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Flowering plants produce pollinator rewards such as nectar and pollen, whose

quantity and quality usually depend on the whole-plant state under specific

environmental conditions. Increasing aridity and temperature linked to climate

change may force plants to allocate fewer resources to these traits, potentially

disrupting plant-pollinator interactions. In this study, for the first time, both

quantitative review (vote-counting procedure) and meta-analytic approach

were used to assess the implications of increased temperatures linked to

global warming on floral rewards, including nectar (sugar concentration,

content, and volume) and pollen (germination and viability), as well as on

pollinator visits. Furthermore, we explored whether observed effects of

warming are related either to temperature range, plant type (wild vs crop), or

study approach (greenhouse vs field experiments). We also assessed the

correlations between elevated temperatures and the characteristics that were

affected by the temperature range. The results of the vote-counting technique

showed that higher temperatures led to a decrease in floral rewards but did not

affect the number of pollinator visits. Concurrently, meta-analysis detected

adverse effects of warming on pollen germination and viability. Warming

effects depended on the plant type for pollen germination and viability, on

study approach for nectar sugar concentration and pollen germination, and on

temperature range for pollen germination and pollinator visits. Additionally, we

found that pollen germination and pollinator visits significantly decreased as

temperature range increased. Our results showed that global warming affects

floral rewards in both wild and crop plants, providing insights into the effects of

changing climatic conditions on plant-poll inator interactions and

pollination services.
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Introduction

Global surface temperatures have increased by approximately

1.5°C over the last two decades, threatening ecosystem functioning

and biodiversity worldwide (IPCC, 2021). Global warming is

expected to alter biodiversity and species distributions and

disrupt ecological networks, including plant-insect interactions

(Parmesan and Yohe, 2003; Kearns et al., 1998; Chen et al., 2011;

González-Teuber et al., 2023). Since most flowering plants depend

on pollinator assistance for seed set and reproduction, insect

pollination emerges as a crucial service for the proper functioning

of ecosystems (Ollerton et al., 2011; Brzosko et al., 2021; Sidemo-

Holm et al., 2021). Increased temperatures may disrupt this

mutualism by modifying floral traits such as morphology, scent,

and rewards, affecting pollinator attraction, visits, and behavior

(Dormont et al., 2019; Kuppler et al., 2016). Disruption of

pollination is likely to have a global impact on the reproductive

success of 90% of wild plants and the yields of 85% of major food

crops (Klein et al., 2007). While several studies have independently

evaluated the impact of increased temperature on the floral traits

of some species (see Table 1), there is currently a gap in

straightforward and comprehensive multi-species assessments.

Conducting such multi-species tests to assess effects of warming
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on distinct floral traits and pollinator visits can provide valuable

insight for more accurate predictions regarding the potential

consequences of forecasted climate changes on plant-pollinator

interactions, as well as ecosystem pollination service.

Floral rewards such as nectar and pollen play a major role in the

acceptance of the flower by pollinators, serving as primary food

sources for them (Hegland et al., 2009; Willmer, 2011; Celedón-

Neghme et al., 2016; Vaudo et al., 2020, 2024). Nectar is rich in

carbohydrates and amino acids (González-Teuber and Heil, 2009a,

2009b), whereas pollen provides essential proteins and lipids

(Roulston and Cane, 2000). Higher concentrations of these

metabolites usually enhance floral attractiveness of flowers to

visiting insects (Somme et al., 2015; Zhao et al., 2016; Descamps

et al., 2018). Increased temperatures have been linked to alterations

in nectar and pollen (Borghi et al., 2019). Some studies have

reported that both nectar volume and sugar content and

concentration are negatively impacted by increased temperatures

(Descamps et al., 2018, 2020, 2021a, 2021b), although effects appear

to be species-dependent (Descamps et al., 2020; Göttlinger and

Lohaus, 2019). Similarly, pollen fertilization traits appear to be

highly sensitive to elevated temperatures (Raja et al., 2019). Many

studies have shown that increased temperatures often lead to pollen

abortion and asynchronous pollen and stigma development,
TABLE 1 Studies used in meta-analysis of response by pollinator attractors and pollinator visits to increasing air temperature including natural plant
populations and crops, response trend and number of observations reported in each publication.

Pollinator attractors Plant type Effect No. of observations Reference

Nectar sugar concentration Natural
plant populations

↓ 2 Descamps et al. (2021b)

↓ 2 Descamps et al. (2021c)

↕ 1
Göttlinger and
Lohaus (2019)

↓ 2 Descamps et al. (2018)

↓ 3 Takkis et al. (2015)

↕ 2 Carrión-Tacuri et al. (2012)

Crops ↓ 4 Descamps et al. (2020)

↕ 2 Muniz et al. (2013)

Percentage
of cases supporting the model

63

Nectar sugar content Natural
plant populations

↕ 12
López-Atanacio
et al. (2022)

↑ 1 Maluf et al. (2022)

↓ 2 Descamps et al. (2021a)

↕ 2 Descamps et al. (2021b)

↑ 2 Descamps et al. (2021c)

↕ 2 Descamps et al. (2018)

↕ 2 Mu et al. (2015)

↑ 3 Takkis et al. (2015)

↑ 2 Carrión-Tacuri et al. (2012)

(Continued)
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TABLE 1 Continued

Pollinator attractors Plant type Effect No. of observations Reference

Crops ↑ 12 Clearwater et al. (2021)

↓ 4 Descamps et al. (2020)

↓ 2 Enkegaard et al. (2016)

↑ 2 Muniz et al. (2013)

↕ 2 Hoover et al. (2012)

Percentage
of cases supporting the model

21

Nectar volume Natural
plant populations

↓ 3 Moss and Evans (2022)

↓ 2 Descamps et al. (2021a)

↓ 2 Descamps et al. (2021b)

↓ 2 Descamps et al. (2021c)

↓ 2 Descamps et al. (2018)

↓ 2 Mu et al. (2015)

↓ 6 Takkis et al. (2015)

↕ 2 Carrión-Tacuri et al. (2012)

↓ 14
Mačukanović-Jocić

et al. (2004)

Crops ↓ 4 Descamps et al. (2020)

↓ 2 Enkegaard et al. (2016)

↓ 2 Muniz et al. (2013)

↕ 1 Hoover et al. (2012)

Percentage
of cases supporting the model

84

Pollen
germination

Natural
plant populations

↓ 3 Branch and Sage (2018)

Crops ↓ 2 Rutley et al. (2021)

↓ 18 Bhandari et al. (2020)

↓ 2 Parrotta et al. (2016)

↕ 8 Li et al. (2015)

↓ 8 Lora et al. (2012)

↓ 4 Müller et al. (2016)

Percentage
of cases supporting the model

85

Pollen viability Natural
plant populations

↓ 3 Branch and Sage (2018)

↓ 2 Descamps et al. (2018)

Crops ↓ 2 Iovane and Aronne (2022)

↓ 13 Xu et al. (2017)

Percentage
of cases supporting the model

100

Pollinator visit Natural
plant populations

↑ 6
López-Atanacio
et al. (2022)

↑ 3 Maluf et al. (2022)

(Continued)
F
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negatively affecting pollen viability, germination, and pollen tube

growth (Parrotta et al., 2016; Müller and Rieu, 2016). While

variations in pollen quality (i.e., nutritional composition) in

response to increased temperatures have been little studied, some

studies have shown evidence that reductions in protein and starch

concentrations contribute to failures in pollen development and

viability (Pressman et al., 2002; Sato et al., 2006; Muth et al., 2016),

suggesting a link between pollen nutrition and pollen fertilization.

Floral trait modifications may lead to bottom-up effects on flower

visitation by pollinators, affecting their foraging behavior, pollen

transfer, and, ultimately, plant reproductive success. Although

pollinator flower preferences are unequivocally based on nectar and

pollen taste, how variations in these floral rewards may alter pollinator

behavior in a warming climate remains uncertain (Descamps et al.,

2018, 2021a, 2021b). Here, we assembled a global dataset of distinct

floral traits (nectar volume, nectar sugar concentration, nectar sugar

content, pollen germination, and pollen viability) and pollinator

visitation to test how these traits change under increased

temperatures in a global warming context. We provide a

comprehensive quantitative synthesis and conduct a meta-analysis

based on available data in the published literature, examining the

effects of experimentally increased temperature on multi-trait displays

of flowers in both natural plant populations and crop species. Since

floral traits attract pollinators, we hypothesize that reductions in floral

rewards (nectar and pollen) linked to climate warming should be

accompanied by decreased pollinator visits. Specifically, we initially

tested, using the available literature, whether experimentally increased

temperatures harm floral rewards and pollinator visits. Subsequently,

we assessed how the increase in air temperature influences floral

rewards and pollinator visits, considering various explanatory

variables (plant type, study approach, and temperature range).

Furthermore, we explored relationships between increased air

temperature and all evaluated traits impacted by global warming.

Relevant implications for pollinator services and recommendations

for future research directions are additionally discussed. While there is

evidence of floral trait responses to climate change drivers such as

drought (see Kuppler and Kotowska, 2021; Jaworski et al., 2022), to our

knowledge, this study represents the first direct, comprehensive

assessment of the potential effects of global warming on floral

rewards and floral-visitor interactions.
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Materials and methods

Study selection and data collection

We conducted a search in the Web of Science and Scopus using

multiple search term combinations with no restriction on publication

years for one of the following flower rewards traits keywords: nectar

sugar concentration ‘OR’ nectar sugar content ‘OR’ nectar volume

‘OR’ pollen viability ‘OR’ pollen germination ‘OR’ pollinator visit

‘OR’ plant-pollinator interaction; AND all of following global

warming keywords: climate change ‘OR’ global warming ‘OR’ heat

stress ‘OR’ high air temperature. Our initial search yielded 1561

publications, which were reviewed to assess their suitability. To be

included in the analysis, studies had to informmeasurements offloral

rewards and/or pollinator visits (i.e., mean value, standard deviation

or standard error, and sample size) in control and observational or

experimental air temperature increase treatments. To ensure the

comparability of studies, we established a maximum range of

increased temperature treatment of 12°C. Despite both relating to

nectar quality, we distinguished nectar sugar concentration and

nectar sugar content. The former refers to amount per gram of

tissue, while the latter exclusively refers to amount per tissue (Brzosko

et al., 2021; Descamps et al., 2021a; Nicolson, 2022). Studies regarding

variations in the nutritional composition of pollen as a consequence

of increased temperatures could not be included in the meta-analysis,

because of the low number of available studies (Egger et al., 1997). A

total of 28 publications met these criteria, and we estimated the

percentage of studies verifying the effect of increased air temperature

on floral reward traits and pollinator visits (vote-counting

procedure; Table 1).
Statistical analysis

To examine the mean effects of experimentally increased

temperature (warming) on floral traits and pollinator visits, we

calculated Hedge’s effect size (g) using the scalc function from the

metafor library (Viechtbauer, 2010) in R environment (R Core

Team, 2024). Hedge’s g represents the standardized difference in

means between floral traits (and pollinator visits) under increased
TABLE 1 Continued

Pollinator attractors Plant type Effect No. of observations Reference

↓ 2 Moss and Evans (2022)

↕ 4 Creux et al. (2021)

↓ 1 Descamps et al. (2021b)

↓ 4 Descamps et al. (2018)

↑ 3 Norgate et al. (2010)

Crops ↕ 34 Muniz et al. (2013)

Percentage
of cases supporting the model

38
Percentage of publications supporting effects size and observed negative or positive trend for pollinator attractors traits and pollinator visits under increasing air temperature treatments. (↑)
significative increasing effect, (↓) significative decreasing effect, (↕) effect remained constant.
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and non-increased or control temperature conditions. Positive

values of g indicate an increase in floral reward traits (or

pollinator visit) following warming, whereas negative values

signify a decrease. We conducted a random-effects meta-analysis

using the rma.mv function for each floral trait, incorporating

“species” and “study” as random factors. The former was

included to account for variability across plant responses to

temperature increases, and the latter to address heterogeneity

among study cases (Gurevitch and Hedges, 1999):

M1<–rma.mv(EffectSize, Vi, random = list(~1|study, ~1|species),

data = Data)

Heterogeneity tests (QT and QM) were performed to assess effect

size homogeneity in each of the six analyses (nectar sugar

concentration, nectar sugar content, nectar volume, pollen

germination, pollen viability, and pollinator visit). All analyses

showed significant heterogeneity (Table 2). To examine sources of

variation, we included explanatory variables (i.e., moderators): plant

type (wild vs crop), study approach (greenhouse vs field

experiments), and increased temperature ranges ([0.99; 4°C], [4.1;

8°C], and [8.1; 12°C]). Categorical random-effects models tested the

effects of each moderator on floral reward traits and pollinator visits.

Additionally, we carried out linear meta-analysis random

models to evaluate the association between the reported increased

temperature (as a continuous moderator) and warming-influenced

traits. Models included studies as a random factor again, and

heterogeneity tests were also implemented. Despite the small

number of plant species included in the analysis, we implemented

a phylogenetic correction for the overall model by specifying a

species phylogenetic correlation matrix in the R argument of the

rma.mv function. We constructed a phylogenetic tree of the species

in this study based on the megaphylogeny of plants (Jin and Qian,

2023) using the S.Phylomaker function (Jin and Qian, 2022) and

phytools package (Revell, 2012). Then, we extracted the correlation

matrix for all species using the vcv function from the ape package

(Paradis and Schliep, 2019), which applies a Brownian-motion

evolution model. In this matrix, closely related species exhibit

higher correlations, reflecting their expected similarities. The

Egger et al. (1997) test was used to detect publication bias, and a

weighted method was applied to calculate the fail-safe number to

evaluate whether unpublished data may have affected our

conclusions (Rosenberg, 2005).
Results

The literature survey (i.e., vote-counting) found that warming

(increased temperature) had detrimental effects on floral reward

traits and pollinator visits (65% of cases) (Table 1), considering 31

plant species (Supplementary Table S1). Information about origin

of plants species is indicated in Supplementary Table S1.

Specifically, warming decreased nectar sugar concentration (63%

of cases), nectar sugar content (21% of cases), nectar volume (84%

of cases), pollen germination (85% of cases), pollen viability (all

cases), and pollinator visit (38% of cases). The meta-analyses

showed that warming significantly decreased pollen germination

(g = -2.19, p = 0.000) and viability (g = -2.41, p = 0.047), whereas
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nectar sugar concentration, nectar volume, and even pollinator

visits tended to non-significantly reduce (Figure 1). Conversely,

nectar sugar content tended to increase due to warming, though not

significantly (g = 0.25, p = 0.572). These results were consistent for

the phylogenetically uninformed-informed models (Supplementary

Figure S1). We did not detect trait phylogenetic signals, which

indicate that study species are less related than expected by chance,

suggesting that species can be considered as independent samples.

Alternatively, the lack of phylogenetic signal can be due to the small

size of the phylogeny (Chamberlain et al., 2012). Phylogenetic

corrections were found to result in more conservative estimators,

likely influenced by the phylogenetic relationships among species,

despite the inclusion of 16 distinct plant families in the study.

We found that for only some studied traits moderators explained

a significant proportion of their variation in Hedges’ effect sizes (g)

(Table 2 and Figure 2). While effect sizes of nectar volume and sugar

content did not differ significantly by any moderator, we found a

significant effect of between-group heterogeneity (QMs) for nectar

sugar concentration, pollen germination, pollen viability, and

pollinator visits (Table 2). Specifically, nectar sugar concentration

was influenced by study approach moderator, showing a significant

decrease and increase in g values under greenhouse and field

experiments, respectively (Figure 2A). Pollen germination and

viability were influenced by temperature range moderator, where g

values in crop species consistently decreased, but in wild plant type,

they did not change (Figures 2B, C). Although g values in pollinator

visits are being influenced by temperature range moderator (Table 2),

no significant decrease was observed for any temperature range

category (Figure 2D). The g values for pollen germination (z =

-4.470, p = < 0.05) and pollinator visits (z = -5.976, p = < 0.05)

were observed to significantly decrease as experimental temperature

increases (Figures 3A, B).
Discussion

This study represents the first comprehensive, multi-species

examination of the impact of global warming (i.e., increased

temperature experiments) on floral rewards, encompassing nectar

and pollen-associated traits, and plant-pollinator interactions. A

quantitative literature survey, including 31 plant species from

tropical and temperate climates, supported detrimental effects of

increased temperature on floral reward traits and pollinator visits

in 65% of cases. Our meta-analysis revealed that pollen-associated

traits were highly sensitive to increased temperature, whereas

negative yet non-significant effects of increased temperature were

reported on nectar traits (except nectar sugar content) and pollinator

visits. Significant heterogeneity in effect size was detected across all

analyses, with the primary explanatory factor being the experimental

temperature range, followed by plant type (wild vs crop), and lastly,

study approach (greenhouse vs field experiment).

Contrary to our expectations, nectar rewards (i.e., nectar sugar

content, nectar sugar concentration, and nectar volume) showed no

consistent pattern in response to temperature treatments. Significant

heterogeneity in effect size, however, was observed for nectar sugar

concentration; some of which was explained by the study approach
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TABLE 2 Total heterogeneity (QT) and between-group heterogeneity (QM) of man effect sizes (Hedges’ g) in studies comparing floral reward traits in
response to increasing air temperature in phylogenetically uninformed and informed models.

Floral reward trait Moderator
Phylogenetically uninformed model Phylogenetically informed model

QT p-value QM p-value QT p-value QM p-value

Nectar sugar concentration

Overall 86.4 <0.001 86.4 <0.001

Plant type 1.24 0.536 4.19 0.123

Study approach 8.82 0.012 5.87 0.053

Temperature range 2.39 0.496 2.23 0.524

Nectar sugar content

Overall 237 <0.001 237 <0.001

Plant type 0.46 0.796 0.32 0.849

Study approach 1.04 0.592 1.02 0.600

Temperature range 0.52 0.913 0.50 0.917

Nectar volume

Overall 277 <0.001 277 <0.001

Plant type 3.17 0.204 1.4 0.495

Study approach 3.58 0.167 1.95 0.376

Temperature range 4.04 0.257 2.14 0.544

Pollen germination

Overall 599 <0.001 599 <0.001

Plant type 32.9 <0.001 12.8 0.002

Study approach 27.3 <0.001 10.28 0.006

Temperature range 31.4 <0.001 17.5 0.001

Pollen viability

Overall 158 <0.001 162 <0.001

Plant type 5.78 0.055 5.76 0.056

Study approach – – – –

Temperature range 5.21 0.074 5.36 0.147

Pollinator visits

Overall 608 <0.001 576 <0.001

Plant type 1.13 0.567 1.72 0.421

Study approach 1.14 0.535 0.48 0.785

Temperature range 44 <0.001 56.2 <0.001
F
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QT values are given for models without data structure (i.e. no moderator). Significant p-values (<0.05) of QT and QM are shown in bold.
FIGURE 1

Mean effect sizes (Hedges’ g) of differences in floral reward traits in response to increasing air temperature in phylogenetically uninformed models.
Error bars depict 95% confidence intervals (CIs). A mean effect size is significantly different from zero when CIs do not overlap zero. Significant
results are shown in black. Negative (or positive) effect sizes indicate a decrease (or increase) in floral reward traits due to warming.
ontiersin.org
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(greenhouse vs field experiments). Nectar sugar concentration

showed a significant inverse tendency depending on this

moderator, declining in response to temperature increases under

controlled conditions, while increasing under field conditions. An

earlier meta-analysis of floral trait responses showed similar

divergence between controlled- and field experiments, with declines

in nectar volume in response to water deficit observed in indoor

conditions, but not outdoor conditions (Kuppler and Kotowska,

2021). Even when mechanisms involved in these opposite
Frontiers in Plant Science 07
tendencies between indoor and outdoor conditions are not fully

understood, some factors might help to explain this phenomenon.

For example, in natural conditions (i.e., field experiments) plants are

compelled to invest in nectar production to maintain pollinator

interactions, despite potential costs it may involve in stressful

environments (Willmer, 2011). This investment is likely

unnecessary in indoor conditions in the case that no pollinators

consume the nectar. Nectar is a plastic trait, whose secretion may be

adjusted according to the intensity of consumption, or, it can be even
FIGURE 2

Group-specific mean effect sizes (Hedges’ g) for floral rewards traits in response to increasing air temperature. Nectar sugar concentration (A), Pollen
germination (B), pollen viability (C) and pollinator visit (D) phylogenetically uninformed models. Effect size g have been grouped according to plant type,
study approach and temperature range. Mean effect size, their 95% confidence interval (CI) and the number of effect sizes (n) for phylogenetically
uninformed overall and with moderator models are shown. *P < 0.05; **P < 0.01.
FIGURE 3

The relationship between effect sizes (Hedges’ g) and increased air temperature of pollen germination (P < 0.05) (A) and pollinator visit (P < 0.05) (B).
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reabsorbed in the case of non-consumption (Pacini et al., 2003).

Furthermore, nectar volume and concentration are highly influenced

by environmental factors such as air temperature and humidity.

Many of the studies, covered in this meta-analysis, quantified either

the nectar volume or its concentration, but not both. The latter might

lead to high variations in nectar secretion measurements, since both

must be considered together in order to effectively calculate the

realistic amounts of secreted soluble solids (Heil, 2011). While nectar

variation might be an inherent limitation across studies, the use of a

rigorous statistical meta-analytic framework has allowed us to have a

reliable estimation of the effects of increased temperatures on

nectar traits.

Our results supported the detrimental effects of increased

temperature on both pollen germination and viability;

nevertheless, declines in pollen germination and viability were

only observed for crop species, but not for wild species (Figure 2).

Numerous studies have shown that crops are highly sensitive to

temperature increases, particularly during reproductive phases

(Driedonks et al., 2016). Crop plants are more sensitive to abiotic

stresses than their wild-type relatives because breeding selection for

yield is not necessarily linked to an adaptive stress tolerance strategy

(Villalobos-López et al., 2022).

Pollen germination and viability usually have a direct influence on

seed set and fruit set ratio. Even when impacts of increased

temperatures on seed and/or fruit set were not included in this

meta-analysis, numerous studies have reported that negative effects

on pollen viability and germination due to higher temperatures are

accompanied by declines in seed set (Powell et al., 2012; Tolessa and

Heuvelink, 2018; Yang et al., 2019; Shenoda et al., 2021). Given that

75% of all food crop species rely on insect pollination for seed set (Klein

et al., 2007), higher temperatures potentially represent a threat to yields

and food security. Pollen germination and viability were significantly

reduced by temperature range (Figures 2B, C; 3A), with the former

more sensitive to temperature increases than the latter. Whereas pollen

germination was negatively affected by all temperature increments

(Figure 2B), pollen viability was only negatively affected by

temperatures over 8°C (Figure 2C). Development and functioning of

the male gametophyte (or pollen) are known to be the most

temperature-sensitive processes within the plant life cycle (Zinn

et al., 2010). Furthermore, both pollen germination and viability are

highly sensitive at even short periods of high temperature exposure

(Müller et al., 2016). Thus, differences observed in the temperature-

sensitive range between pollen germination and viability might be

explained by genetic variation for thermotolerance among plant species

included in the current study.

The results from our meta-analysis and literature survey did not

align with the prediction of detrimental effects on pollinator visits due

to warming. Specifically, the meta-analysis showed that temperature

increases did not significantly affect pollinator visits. Likewise, the

literature survey only recorded 38% support for our prediction.

Although the high heterogeneity of effect sizes could certainly be a

contributing factor, results might be at least partially explained by the

temperature range (Table 1; Figure 3B). There was a clear trend of

decreasing pollinator visitation with increasing temperature

(Figure 3B). It is known that elevated temperatures can influence

pollinator activity both directly and indirectly (Descamps et al., 2018).
Frontiers in Plant Science 08
Whereas direct effects are mainly associated with changes in

pollinator activity and flower-visiting behavior (Descamps et al.,

2018), indirect ones (i.e., those mediated via at least one other

interacting species) may result from changes in floral signals and

rewards (Knauer and Schiestl, 2015; Descamps et al., 2018). Insect

pollinators are typically only active within certain temperature limits,

becoming inactive at temperatures above and below these thresholds

(Corbet et al., 1993; Kühsel and Blüthgen, 2015; Plos et al., 2023).

Moreover, since pollinators rely exclusively on floral rewards for food

(Hegland et al., 2009; Willmer, 2011), variations in the quantity and

quality of nectar and pollen are expected to lead to changes in

pollinator-visiting behavior; and thereby, may influence plant

reproduction (Robertson et al., 1999; Konzmann and Lunau, 2014;

Descamps et al., 2018; Plos et al., 2023). In our study, temperature

effects on pollinator visits were not differentiated based on either

direct or indirect effects (information not provided in the studies).

Since both types of effects may interact (Kharouba et al., 2018;

Kharouba and Yang, 2021; Freimuth et al., 2022), future research

should consider both in order to determine the overall outcome of

climate change impacts on species interactions.

Our meta-analysis revealed that increased temperatures affect

floral rewards, particularly pollen traits, which likely scale up to

pollinator interactions. Climate models predict that the global mean

temperature will increase by 1-4°C by the end of the twenty-first

century (IPCC, 2021). Nevertheless, most detrimental effects on

plants seem to be caused by heat waves or extreme temperature

events (López et al., 2022), which are projected to increase in both

intensity and frequency (Meehl et al., 2007). Heat waves are predicted

to have short-term durations of a few days, but with an increase in

temperatures of over 5°C (IPCC, 2021). Heat-induced pollen damage

is related to reductions in seed and fruit set. Therefore, understanding

how floral traits, particularly pollen development, respond to extreme

weather events is key to predicting how reproduction in natural plant

populations and agricultural systems may be affected by climate

change. Moreover, if heat-related shifts in pollen traits are likely

associated with a decline in pollinator visits, this scenario may be

much more serious. A recent meta-analysis reported that without

pollinators, half of all the flowering plants would suffer a decline in

fertility of over 80%, while a third would not produce seeds at all

(Rodger et al., 2021). While ecological consequences of other climate

change-associated factors such as drought on floral traits and plant-

pollinator interactions are relatively well established, to our

knowledge, this is the first meta-analytic approach to assess

potential effects of global warming on floral rewards and floral-

visitor interactions. Elevated temperatures, however, are usually

accompanied by increased risk of a range of other abiotic stresses

(such as drought and light intensity); therefore, future studies should

explore combinations of these factors to improve understanding of

climate change effects on floral metabolism and plant-

pollinator interactions.
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(2023). Climate change-related warming-induced shifts in leaf chemical traits favor
nutrition of the specialist herbivore Battus polydamas archidamas. Front. Ecol. Evol. 11.
doi: 10.3389/fevo.2023.1152489

Göttlinger, T., and Lohaus, G. (2019). Influence of light, dark, temperature and
drought on metabolite and ion composition in nectar and nectaries of an epiphytic
bromeliad species (Aechmea fasciata). Plant Biol. 22, 781–793. doi: 10.1111/plb.13150

Gurevitch, J., and Hedges, L. V. (1999). Statistical issues in ecological meta-analyses.
Ecology 80, 1142–1149. doi: 10.1890/0012-9658(1999)080[1142:siiema]2.0.co;2

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., and Totland, Ø. (2009). How
does climate warming affect plant-pollinator interactions? Ecol. Lett 12, 184–195.
doi: 10.1111/j.1461-0248.2008.01269.x
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1448070/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1448070/full#supplementary-material
https://doi.org/10.1111/jac.12433
https://doi.org/10.1111/nph.16031
https://doi.org/10.1002/ajb2.1199
https://doi.org/10.1002/ajb2.1199
https://doi.org/10.3390/ijms222212164
https://doi.org/10.2984/66.4.2
https://doi.org/10.1007/s11258-016-0667-9
https://doi.org/10.1111/j.1461-0248.2012.01776.x
https://doi.org/10.1126/science.1206432
https://doi.org/10.1111/nph.17632
https://doi.org/10.1111/nph.17632
https://doi.org/10.1111/j.1365-2311.1993.tb01075.x
https://doi.org/10.1111/nph.17627
https://doi.org/10.3390/plants10050988
https://doi.org/10.3390/plants10050988
https://doi.org/10.3390/insects12060493
https://doi.org/10.1002/ece3.6389
https://doi.org/10.1002/ece3.3914
https://doi.org/10.3389/fpls.2021.755843
https://doi.org/10.3389/fpls.2021.755843
https://doi.org/10.1086/705589
https://doi.org/10.1007/s00497-016-0275-9
https://doi.org/10.1007/s00497-016-0275-9
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1080/00218839.2016.1192341
https://doi.org/10.1098/rspb.2021.2142
https://doi.org/10.4161/psb.4.9.9393
https://doi.org/10.1007/s10886-009-9618-4
https://doi.org/10.3389/fevo.2023.1152489
https://doi.org/10.1111/plb.13150
https://doi.org/10.1890/0012-9658(1999)080[1142:siiema]2.0.co;2
https://doi.org/10.1111/j.1461-0248.2008.01269.x
https://doi.org/10.3389/fpls.2024.1448070
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Alquichire-Rojas et al. 10.3389/fpls.2024.1448070
Heil, M. (2011). Nectar: generation, regulation and ecological functions. Trends Plant
Sci. 16, 191–200. doi: 10.1016/j.tplants.2011.01.003

Hoover, S. E. R., Ladley, J. J., Shchepetkina, A. A., Tisch, M., Gieseg, S. P., and Tylianakis, J.
M. (2012). Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator
mutualism. Ecol. Lett. 15, 227–234. doi: 10.1111/j.1461-0248.2011.01729.x

Iovane, M., and Aronne, G. (2022). High temperatures during microsporogenesis fatally
shorten pollen lifespan. Plant Reprod. 35, 9–17. doi: 10.1007/s00497-021-00425-0

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change. Eds. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S.
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