represent the value possibilities,

thus N = 256 (denoted as n = 1, 2,…, 256 or n = 0, 1, 2,…, 255). In
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MTSA, the probability of each column matrix Qm is calculated

separately. It is denoted as (Equation 10).

P(qn,m) = qm=oQm (10)

Before iteration, all elements of Qm were set to 1 to avoid a zero

denominator. During each iteration, the corresponding element of

Qm that achieves the maximum result will be updated to bias the

MTSA results towards achieving the best value, as (Equation 11).

qt+1n,m =   qtn,m + r � log   (t) (11)

Where r is the learning rate, e.g., r   =   4. The t is the number of

MTSA iterations. In addition, qn,m also sets upper and lower limits

to prevent errors due to overflow of computer digits, e.g., 10−10 and

1010. With Q renewing, the data augmentation process and the

values ranges will move towards biasing the optimal feedback (the

network accuracy) to obtain the optimal solution (or near-

optimal solution).

Because of the manual data augmentation methods usually use

the maximum processing and commonly available parameters (e.g.,

multiples of 10). Therefore, to gain simulated manual method

results for comparison, all the involved processing and five

common parameters were taken for data augmentation, including

mt   =  −5,−4,…,   5. During the test of data augmentation, mt would

be mapped to actual values. Where, the reduction is (1 − 10mt), the

enlargement is 1=(1 − 10mt), the rotation angle is ± ½45� 10mt�, and
the offset or crop value is ± ½50� 10mt�, the ½ �means rounding up to

the nearest integer.
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Figure 5 shows the schematic of MTSA reinforcement learning

in this paper, including the interactions of the agent, environment,

state, action, reward, and output. The agent performs a t+1 action

according to the policy (Equation 11) based on the t state and the t

reward feedback from the environment. The Agent is a hypothetical

individual acting in the environment, and the actions it produces in

the environment are controlled by a probability distribution Q that

can be iteratively optimized. In the t+1 loop, the t+1 action of the

agent consists of M sub-actions of p1,2,…M . The action p1,2,…M is

transitioned to a t+1 state in the environment, and a t+1 reward

positive or negative reward) is generated. The output of the

environment (means the agent in environment) is the MTPI

training result corresponding to the action, and although each

action is retrained in multiple cycles, the time consumption of the

MTPI has been significantly reduced, and the whole reinforcement

learning process is still acceptable. After the maximum number of

loops is reached, the result output by the agent is used as the auto-

training parameter of the network (the output result is

without MTPI).
3.3 The MTPI based reinforcement learning
for deep network auto-training

The MTPI-MTSA introduced in section 3.2 is an effective

automatic method to replace manual experience, so it is similarly

used in the DL auto-training. In the implementation of MTPI-

MTSA for network auto-training, the mapping form of the input
Significant deep network and training effort required for field vegetation detection

Existing networks auto-training methods need further improvements to reduce manual experience deviation and T&E.

Proposing a deep networks auto-training method based on transfer learning and reinforcement learning
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matrix was optimized to make the inputs match the auto-training.

The cost function of MTPI-MTSA was also optimized so that the

output considers the result accuracy and the time consumption

factor would not be ignored at the same time.

As reported in scholarly studies, the training parameters

affecting the DL accuracy and time consumption include, OT

(Optimizer Types) (Elshamy et al., 2023), LR (Learning Rate)

(Lewkowycz et al., 2020), IN (Iterations Number) (Xiang et al.,

2021), and MBS (Mini Batch Size) (Kandel and Castelli, 2020).

Therefore, the input matrix Q of the MTPI-MTSA contains the

four-parameter dimensions mentioned, denoted as M = 4 and N =

256 to represent them during the auto-training. Among them, m =

1 represents the OT, and the optimizer introduced in this paper

included “sgdm” (Stochastic Gradient Descent with Momentum),

“Adam” (Adaptive Moment Estimation), or “RMSprop” (Root

Mean Square Propagation) which was shown as (Equation 12).

OP =

1 , q1 < N=3

2 ,N=3 ≤ q1 < 2N=3

3 , 2N=3 ≤ q1

8>><
>>:

(12)

Where m is the ordinal number of qm, OP = 1 means the OT is

“sgdm” optimizer, OP = 2 means the “Adam” optimizer, and OP = 3

means the “RMSprop” optimizer. In addition, m = 2 denotes the LR

and the mapping relationship was given in (Equation 13).

LR = 10−1�(l+r�q2=N) (13)

Where l and r are the two limiting factors of the LR value range,

such as l = 1 and r = 6. Thus, the value range of LR is ½10−7, 10−1).
And then m = 3 denoted the max epochs of IN, and it will be

rounded to the nearest integer. When m   =   4, the MBS with the

value range (1,256), its upper bound can be changed according to

the GPU RAM, but must be an integer.
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To improve the MTPI-MTSA on network accuracy and time

consumption to make deep training automatic, a time consumption

component is added to the cost function, as shown in (Equation 14).

CF = A� t=T   (14)

Where A is the accuracy, T is the relative iteration number

(relative time consumption), and t is the iteration number where the

minimum loss was obtained in the training process. Since A has a

higher priority relative to T, the T will be considered only when

A ≥ A0, while the A0 can be set as the MTPI result in section 3.1 and

section 3.2. Where T can be obtained as (Equation 15).

T = t=t0 � 100% (15)

To further validate and test the effectiveness of the complete

network auto-training, the data auto-augmentation and network

auto-training were performed on the structures of FCN, Seg-Net, U-

Net, and Seg-Res-Net 50 built-in section 2.2. Where the data auto-

augmentation was performed in the MTPI-MTSA method

introduced in section 3.2 and section 4.2 as AD. The four

networks were auto-trained with the methodology presented

above and were tested with the SD introduced in section 2.1.
4 Results and analysis

4.1 Results of the improvement MTPI for
deep learning auto-training

The Figure 6 shows the results of network auto-training

conditions (the MTPI conditions) determined by the improved

MTPI in DTV environment. The graph, including the TPIacc index

(when TDS   =   0:01,   0:02,   0:05,   0:1,   0:2,   0:5,   1), the TPItime,

the fitting curve of TPICacc [when TDS ∈ (0,   1)], the fitting
Environment
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(with the MTPI method)

Agent
probability 
group QN,M

Action
p1,2,...,M

generated by Q

Reward
optimisation q for

distribution Q

State
MTPI training 
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Output
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FIGURE 5

The block diagram of MTSA reinforcement learning.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1448669
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1448669
curve of TPICtime, the TPIC index curve, and the value of MTPI (the

maximum point), shows the impact of the TDS value on the

network accuracy and time cost. The trends of TPICacc and

TPICtime showed that the potential indices of accuracy and time

spent would both increase as the TDS increases; but the rising trend

of TPICacc keeps decreasing, while the rising trend of TPICtime keeps

increasing. This might be due to the TDS influence decreasing as the

network gets closer to the optimal when its training process gets

more difficult; but the effect of TDS on accuracy is still

controversial, (conjecture that under field vegetation data

conditions TDS can be close to a logarithmic relationship with

the network performance). In addition, the relationship of TDS on

TPICtime (training time consumption) is approximately

exponential, which may be due to TDS increase affecting not only

the batch number but also the final network performance when

training in MBS (mini-batches size). The TPIC trend is increasing

and then decreasing which is consistent with the trends of TPICacc

and TPICtime analyzed earlier, which might be because TPICacc (the

numerator of the TPI obtaining formulae) increases faster when

TDS is small whereas TPICtime (the denominator of the TPI)

increases slowly; thereafter, the TPICacc increases at a reduced

rate and TPICtime increases at an elevated rate. It also shows that,

when the TDS is small, an increase in TDS can quickly improve the

network performance without much change in time consumption.

However, when the TDS is already large, a further increase in TDS

has less impact on the network performance but consumes a huge

amount of time, which is consistent with the phenomenon that the

performance enhancement of DL slows down gradually in network

training. The value corresponding to the TPIC maximum (maximal

point) is the result of the MTPI method (MTPI condition, including

TDS and LT). Obviously, the MTPI condition is not the

performance-optimal condition for networks, but this condition is

the best-combined combination of performance and time cost,

which is beneficial to discuss the improvement of DL and

optimization of parameters.
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More specifically, the fitted curve TPICacc has the eq. TPICacc =

a� ln(TDS) + b, where a   =   0:0650 and b   =   0:995, the RMSE   =

0:0485 and the R2 =   0:858. The fitted equation for the fitted curve

TPICtime is TPICtime = a� e(b�TDS), where a   =   0:0591 and b   =

  2:84; the RMSE   = 0:0604 and R2   = 0:977. Thus, the MTPI

conditions obtained are TDS   =   2:30%, LT   =   6:31%, and the

reference accuracy WPAref   =   76:3%.

It can be seen that with the introduction of the MTPI method,

the optimization process requires only 2.30% dataset size and 6.31%

time-consuming. The MTPI has largely improved the utility and

adaptability for later network auto-training. In this study, we

investigate the transfer training results of the same network

[trained in a detection task (He et al., 2016)] transferred to the

same dataset with different parameter conditions, while the

previous paper investigated the transfer training of a network on

a different dataset, but we considered such results still reasonable.

The reason might be that the starting point of TL (He et al., 2016)

has obtained some basic primitive features (e.g., edges or corner

points), and all these features have a strong role in the detection of

the image. However, as can be seen from the starting point of the

curve in the figure (e.g., TDS < 0.05), the network without TL has a

relatively large number of non-universal features (lower accuracy,

<0.6). This result also reflects, to a certain extent, the superiority of

the MTPI algorithm, which aims to achieve speedups under the

premise of obtaining the most efficient results with the

smallest TDS.
4.2 The results of auto dataset
augmentation with MTPI-MTSA

Figure 7 gives the output curve as iterations of the MTPI-MTSA

during the dataset auto-augmentation of the optimal solution. This

contains the red result curve (accuracy, WPP), the blue reference

curve (obtained from the MTPI method above), the green 10 t

(times of iteration) average, and the 10-t mean-error curve (10 t

standard deviation of the green curve). The red curve shows that the

algorithm gets poor (<55%) results in the early stage (≤50 t),

changes significantly in the middle stage (>50 and ≤100 t), and

shows a high result and small changes in the later stage (>100 t).

This resultant performance corresponds to the mean-error curve,

with low mean scores and low errors in the early part, then the

mean scores increase in mean but with higher errors in the middle

part, and the mean scores stabilize at a larger value (compared to the

reference line) with low errors in the late part. These results are also

consistent with the TSA which has phases of self-exploration and

convergence to the best value. The MTPI-MTSA falls back near the

later stages (e.g., 110-130 t periods), which may be due to possible

unfavorable exploration in the MTSA iterations, but stabilizes at a

higher level in the later stages as the algorithm converges towards

better results, which may be due to the late algorithmic effect of the

algorithm approaching the optimal solution. This also suggested

that the relationship between data enhancement variables and

network accuracy for MTPI-MTSA in field vegetation data is
FIGURE 6

Results of network auto-training conditions determined by the
improved MTPI.
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likely not a probability distribution in the traditional sense (e.g.,

normal or beta).

Table 2 shows the data augmentation methods and parameters

obtained by the proposed MTPI-MTSA, including Reduce Scale,

Enlarge Scale, Rotate, Offset Left/Right, Crop Left/Right, Crop Up/

Down, and Offset Up/Down. The table shows that the scale range

between 0.81 and 1.64 is an optimal value (or near-optimal value),

which may be related to the UAVS and DTV terrain factors.

Although the UAVS is operating at 200 m altitudes, the DTV has

a large difference in horizontal altitude and terrain, so it is necessary

to have some image scale optimization to achieve the differentiation.

In addition, the offset and cropping of the images are concentrated

around 23 (between 18 and 26, which is about less than 10%, with

an image scale of 250), probably because the offset and cropping

have similar linear geometric transformations (concentrated in

constant terms in the image transformation matrix). However,

they still have some data errors, which is possible because the

optimization process of MTPI-MTSA is stochastic and the error in

the results is the stochastic optimization process. Such results with

some errors are acceptable, firstly because the subsequent auto-

training process can accept a certain range of data augmentation

results, and secondly because such data augmentation with

variation can lead to more diverse stochastic data for training.

The results of the manual method show that when mt =

−5,  −4,…,   5 WPA   =   73:05,   72:54,   73:12,   69:61,   14:56,   73:70

,   73:11,   73:42,   68:54,   26:13(%), with a mean value of 60.30% and

a std. var. of 20.94 (ref :   =   76:3(%). Comparing the manual and

automated method results shows that the optimal results of the

manual method can be close to the reference value, but the manual

method has a T&E cost (std. > 0), which explains that the manual

method needs multiple tests and parameter debugging to obtain the

best. The introduced MTPI-MTSA automatically obtained the

optimal results (or near-optimal solutions) with no human

involvement or T&E process, which also proves that the MTPI-

MTSA is necessary for fully automated data augmentation of

network training. The results showed that the manual method

was worse than the automated and it might be because the
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manual method used all processing methods and uniform

parameters in this study, but not all of them were suitable for

vegetation segmentation in DTV environments.
4.3 The auto-training results of deep
networks with MTPI-MTSA

Figure 8 shows the networks auto-training results with the

MTPI-MTSA, including the iterative results curve (WPP) in red, the

reference curve in blue (derived from the improved MTPI), the 10-

iteration average curve and the 10-iteration mean-error curve in

green (standard deviation for error). Similar to section 4.2 the

iterative optimization process can be divided into three stages, a

pre-stage (≤50 t), a middle stage (>50 and ≤150 t), and a late stage

(>150 t). It can be seen that the resulting curve and the average

curve gradually increase from the lowest point but contain a large

error in the early stage, which is consistent with the TSA has a

certain self-exploration and tends to the optimal law, and the results

are also consistent with the results in section 4.2. In addition, the

output and average curves showed a high output with a gradually

decreasing error in the middle stage, which indicates the algorithm

score can reach a larger score position and gradually smooth out.

Although the process can still be unfavorable exploration and lead

to a certain degree of fluctuation in the output curve, as the

iterations increase, the probability of unfavorable exploration is

gradually reduced. Finally, both the result curve and the mean curve

are at higher curves and the error is small in the late stage. The

mean value of the score increases but also has a larger error in the

middle of the algorithm, and stabilizes at a larger value (above the

reference line, blue line) and with a smaller error in the later stages.

Such curve performance indicates auto-training, it may be due to

the structure of the MTPI-MTSA used and the fact that the

optimization training in the DTV environment has a more

concentrated high probability of taking values (Compared with

trends in data auto-augment above).

To further demonstrate the network auto-training method

proposed in this paper, the established Seg-Net, FCN, U-Net, and

Seg-Res-Net 50 network structures were similarly processed and

compared. Three sample images were randomly selected for
TABLE 2 Results of the dataset augmentation method obtained with the
MTPI-MTSA.

Methods Lower limit Upper limit

Reduce/Enlarge Scale 0.81 1.64

Rotate -25.88 36.08

Offset Left/Right – –

Crop Left/Right -21.96 19.80

Crop Up/Down -25.88 18.82

Offset Up/Down – –
FIGURE 7

MTPI-MTSA Results of the automated augmentation dataset.
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processing and testing respectively, which have been given in

Figure 9. In the labeled RGB image results, blue, red, green, and

magenta markers with 20% transparency were used to indicate the

segmented regions of TR, SR, GR, and NVR, respectively. Column a

in each row represents the original RGB image, column b represents

the manually labeled results (ref.), and columns c, d, e, and f

represent the network output. Overall, the four networks achieve

vegetation segmentation to some extent, e.g., all four networks

achieve good results in the NVR compared to column b. It might

show that the segmentation task in the NVR is the easier part, when

the NVR features are visible and obvious (e.g., color and texture

feature), even easy for the human eye. In addition, the U-Net seems

to treat the SR part more as TR, e.g., Figure 9 1. e (1. e denotes the

resultant image in row 1, column e), while the FCN misclassifies it

more as GR, e.g., Figure 9 2. e, which may be related to the

convolution depth of the network, with deeper networks having

better resultant performance. However, Seg-Res-Net 50 still
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significantly outperforms U-Net in the SR region, as shown by

the difference between 3. e and 3. f in Figure 9, which may be related

to the performance structure. In these results, the segmentation of

Seg-Res-Net 50 is the best among all vegetation species, which may

be related to the network residual structure introduced in Seg-Res-

Net 50, which is consistent with the results of Alfanindya, A.

(Alfanindya et al., 2013). and Yu, H. (Yu et al., 2021).

Figure 10 shows the confusion matrix results (an overall

statistical result of a dataset) for the four networks on the SD

(testing set, introduced in section 2.1). The horizontal axis was the

pixel point mapping output results for the for categories, while the

vertical axis represents the actual category, i.e., the first column on

the horizontal axis corresponds to the TR, SR, GR, and NVR. The

diagonal elements of the confusion matrix from the top left to the

bottom right reflect the network accuracies for the four categories,

with higher values showing better network performance. The results

showed that all four networks achieved some performance on the

dataset, with Seg-Res-Net 50 achieving the highest overall accuracy

(97.60% in Figure 10D), while Seg-Net showed the lowest overall

accuracy (64.36% in (Figure 10A). The results in Figure 10 showed

that Seg-Net had a weak segmentation performed for SR and GR

(Figure 10A, only about 64.36 and 83.57%), FCN is slightly better

than that of Seg-Net for GR and SR (about 10% improvement on

SR, Figure 10B), on the other hand, Seg-Res-Net 50 was better than

the three previous network structures in all categories (Figure 10D).

This result may be related to the residual connection structure in

Seg-Res-Net 50 since the residual network was allowed to learn

deeper structures efficiently without being prone to overfitting,

which is consistent with the earlier findings.

Table 3 shows the results of the four auto-trained networks

on the SD from five perspectives (WPA, WPP, WRE, WF1, and

WIoU). Among them, WPA is the overall prediction accuracy

(intuitive performance); WPA is the accuracy of the positive

category prediction (positive category accuracy); WRE is the

coverage for the actual positive category (positive category
1

2

3

a b c d e f

FIGURE 9

Results of the four pre-trained deep networks for the segmentation of four samples. (A) RGB image. (B) Reference result image. (C) Results of a-
image processing using Seg-Net. (D) Results of a-image processing using FCN. (E) Results of a-image processing using U-net. (F) Results of a-image
processing using Seg-Res-Net 50.
FIGURE 8

The MTPI-MTSA results of networks auto-training.
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detection); WF1 is the evaluation of the network performance (a

combination of WPA and WRE); and WIoU is the overlap

between the actual and predicted regions. Based on the above

five evaluation perspectives, Seg-Res-Net 50 was found the best

overall performance than Seg-Net, U-Net, or FCN, (e.g., the

WIoU in Table 3). These results may have been attributed to the

fused residual structure of the Seg-Res-Net 50 with deeper

network layers and better vegetation segmentation capabilities.

Combining the above example analysis (Figure 10) and the

statistical results analysis (Table 1), the auto-trained Seg-Res-

net 50 outperformed the other three networks in terms of overall

segmentation effect and per-class segmentation effect. This also

indicated that Seg-Res-net 50 performed well on simple tasks

(NVA) and complex tasks (GR, SR, and TR), both in detail and

overall. It also demonstrates that the proposed auto-training

method, based on MTPI and reinforcement learning, can be used
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in complex network structures (e.g., Seg-Res-Net 50) and

complex dataset environments (e.g., DTV in the field).

To verify the advantages of the proposed network auto-training

method in this manuscript, four similar methods are given in

Table 4 for comparative discussion. The evaluation perspectives

include dataset size, data sample size, network structure,

acceleration methods, and acceleration effectiveness. From the

two perspectives of dataset size and sample size (the two columns

of the table), the proposed method has a larger dataset, and the

object of the dataset is the vegetation image data in an unstructured

DTV environment, which can be seen that the proposed method

has a higher degree of compatibility. In addition, the network

structure in Table 4 shows the proposed method is more

adaptable to complex networks (comparing the network depth of

the proposed method and the previous three methods). Although

Wang, S.’s method has a more complex structure, his paper does not

include the process of automatically determining the optimal

training parameters, which might require the algorithm to

repeatedly confirm the optimal conditions. This result also

implies more manual setup experience for implementation, and it

further surfaces the greater practicality of the proposed method.

Finally, the acceleration methods and acceleration effects are also

compared, which shows the potential future of the overall method.

Among them, the acceleration means of the proposed study, MTPI,

improves the overall iteration speed to a great extent, making

the proposed auto-training method very promising for

future applications.
a                               b

c         d

FIGURE 10

Confusion matrix results of the four auto-trained networks on the SD. (A) Confusion matrix of FCN. (B) Confusion matrix of Seg-Net. (C) Confusion
matrix of U-Net. (D) Confusion matrix of Seg-Res-Net 50.
TABLE 3 Results of five evaluation factors for the four network
structures (%).

Networks WPA WPP WPR WPF1 WIoU

FCN 83.714 84.023 83.714 83.395 72.283

Seg-Net 86.108 86.691 86.108 86.142 75.940

U-Net 80.886 80.704 80.886 80.706 68.463

Seg-Res-Net 50 95.205 95.201 95.205 95.195 90.881
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5 Conclusion and discussion

To reduce the human intervention and T&E cost for deep

network training as well as to enhance the existing methods’

practicality and adaptability, an auto-training method was

proposed based on the MTPI and MTSA in the DTV

environment. The main conclusions are as follows.
Fron
1. The MTPI was improved to automatically calculate the

most suitable transfer conditions and found that the

subsequent automation only requires 2.30% data and

6.31% time, which is adaptable to the complex networks

in DTV.

2. The MTPI conditions were incorporated into the automatic

dataset augmentation prior to network training and found a

20.94% T&E reduction and a 16.00% accuracy improvement.

3. The auto-training method was used for four common

networks (e.g. FCN, Seg-Net, U-Net, Seg-Res-Net 50) in a

DTV environment, and the best Seg-Res-Net 50 achieved

93.6% WPA and 87.6% WIoU. The proposed auto-training

is more practical than several existing methods, and avoids

human intervention, providing a reference for automated

deep learning applications in unstructured environments.
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TABLE 4 Performance differences compared to three existing methods.

Methods Dataset size Sample size Networks
Acceleration

method
Time cost

Proposed method 30,000 3×2502 Res-Net 50 (58) a MTPI 8.7%

Sun, Y. method (Sun et al., 2020) 6,000 3×322 Auto-CNN (10) - b 100%

Xiao, X. method (Xiao et al., 2020) 6,000 3×322 CNN (14) early stop 75%

Montes, C. Method
(Montes et al., 2023)

220,000 1×128 CNN (10) early stop 50%

Wang, S. method
(Wang S. et al., 2020)

1266 1×5122 DenseNet121(>60) – –
aThe number in “()” means layers number, such as the “Seg-Res-Net 50 (58)” means the Seg-Res-Net 50 has 58 layers. In this paper, the network layers number is denoted by the number of
active layers.
bThe “-” means used no time-saving method.
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