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Study on the fusion of improved
YOLOv8 and depth camera
for bunch tomato stem
picking point recognition
and localization
Guozhu Song*†, Jian Wang †, Rongting Ma, Yan Shi
and Yaqi Wang

College of Software, Shanxi Agricultural University, Taigu, China
When harvesting bunch tomatoes, accurately identifying certain fruiting stems

proves challenging due to their obstruction by branches and leaves, or their

similarity in colour to the branches, main vines, and lateral vines. Additionally,

irregularities in the growth pattern of the fruiting pedicels further complicate

precise picking point localization, thus impacting harvesting efficiency.

Moreover, the fruit stalks being too short or slender poses an obstacle,

rendering it impossible for the depth camera to accurately obtain depth

information during depth value acquisition. To address these challenges, this

paper proposes an enhanced YOLOv8 model integrated with a depth camera for

string tomato fruit stalk picking point identification and localization research.

Initially, the Fasternet bottleneck in YOLOv8 is replaced with the c2f bottleneck,

and the MLCA attention mechanism is added after the backbone network to

construct the FastMLCA-YOLOv8model for fruit stalk recognition. Subsequently,

the optimized K-means algorithm, utilizing K-means++ for clustering centre

initialization and determining the optimal number of clusters via Silhouette

coefficients, is employed to segment the fruit stalk region. Following this, the

corrosion operation and Zhang refinement algorithm are used to denoise the

segmented fruit stalk region and extract the refined skeletal line, thereby

determining the coordinate position of the fruit stalk picking point in the

binarized image. Finally, the issue of missing depth values of fruit stalks is

addressed by the secondary extraction method to obtain the depth values and

3D coordinate information of the picking points in RGB-D camera coordinates.

The experimental results demonstrate that the algorithm accurately identifies

and locates the picking points of string tomatoes under complex background

conditions, with the identification success rate of the picking points reaching

91.3%. Compared with the YOLOv8 model, the accuracy is improved by 2.8%,
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and the error of the depth value of the picking points is only ±2.5 mm. This

research meets the needs of string tomato picking robots in fruit stalk target

detection and provides strong support for the development of string tomato

picking technology.
KEYWORDS

improved YOLOv8, depth image, fruit stalk recognition, picking point localization,
depth value
1 Introduction

The country takes the lead in terms of the cultivated area of

cluster tomatoes, and its production ranks among the highest in the

world. Annual production reaches millions of tons, and this figure

continues to rise steadily. According to statistics, China’s total cluster

tomato production reached approximately 8 million tons by 2023,

representing a significant increase from 6.2million tons in 2022. And

it is expected that by 2024, cluster tomato production will surpass the

11 million ton mark. These figures not only reflect the dynamism of

the tomato industry but also indicate the growing market demand

for tomato products, including smaller varieties of tomatoes (China

Report Hall Network, 2024). In the current agricultural context,

cluster tomato harvesting is considered a crucial agricultural activity.

Fruit and vegetable harvesting is a labor-intensive component of

agricultural production that has traditionally relied on manual

operations.This approach is not only inefficient but also vulnerable

to seasonal variations and climatic conditions. With the

advancement of agricultural modernisation, automation

technology has become an important means to improve

productivity and reduce labour costs. Among them, computer

vision technology plays a key role. Traditional computer vision

relies heavily on colour and shape recognition, but these methods

are susceptible to light and occlusion in complex environments. To

address these issues, AI-driven computer vision technologies,

especially deep learning, are becoming mainstream. Convolutional

neural networks (CNNs) improve recognition accuracy by

processing complex image features. In addition, multimodal data

fusion techniques help overcome the shortcomings of single vision

systems. However, despite the excellent performance of AI

techniques in experimental environments, real-world applications

still face challenges such as light variations and environmental

complexity, and related studies (e.g., Zhang et al., 2020 and

Bergerman et al., 2016) have pointed out that further optimisation

of recognition techniques is still the key to achieving full automation.

In complex natural environments (e.g., light, shadow, shade, etc.),

existing techniques may also suffer from recognition errors or fail to

accurately determine the picking point. Moreover, automated

equipment needs to consider diverse scenarios and conditions in

actual operation, and current technology may be difficult to meet the
02
demand for accurate picking in all situations. Therefore, there is an

urgent need to further develop and improve related technologies to

achieve accurate identification and guidance of tomato picking

points under different conditions. Advanced artificial intelligence

and computer vision technologies are used to automatically identify

and determine the picking location of ripe bunches of tomato stalks.

This approach not only helps to reduce labour pressure and improve

productivity for farmers, but also significantly reduces production

costs and improves the quality and yield of produce. Simultaneously,

picking point identification and positioning technology has a broad

range of application areas. It is not only applicable to the picking of

crops such as fruits and vegetables but also provides accurate picking

guidance for automated equipment. This technology reduces losses

in the picking process and improves the utilization of agricultural

products, thereby promoting the development of the agricultural

industry in the direction of intelligence and efficiency.

The identification and localization of picking points for ripe

cluster tomatoes depend on the predictive localization of fruit shape

features and the localization of fruit stalk picking points based on

the relationship between stalk and fruit position. In a related study,

Montoya Cavero proposed a deep learning pepper recognition and

pose estimation framework. The framework utilizes high-resolution

colour images from an RGB-D based active sensor to detect and

segment individual green, red, orange and yellow peppers and their

pedicels (which produce stems) on a pixel-by-pixel basis using a

mask and a region-based convolutional neural network.

Subsequently, the 3D position of the peppers and the z-axis

orientation of the camera’s reference system are estimated using

depth information from the sensor. The detection accuracy was

60.2% and the position estimation errors obtained by the vision

subsystem were x: ±28.75 mm, y: ±21.25 mm, ±15 mm, and the z-

axis orientation of the camera’s reference system was ±9.6° (Cavero

and Enrique, 2021). Jin Y developed an accurate picking point

localization method for horizontally terraced grapes, using a

combination of far-view and near-view depth data features.

Utilizing depth point cloud data, key points—far-view, near-view,

and picking points—were identified based on grape cluster

characteristics and the terraced environment. In field experiments

focused on near-view localization, the algorithm averaged 0.29

seconds per run, with only 5 out of 100 samples failing in
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accurate localization (Jin et al., 2022). Kounalakis N employed deep

learning to identify ripe tomatoes and their stalks, using depth

information to guide the robotic arm in picking point identification.

Real-world experiments showed a 65% success rate in recognition

and 92.6% accuracy in vision processing for picking point

localization (Kounalakis et al., 2021). Sun T proposed a method

employing deep learning and active perception for robots in

environments with occlusions and varying lighting, achieving a

90% success rate in picking and a 16% average occlusion estimation

error after 300 trials (Sun et al., 2023). Paul A utilized YOLO

algorithms for pepper detection and a RealSense D455 camera to

determine picking point coordinates (Paul et al., 2024). Benavides

M explored the YOLOv8s model, achieving a mAP of 0.614 for

pepper detection, and developed a CVS for automating stalk

recognition in greenhouse tomatoes (Benavides et al., 2020).

Suguru Uramoto et al. processed colour images captured by a

depth camera with the aim of detecting red ripe large tomatoes

and oval mini tomatoes. They then used the depth data captured by

the depth camera to calculate the 3D coordinates of the centre of the

fruit and the diameter of the fruit. Experiments with tomatoes

grown in facility horticulture showed a 96.3 per cent accuracy in

their identification (Uramoto et al., 2021). Shuai, L developed a

method for detecting tea shoots and keypoints as well as picking

point localisation in complex environments. Tea leaves were

recognised using the YOLO-Tea model, which improved the

mean accuracy (mAP) value of tea shoots and their keypoints by

5.26% compared to YOLOv5. In the inference phase of the model,

an image processing method is used to locate the location of the

picking point based on the key point information (Shuai et al.,

2023). Xiong, J constructed a vision system for lychee image

acquisition and proposed a nighttime lychee recognition method

and a picking point calculation method. This analysis was first

combined with a one-dimensional random signal histogram using

an improved fuzzy clustering method (FCM) to remove the

background of the nighttime image instead of the lychee fruits

and stems. The Otsu algorithm was then used to segment the fruit

from the stem base. Harris corners were used for picking point

detection. The rate of change in horizontal and vertical position

between corner points is analysed to identify picking points.

Experiments show that the accuracy of nighttime lychee

recognition is 93.75% and the average recognition time is 0.516 s.

The highest accuracy of picking point calculation is 97.5% and the

lowest is 87.5% at different depth distances (Xiong et al., 2018).

In order to address the challenge posed by the similarity in colour

between string tomato fruit stalks and their main vines, lateral vines,

and branches, coupled with the irregular orientation of the fruit

stalks, making it difficult to precisely delineate the fruit stalk area;

and considering the limitations of depth cameras in capturing the

depth of slender or shorter fruit stalks, leading to significant errors

or complete loss of data, a method for identifying and localizing

string tomato picking points, based on FastMLCA-YOLOv8 and

RGB-D information fusion, is proposed. This method is aimed at

preventing the end-effector from erroneously cutting the main or

side vines while harvesting bunch tomatoes (Suresh Kumar and

Mohan, 2023).
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This study focuses on two aspects of identification and

localization of bunch tomato fruit stalk picking points.(1) The

YOLOv8 model was improved to generate the FastMLCA-

YOLOv8 target detection model, facilitating rapid identification of

fruit stalks by leveraging the connectivity between bunch tomatoes

and their respective stalks.(2) The improved K-means algorithm

(using K-means++ to determine the initial clustering centre and

Silhouette coefficients to find the optimal number of clusters),

morphological corrosion operation and skeletonization zhang

refinement algorithm are used to segment, denoise and refine the

skeletal lines of the fruit stalk image, so as to further determine the

coordinate position information of the picking point on the colour

image. Additionally, to address the issue of missing depth values

resulting from excessively thin or short fruit stalks, a secondary

extraction method is employed to obtain and correct the depth

values, thereby acquiring comprehensive location information for

the picking points.
2 Materials and methods

2.1 Data collection and labelling

2.1.1 Data collection
The data samples for this study were collected from Gertou

Village, Fancun Town, Taigu District, Jinzhong City, Shanxi

Province (Latitude: 37.4110°N, Longitude: 112.5625°E), where the

Melia tomato variety is cultivated, the map is shown in Figure 1A.

The greenhouse, serving as a hub for integrating and demonstrating

advanced tomato production technologies, is recognized as the

largest independent continuous glass greenhouse in Asia. Due to

the close proximity and high density of the shooting environment,

specific requirements were mandated for camera resolution and

focal length. Consequently, iPhone 13 Pro Max, vivo X60, and

Huawei P40pro smartphones were selected for this study. The

cameras, boasting a 2778×1284 12-megapixel resolution and a 77

mm telephoto lens, are adept at swiftly capturing high-resolution

images of fruiting peduncles in intricate settings (Montoya-Cavero

et al., 2022), as well as obtaining high-quality, undistorted data from

various perspectives and angles to satisfy the research requirements.

Data were collected from 15 July 2022 to 31 July 2022 and 28

February 2024, when most of the bunch tomatoes in the greenhouse

were ripe and ready for picking. To ensure the diversity of bunch

tomato peduncle data, peduncles were photographed under

different weather conditions (sunny or cloudy), lighting

conditions (front or backlight), time periods, and angles. For

different angle conditions, a plane parallel to the fruit stalks and

perpendicular to the ground was selected as the reference plane, and

the fruit stalks were photographed from three different angles,

namely 45°, 90° and 135°. The shooting angle diagram is shown

in Figure 1B. At the same time, in order to ensure that each fruit

stalk can be captured in a complete image, let the camera is facing

the fruit stalk to the left and to the right 90° direction to take a photo

each, so that each fruit stalk data 5 complete photos, as shown in

Figure 2. Make sure that a new fruit stalk is observed in each image.
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Compare each image with the previously obtained image, if they

agree then the fruit stalk is complete, otherwise it means that the

fruit stalk is damaged or impaired. The collected images were

uniformly stored in JPG format and the size was set at 3000

pixels by 4000 pixels. The size of the dataset was 10180,under

different conditions,5320 photographs under sunny days, 4860

photographs under cloudy days, 7640 photographs under smooth

light, 2540 photographs under backlight, and 2036 photographs

under each angle.
2.1.2 Data labelling
Following the collection of sample data, images of fruit stalks

were systematically sorted, labelled, and utilized to construct a

dataset for fruit stalk detection. The open-source LabelImg data

annotation tool was employed to label the fruit peduncle data

within a bounding box, designating the peduncle as ‘stem’ in

accordance with standard annotation standards, with the detailed

annotation schematic provided in Figure 3. The annotation file

containing comprehensive information on fruit peduncles is

automatically generated based on the annotation results once the

annotation is completed. During the annotation process, particular

attention was given to ensure that excessively short or obstructed

fruit stalks were not annotated. If a branch resembled a fruit stalk, it

was labeled as such. Images failing to meet the annotation standards

were excluded to ensure the dataset’s accuracy.
2.2 Experimental environment

The configuration parameters of the experimental equipment

utilized in this study are delineated in Table 1. The processor is a

13th Gen Intel(R) Core(TM) i7-13700K×24. The graphics card is an

NVIDIA GeForce RTX 3090. The graphics card’s driver version is
Frontiers in Plant Science 04
NVIDIA-SMI 535.161.07. The system memory is 64GB DDR5. The

operating system employed is Ubuntu 22.04.3 LTS. The depth

camera utilized is an Intel RealSense D455. The depth image

boasts a resolution of 1280x720 and a maximum frame rate of 90

frames per second. The development language employed is Python

3.9.7. The configuration environment’s CUDA version is CUDA

11.5.r.5. The Anaconda version is 4.10.3.
2.3 Experimental process

To address the challenge of identifying and localizing picking

points for bunch tomatoes in greenhouse environments, this study

introduces an innovative method. This method utilizes the

FastMLCA-YOLOv8 target detection algorithm and RGB-D

information fusion technology (Arad et al., 2020; Fu et al., 2020)

to accurately identify and localize picking points for bunch

tomatoes (Klaoudatos et al., 2019), enhancing both the stability

and accuracy of the identification process and reducing the risk of

the end-effector mistakenly severing the main or lateral vines during

the cutting and clamping of bunch tomatoes, thereby improving

both the efficiency and quality of the automated picking process

(Rong et al., 2022, 2023). The FastMLCA-YOLOv8 target detection

model rapidly identifies the minimal rectangular area enclosing

harvestable fruit stalks. Subsequently, the viable fruit stalk region

of string tomatoes is extracted. The K-means algorithm is then

improved by using the K-means++ algorithm to determine the

initialized cluster centers. Subsequently, the sum of the squares of

the shortest distances from all the remaining samples to the existing

cluster centers is calculated, and the next cluster center is selected

based on this probability distribution (Solak and Altinişik, 2018).

Cyclically try different numbers of clusters k, calculate the

Silhouette scores at each value of k, and select the number of

clusters with the maximum average Silhouette score as the optimal
FIGURE 1

Schematic diagram of string tomato shooting angle.
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number of clusters (Shi et al., 2021). Finally, the K-means object is

reinitialized and fitted to the data to obtain the labels and then

revert them to the shape of the image. This is followed by de-noising

and refinement of skeletal lines performed on the segmented image

of the improved K-means algorithm using morphological corrosion

operations and skeletonisation zhang refinement algorithm, so as to
Frontiers in Plant Science 05
further extract the skeletal lines of the fruit peduncle and to

determine the information about the position of the coordinates

of the picking point on the colour image. The RGB-D depth camera

then determines the picking point’s depth value, with the complete

coordinate information obtained following transformation and

correction. The algorithmic steps are illustrated in Figure 4.
FIGURE 3

Demonstration of fruit stem labelling.
FIGURE 2

Sample diagram of a fruit stalk shot. Panels (A–E) represent the shooting angles 45°, 90°, 135°, left 90° and right 90°.
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2.3.1 YOLOv8 model
The YOLOv8 model is a more advanced SOTA model that

builds on the success of previous YOLO versions and incorporates

new features and optimizations designed to further enhance its
Frontiers in Plant Science 06
performance and adaptability (Jocher et al., 2023). Specific

innovations include the introduction of a new core network

YOLO-NAS (Neural Architecture Search), an innovative anchor-

free detection header, and a new loss function YOLOv8 Loss.These

enhancements enable YOLOv8 to operate efficiently across various

hardware environments, including both CPU and GPU, while

achieving substantial improvements in target detection accuracy

and speed. The SOTA model consists of a target detection network

with resolutions of P5 640 and P6 1280, and an instance based on

the YOLACT technology segmentation model; with the same

models as YOLOv5, these include N/S/M/L/X models to suit

different scene requirements (Li et al., 2024).

The YOLOv8 algorithm is a fast object recognition method that

consists of input, Backbone, Neck and output segments: the input

section is mainly responsible for the processing of mosaic data,

adaptive computation of anchors, and adaptive filling of grey scales

of the input image. The core architecture of the YOLOv8 network is

composed of Backbone and Neck modules together. The input

image is co-processed by several Conv and C2f modules for the

purpose of extracting feature maps at various scales. The C2f

module is actually an optimisation of the original C3 module,

which is the module mainly used for residual learning. It

incorporates the advantages of the ELAN structure of YOLOv7 by
TABLE 1 Configuration parameters of the experimental environment.

Configuration name Parameters

Processing Unit
13th Gen Intel(R) Core(TM)

17-13700K×24

Display Card (computer) NVIDIA GeForce RTX 3090

Graphics Card Driver NVIDIA-SMI 535.161.07

Random Access Memory RAM 64G

Development Language Python 3.9.7

Deep Learning Frameworks Tenseflow

Image Acquisition Equipment
iPhone 13 Pro Max, vivox60,

Huawei P40pro

Depth Camera(Getting depth values) Intel RealSense D455

CUDA CUDA 11.5.r.5

Anaconda Conda 4.10.3
FIGURE 4

String tomato picking point identification and positioning process.
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reducing a standard convolutional layer (Li et al., 2024). The Neck

layer is designed based on the FPN+PAN architecture, which is

done to improve the performance of the model in terms of feature

fusion. The structure contains a local region within each layer and

establishes connectivity between each layer. This structure allows

for the successful merging of the upper and lower feature maps

through upsampling and downsampling, and speeds up the

transformation between semantic and localised features. Using

this technique, the network has the ability to more efficiently

integrate the features of objects at various scales, which in turn

enhances the detection of objects at various scales. The detection

head of YOLOv8 adopts the common practice of separating the

classification head from the detection head. It covers loss estimation

as well as filtering functions for the target detection frame. For loss

estimation, the TaskAlignedAssigner method is used to determine

the distribution of positive and negative samples. Positive samples

are selected based on a weighted combination of classification and

regression scores. The calculation of loss is divided into two main

parts: classification and regression, without involving the objectivity

branch. In addition, the YOLOv8 model employs a mosaic-free

enhancement strategy in the last 10 epochs of the training phase.

This practice aims to reduce the interference of data enhancement

on model training so that the model can focus more on processing

real test data, thus improving the final detection accuracy

and performance.

YOLOv8 uses a task alignment distributor to compute a task

alignment metric from classification scores and regression

coordinates. The task alignment metric combines the values of

classification score and joint intersection (IoU), aiming to achieve

simultaneous optimisation of classification and localisation while

suppressing low-quality prediction frames (Chen et al., 2024). In the
Frontiers in Plant Science 07
field of object detection, the joint intersection (IoU) is a widely

adopted metric that is used to distinguish between positive and

negative samples and to evaluate the relative distance of the

prediction frames from the ground reality. When the value of IoU

exceeds 0.5, the object is usually classified as having been detected.

The specific formula is shown in Equation 1.

IoU =
A ∩ Bj j
A ∪ Bj j (1)

Where A represents the area of the predicted frame and B

represents the area of the actual frame. A∩B represents the

intersection area of A and B. A∪B represents the area that is the

union of A and B.

The algorithm for YOLOv8 comprises inference and

subsequent processing steps:
1. Converting the integral form from bbox to bbox 4d;

converting the bbox branch generated by Head and using

operations of softmax and conv to convert the integral

pattern to bbox 4d format;

2. Dimensionality change: YOLOv8 outputs feature maps in

three different scales: 80x80, 40x40 and 20x20. in Head,

feature maps are presented in six different scales for

classification and regression;

3. Decoding recovers the size of the original image: the

branches of the classification predictions are computed

using sigmoid, and the branches of the prediction frames

have to go through a decoding process in order to recover

the actual original image in decoded xyxy format;

4. Filtering operation for thresholding. Each image is

traversed in batch and threshold filtering is performed
FIGURE 5

Structure of FastMLCA-YOLOv8.
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Fron
using the score_thr method. In this process, multi_label

and nms_pre are also considered to ensure that the number

of filtered detection frames does not exceed nms_pre;

5. Restore to the original image size and nms: on the basis of

the pre-processing process, the remaining detection frames

can be restored to the original graph scale before the

network output with nms. The number of detection

frames generated at the end must not exceed max_per_img.
2.3.2 Improvements to the YOLOv8s model
In this paper, prior to choosing to improve the YOLOv8 model

(Wang, et al., 2023), the YOLOv8 model was compared with other

YOLO models under the same rounds of training on the same

dataset. The results (e.g., Table 3) indicate that the YOLOv8 model

has the following significant advantages over other models and is

more suitable for this study. Firstly, it performs well in handling

targets with different scales and complex backgrounds, which is

compatible with the complexity of the string tomato picking scene.

Secondly, its pre-training accuracy is higher than that of other

models. Thirdly, the GFLOPS of the YOLOv8 model is smaller than

that of other models, and it has a fast recognition speed and good

performance. Therefore, this study improves the YOLOv8 model

and proposes a FastMLCA-YOLOv8 based feature extraction and

classification model. The bottleneck component of the c2f module

has been substituted with that of Fasternet, resulting in the c2f-

faster module. Fasternet's bottleneck architecture provides superior

parameter optimization capabilities, which improve not only

network performance and detection precision but also increase

the model's training and inference speed, thereby enhancing the

system's real-time functionality (Guo et al., 2024). Concurrently,

this bottleneck architecture enables more effective integration of

disparate layer feature information, thereby providing a more

nuanced and precise feature representation capability that

improves target detection accuracy.

Based on the c2f module, the MLCA attention mechanism is

then added after the backbone network as a way to improve the

model’s attention and accuracy to the target. The MLCA attention

mechanism enables the model to concentrate more effectively on

salient features, thereby enhancing detection performance and

decreasing the false detection rate. In this study, the integration of

the c2f-faster module and the MLCA attention mechanism allows

the YOLOv8 model to more efficiently capture contextual

information and detailed target features, thus enhancing the

accuracy and robustness of detection. The enhanced structure of

YOLOv8 is illustrated in Figure 5.

The specific execution process of the FastMLCA-YOLOv8

model is as follows:
1. Prior to being input into FastMLCA-YOLOv8, the image is

resized to 640 × 640 × 3. The input image undergoes feature

extraction by the backbone network to obtain a series of

feature maps at different scales;

2. Subsequent feature learning and compression are executed

using Fasternet’s bottleneck structure;
tiers in Plant Science 08
3. Incorporate the MLCA attention mechanism following the

backbone network.;

4. Feature maps enhanced by the MLCA attention mechanism

are sent to the detection head for target classification and

bounding box regression;

5. At each scale, bounding boxes are filtered through the non-

maximum suppression (NMS) algorithm to eliminate

redundant detection results;

6. Ultimately, bounding boxes processed by NMS are rescaled

to the original image dimensions, and the final target

detection results are produced.
TABLE 2 Parameter description table.

Hyperparameterisation Value Clarification

Classes stem Category of identification

Image Size 640×640×3 Input Image Size

Epochs 200 Training Round

Batch-Size 64
Amount of data processed

per batch

Workers 16
Controls the number of
working threads of the

data loader

Stride 1 Step Size Setting

Activation-Function SiLU
Specific use of activation

function types
FIGURE 6

FastMLCA-YOLOv8 training result plot.
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2.3.3 FastMLCA-YOLOv8 model to recognize
fruit stalks

The FastMLCA-YOLOv8 model environment was established

on Ubuntu for training and analysis purposes. The dataset

annotations were converted from XML to TXT format, and the

annotated dataset comprising 10180 entries was partitioned into

training, validation, and test sets at a ratio of 8:1:1. The data utilized

for the model comprised sample images varying in resolution, size,

saturation, and angle. The model parameters were adjusted before

running (Zhaoxin et al., 2022), with epchos modified to 200 and

batch-size to 64, and the specific parameter settings are shown in

Table 2. Under NVIDIA GeForce RTX 3090, during running, the

model training time is only 3.203 hours. Of this, preprocessing takes

0.9 ms, inference takes 2.0 ms, loss calculation is 0.0 ms, and

postprocessing per image takes 0.8 ms. The inference speed (FPS)

reaches 270.3 fps, which can meet the demand for real-time

detection of string tomato picking robots. The results obtained

are demonstrated in Figure 6.

2.3.4 Extraction of fruiting peduncle ROI regions
Following the identification of fruit stalks in the tomato image

via the FastMLCA-YOLOv8 algorithm, an extraction algorithm

isolates the fruit stalk region as the Region of Interest (ROI) for

further processing. The image, post fruit stalk extraction, is depicted

in Figure 7.

2.3.5 Refinement of the skeletal line of the
fruiting peduncle

After using the ROI region extraction algorithm, the rectangular

box where the pickable fruit stalks are located can be extracted, but it

still can’t meet the demand of robotic picking, and it needs to be further

researched on the fruit stalk region. In comparison to traditional

segmentation algorithms like Otsu and Watershed, the convolutional

neural network-based segmentation algorithm exhibits good
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robustness and can adapt to different lighting scenarios, thus this

study adopts the improved K-means segmentation algorithm for

segmenting the ROI region (Chakraborty et al., 2024).

The K-means algorithm uses distance as a criterion for assessing

similarity. In other words, the shorter the distance between data

objects, the more similar they are and the more likely they are to

belong to the same category. The K-means algorithm operates as

follows: in order to form the initial centres of the k groups, k data

objects are first randomly selected from the dataset; the relative

distance between each data object and the centre of the cluster in

which it is located is then computed, and after that, the data objects

are classified as being closest to the centre of the cluster; Eventually,

the centre of each cluster is redefined by updating the centre of each

cluster and adopting the average of all objects in the cluster as the

new centre. The previous steps are repeated until the values of both

the new and original cluster centres fall below a certain threshold, at

which point the algorithm terminates.

In the improved K-means algorithm, K-means++ is used for

cluster centre initialisation during cluster initialisation, where

K-means++ randomly selects samples as the first cluster centre.

Next, the sum of the squares of the shortest distances from all the

remaining samples to the existing clustering centres is computed,

and the next clustering centre is selected based on this probability

distribution. Then, different numbers of clusters are tested in a loop,

and Silhouette scores are calculated at each value of k, with the

maximum average Silhouette score selected as the optimal number

of clusters. The optimal number of clusters is determined by adding

the silhouette coefficient to sil_scores + 2. Finally, the K-means

object is reinitialized and fitted to the data to obtain the labels and

reverts them to the shape of the image. Throughout the clustering

process, by setting the parameter n_init to 10, the K-means

algorithm will be iterated 10 times and the clustering result that

minimises the SSE will be chosen as the output, the segmentation

result is shown in Figure 8A.
FIGURE 7

Fruit stalk ROI region extraction map.
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After segmenting the fruit stalks using the improved K-means

algorithm, there are still some isolated small spots in the image and

noise problems such as burrs on the surface of the fruit stalks,

internal holes, etc., which need to be processed using the corrosion
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operation to completely segment the background from the fruit

stalks, and the corrosion results are shown in Figure 8B. The

corrosion operation shrinks each subset B+A in the image A that

corresponds exactly to the structural element B, as shown in
FIGURE 9

Picking point coordinate information map.
FIGURE 8

Resulting plot of segmentation, erosion and refinement.
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Equation 2.

  S = A⊗B = x, y j (B)xy⊆Af g (2)

The corroded fruit stalk images were then refined using the

skeletonised zhang refinement algorithm. The zhang refinement

algorithm is performed iteratively and all non-zero pixels need to be

read each time the algorithm is run. In deciding whether to delete or

retain each pixel (P1), close attention must be paid to the specific

values of the eight pixels (P2 P3 P4 P5 P6 P7 P8) in its vicinity.

Meanwhile, in the refinement process, the endpoint judgement

condition is added, if only one pixel point in the 8-neighbourhood

of a pixel point is a foreground pixel point except the point itself,

i.e., the other 7 pixel points are background pixel points, then this

pixel point can be considered as an endpoint, and the result of the

refinement is shown in Figure 8C. By judging and deleting these

endpoints, the main line strips can be better preserved and the fruit

stalks can be refined completely.

2.3.6 Obtaining picking point
coordinate information

To prevent end-effector damage to the fruit stalks and main stem,

short distances were prioritized during the picking process (Chen

et al., 2023). The picking point was designated at the centre of the

fruit stalk refinement map. In the skeletonized image, the clustered

tomato fruit stalks extend almost from the top to the bottom. The

precise location of the picking point is identified by the intersection of

the image’s top and bottom centre lines with the fruit stalk’s skeletal

line. The skeletonized image is converted to binary format, with pixel

values of 1 assigned to the skeletal structures and 0 to others. By

analysing pixel values along the centre line, the coordinates of the

picking point in the skeletonized image are ascertained, as illustrated

in Figure 9.
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2.3.7 Secondary extraction method to obtain
depth values

After obtaining the 2D coordinate information of the fruit stalk

picking point, the depth value and 3D coordinate information of the

picking point (Bai et al., 2023) need to be further determined. Depth

information for normally growing fruit stalks can be directly obtained

using an RGB-D depth camera. However, in practical applications,

fruit stalks may exhibit slender or overlapping characteristics, leading

to issues with the depth camera failing to obtain depth information

and duplicated identification of fruit stalks during depth acquisition.

Consequently, this study introduces a secondary extraction method

to address these challenges.

The eroded fruit stalk image is converted into a binary map,

where the white regions represent the fruit stalk with a value of 1,

and the black background has a value of 0. The binarized image is

subjected to dot multiplication with the fruit stalk depth image,

facilitating the extraction of depth data from the fruit stalk region,

labelled as {n0}. Considering the errors in depth values and the

imprecision in fruit stalk region segmentation, the extracted depth

set {n0} undergoes validity analysis, excluding depth ranges between

400-1000 mm to derive the residual depth set {n1}. The average

value D1 of the depth set {n1} is calculated, designating the initial

picking point depth value as D. The absolute difference between D1

and D is compared with the reference value k. If |D1-D|≤k, D is

selected as the picking point’s depth value; if |D1-D|>k, D1 is

selected instead. The reference value k can be experimentally

determined as the maximum value of |D1-D|. Following the

transformation and correction of the depth value acquired by the

RGB-D depth camera, the 3D coordinate information (Ge et al.,

2020) and depth value of the fruit stalk picking point are obtained,

as depicted in Figure 10.
FIGURE 10

Picking points to obtain depth values. panel (A) Original map, (B) Map showing depth values and coordinate information.
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3 Results

3.1 FastMLCA-YOLOv8 result analysis

3.1.1 Analysis of training results
The number of training rounds for the dataset using the

FastMLCA-YOLOv8 model was set to 200 because the model

iterates to 200 rounds to achieve the best results, stopping the

training process. The RESULT results produced are shown

in Figure 11.

Several key parameters for evaluating the model performance in

the figure include bounding box loss, classification loss, feature

point loss, precision, recall, and mean accuracy (mAP). The

bounding box loss (box_loss) measures the positional accuracy of

the predicted box by calculating the intersection and concurrency

ratio (IOU) between the predicted box and the real box, which is

converted into a loss value that reflects the accuracy of the model in

locating the object. Classification loss (cls_loss), on the other hand,

evaluates the classification performance of the model by comparing

the difference between the predicted category distribution and the

real category labels and then computing a loss value for

classification. Feature point loss (dfl_loss) is employed to measure

the disparity between predicted and actual feature points and

evaluate the accuracy of feature point prediction. Furthermore,

precision indicates the number of objects predicted by the model

as positive examples that are actually real objects. This metric is

utilized to measure the accuracy of the prediction results. Recall, on

the other hand, refers to how many of all the objects that are

actually positive cases are correctly detected by the model, reflecting

the model's detection capability. mAP50 (mean accuracy at an IoU

threshold of 0.5) evaluates the model's overall detection

performance at lower IoU thresholds, while mAP50-95 (mean
Frontiers in Plant Science 12
accuracy at IoU thresholds ranging from 0.5 to 0.95) provides

model accuracies over a wider range of IoU thresholds, which are

typically used to measure the overall performance of a model.

From the figure, it can be seen that the loss functions (Shuai

et al., 2023) of both training and testing datasets are decreasing

sharply, the loss function curve of val has stabilised at 100 rounds,

and the loss function curves of train are all in a gradual process of

decreasing. The curves of precision, recall,mAP50, and mAP50-95

are all gradually increasing, and converging to a steady state.

3.1.2 YOLO model training results
Comparative analysis with various YOLO target detection

models demonstrates that the FastMLCA-YOLOv8 algorithm

excels in terms of recognition speed and accuracy. These

comparative results are meticulously documented in Table 3.

The table presents mAP@.5 scores for various YOLO target

detection models: 0.828 for YOLOv5, 0.878 for YOLOv6, 0.864 for

YOLOv7, and 0.885 for YOLOv8s. Remarkably, the FastMLCA-

YOLOv8 model achieves an mAP@.5 score of 0.913, signifying a

substantial 2.8% accuracy improvement compared to YOLOv8s.

Then analyse the results obtained after running these models, as

depicted in Figure 12.

Comparison of training results using detection model

evaluation metrics that include the mAP@0.5 and mAP@0.5:0.95

metrics. The YOLOv5 curve experiences a relatively large decrease

between rounds 25-75, before gradually stabilizing after round 75.

Similarly, the YOLOv6 curve experiences a small decrease between

rounds 75-125 and stabilizes after 125 rounds. In contrast, the

YOLOv7 curve shows a substantial decrease up to round 25, with

additional significant decreases between rounds 25-50, gradually

converging to a relatively stable state after round 50. The YOLOv8s

curve exhibits a substantial increase prior to 75 rounds, gradually
FIGURE 11

FastMLCA-YOLOv8 result.
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stabilizing after 75 rounds, while the FastMLCA-YOLOv8 curve

shows a gradual increase and stabilizes at 125 rounds (Zhu et al.,

2023), reaching a relatively desirable level. In the mAP@0.5 graph,

the mAP values for all models range between 0.8 and 1, yet the

FastMLCA-YOLOv8s curve distinctly surpasses the other four. So

the FastMLCA-YOLOv8 model recognised fruit stalks with higher

accuracy and speed than other YOLO models.

To further validate the high accuracy and performance of the

FastMLCA-YOLOv8 model, we conducted training sessions with

the more advanced SSD algorithm and RT-DETR model on the

same dataset for an equal number of epochs. The results are

presented in Table 4 and Figure 13. From the table, it can be

observed that the SSD model, due to its characteristics of utilizing

multi-scale feature maps and predicting multiple prior boxes,

achieved a precision (P%) and mAP@.5:.95% of 0.922 and 0.611,

respectively, which are 2 percentage points and 13.8 percentage

points higher than those of the FastMLCA-YOLOv8 model.

However, its recall rate (R%) and mAP@.5% were lower by 48.4

and 22.6 percentage points, respectively, compared to the
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FastMLCA-YOLOv8 model. Additionally, the SSD model’s

computational resource consumption exceeded that of the

FastMLCA-YOLOv8 model by 11.5 GFLOPs. Overall comparison

reveals that the SSD model exhibits lower recall and precision rates

compared to the FastMLCA-YOLOv8 model, and it consumes more

computational resources. In comparison to the FastMLCA-

YOLOv8 model, the RT-DETR model demonstrates lower

precision (P%), recall (R%), mAP@.5%, and mAP@.5:.95% by

10.1, 7.1, 7.2, and 6.6 percentage points, respectively.

Furthermore, the RT-DETR model consumes 86.2 more GFLOPs

than the FastMLCA-YOLOv8 model. Overall, the RT-DETR model

exhibits inferior performance in terms of precision, recall, and

average precision, while requiring more computational resources.

Therefore, the FastMLCA-YOLOv8 model demonstrates excellent

recall and precision performance with lower computational resource

consumption, enabling rapid and accurate identification of fruit

stems, thus meeting the requirements for robotic detection tasks.

FastMLCA-YOLOv8 model performs better in terms of mAP@

0.5 compared to YOLOv5, YOLOv6, YOLOv7, YOLOv8, and
TABLE 3 Comparison of YOLOv5, YOLOv6, YOLOv7, YOLOv8 and FastMLCA-YOLOv8 training data.

Recognition Model Precision P% Recall Rate R% mAP@.5% mAP@.5:.95% GFLOPs

YOLOv5 0.861 0.764 0.828 0.380 15.8

YOLOv6 0.845 0.795 0.858 0.411 16.7

YOLOv7 0.837 0.807 0.864 0.409 103.2

YOLOv8 0.865 0.794 0.885 0.433 28.4

FastMLCA-YOLOv8 0.902 0.831 0.913 0.473 14.4
FIGURE 12

Comparison of training results. Panel (A) mAP@0.5comparison chart, (B) mAP@0.5:0.95comparison chart.
TABLE 4 Comparison of FastMLCA-YOLOv8 with SSD and RT-DETR Training Data.

Recognition Model Precision P% Recall Rate R% mAP@.5% mAP@.5:.95% GFLOPs

FastMLCA-YOLOv8 0.902 0.831 0.913 0.473 14.4

SSD 0.922 0.343 0.687 0.611 25.9

RT-DETR 0.801 0.760 0.841 0.407 100.6
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RT-DETR models, with improvements of 8.5, 3.5, 4.9, 2.8,

and 22.6 percentage points, respectively. These results highlight

the FastMLCA-YOLOv8 model’s superior recognition rate,

specifically enabling accurate identification of fruit stalks.

Additionally, its GFLOPs (Giga Floating Point Operations Per

Second) value of 14.4 is the smallest among the compared

models, proving that the FastMLCA-YOLOv8 model requires less

computational resources to support its operation compared to other

models. However, in the mAP@0.5:0.95% comparison, the

FastMLCA-YOLOv8 model shows improvements of 9.3, 5.8, 6.4,

4, and 6.6 percentage points compared to YOLOv5, YOLOv6,

YOLOv7, YOLOv8, and RT-DETR, but a decrease of 13.8

percentage points compared to SSD. This indicates certain

limitations in the detection performance of the FastMLCA-

YOLOv8 model at IoU thresholds. Further enhancements are

required to improve the detection performance and submit

detection accuracy.

3.1.3 Indicators for model evaluation
The primary metrics used to evaluate the detection model are

mAP and FPS. mAP represents the mean average precision, derived

from the model’s precision and recall, while FPS indicates the

inference speed. In this study, average precision is quantified by

an area AP value, encapsulated within a Precision-Recall curve, and

the F1 score is determined as delineated subsequently. Precision, or

the precision rate, is defined as the ratio of correctly identified

positive samples to all samples labeled as positive by the

modelRecall, or the recall rate, signifies the proportion of actual

positive samples that the model correctly identifies as positive. The

accuracy and completeness are defined as Equations 3–5,

respectively.

Accuracy   rate :  Precision   =
TP

TP + FP
(3)
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Check   all   rate   (recall) :  Recall   =
TP

TP + FN
(4)

Flscore = 2
Precision� Recall
Precision + Recall

(5)

When the target is classified as positive and others are classified

as negative, True Positives (TP) are instances where the target is

correctly predicted as positive. False Negatives (FN) occur when a

positive target is incorrectly predicted as negative. False Positives

(FP) are instances where a negative target is incorrectly predicted as

positive. True Negatives (TN) occur when a negative target is

correctly predicted as negative.
3.2 Analysis of fruit stalk
segmentation results

The application of the K-means algorithm in segmenting fruit

stalk images frequently introduces noise into the segmentation

outcomes, prompting the adoption of an optimized and enhanced

K-means algorithm for image segmentation. The enhanced K-

means algorithm more precisely determines the initial clustering

centre, mitigating the risk of converging to local optima and thus

improving the clustering accuracy. The Silhouette coefficient

autonomously identifies the optimal number of clusters,

circumventing the subjectivity inherent in manual selection and

ensuring greater clustering precision. Figure 14 illustrates the

comparative graph between the results processed by the improved

and original K-means algorithms. The Cluster Result demonstrates

that the improved K-means algorithm effectively differentiates the

background from the fruit stalks, as well as the fruit stalks from the

fruits. It is observable that while the original K-means algorithm

requires multiple iterations to finalize clustering and segmentation,

the improved K-means algorithm achieves clustering results in just
FIGURE 13

FastMLCA-YOLOv8 with SSD, RT-DETRmap@0.5 results chart.
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three iterations. Furthermore, after one iteration, the pixel values of

the cluster centre stabilize throughout the iterative process,

resulting in improved clustering outcomes.

The line graph of the Silhouette coefficient elucidates the

variation in the Silhouette coefficient across different cluster counts,

with the x-axis representing the number of clusters (k) and the y-axis

representing the Silhouette coefficient. In Figure 15, the red dotted

line signifies that the optimal cluster count is 3, denoting that the

Silhouette coefficient attains its maximum value at this cluster count.
3.3 Analysis of results for reference value k

To address the issue of missing depth information in fruit stalks,

this study implements a secondary extraction method. Within this
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method, the reference value k was empirically determined using 10

randomly selected fruit stalks that possessed complete depth data.

The depth value derived from the secondary extraction method

is denoted as D1, whereas the initial depth value obtained directly

for the picking point is designated as D. Subsequently, the absolute

difference between D1 and D is calculated, with the experimental

findings summarized in Table 5.

Data in Table 5 indicate that the maximum value of |D1-D| is

247.89 mm, the minimum value is 174.47 mm, and the mean value

is 215.68 mm. Consequently, k can be set to the mean value of

215.68 mm as the reference value. This indicates that the secondary

extraction method not only effectively addresses the issue of missing

depth values for fruit stalks in the depth map but also discerns the

loss of depth information, thereby enhancing the precision of the

depth value at the picking point.
FIGURE 14

Comparison of improved K-means processing results with original K-means processing results. Panel (A) K-means result split plot, (B) K-means++
segmentation result plot.
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3.4 Depth value error analysis

The distance between the fruit stalk and the end-effector’s shear

centre point during the shearing process served as an evaluation

criterion for assessing the positioning accuracy of the string tomato

picking robot (Luo et al., 2018) at the picking point. The depth value

of the picking point derived from the image was compared with the

actual depth value, revealing an error range of ±2.5 mm. The

corresponding error equation is presented in Equation 6. An

analysis of the depth error at the picking point is detailed in Table 6.

e(x) = x − x* (6)
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where e(x) represents the absolute error, x represents the depth
value acquired by the depth camera, and x* represents the actual

depth value.
4 Discussion

The growth patterns of tomato fruit stalks in diverse

environments result in varied growth attitudes, necessitating

considerations of these attitudes, potential obstructions, or

insufficient stalk length during the identification of picking

points. Such factors can lead to unrecognizable fruit stalks or

issues with missing depth values, requiring the formulation of

appropriate solutions. This paper delves into the identification

and localization of fruit stalks in hanging tomato bunches
FIGURE 15

Silhouette coefficient processing results chart.
TABLE 5 Comparison of depth values D1 obtained by secondary
extraction method and original depth values D.

Serial
number

Original
Depth
D/mm

Mean
Depth
D1/mm

Absolute
Difference
|D1-D|/mm

1 526.32 306.73 219.59

2 472.83 298.36 174.47

3 589.73 341.84 247.89

4 610.52 405.79 204.73

5 565.33 364.91 200.42

6 723.46 477.90 245.56

7 534.65 321.50 213.15

8 582.76 351.02 231.74

9 631.78 425.69 206.09

10 574.39 361.25 213.14
TABLE 6 Depth value error analysis.

PanelActual
Depth Value

x*/mm

PanelCaptured
Depth Value

x/mm

PanelDepth Value
Error e(x)/mm

740.57 741.63 1.06

575.05 577.14 2.09

643.89 641.86 -2.03

662.32 664.21 1.89

710.59 708.65 -1.94

601.31 601.32 0.01

564.44 566.92 2.48

524.09 521.63 -2.46
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cultivated in greenhouse settings, providing an in-depth discussion

and analysis.

Exploratory experiments aimed at enhancing the recognition rate

of the YOLOv8model were conducted. A comparative analysis was

performed on the training of the fruit stalk dataset using various

YOLO models, leading to the adoption of an improved YOLOv8s

target detection model for fruit stalk recognition. In a study to

improve the YOLOv8 model and increase recognition rates.

Tianyong Wu introduced the lightweight SEConv convolution in

place of the standard convolution in the YOLOv8 model, reducing

the network’s parameters, accelerating the detection process, and

enhancing the algorithm’s performance (Wu and Dong, 2023).

Shichu Li proposed the YOLOv8 - AFPN - M - C2f algorithm,

which replaces the YOLOv8’s head with the AFPN - M - C2f

network, enhancing the model’s sensitivity to smaller objects

(Li et al., 2023) Yang G proposed an improved YOLOv8s-based

automatic tomato detection method, replacing standard convolution

with depth separable convolution (DSConv) and incorporating a

DPAG module to enhance detection accuracy in complex

environments (Yang et al., 2023). In this study, the YOLOv8 model

is enhanced by replacing the Fasternet bottleneck with the C2f

bottleneck and integrating the MLCA attention mechanism post-

backbone network, thereby developing the FastMLCA-YOLOv8

model. This novel model excels in identifying fruit stalks that

closely resemble main stems and leaves within complex scenes.

Comparative analysis with other YOLO models, as illustrated in

Table 3, reveals that the FastMLCA-YOLOv8 model achieves a

recognition rate of 91.1%, successfully balancing speed and

accuracy. Nonetheless, the improved model has certain limitations,

such as its applicability in specific environments and dataset selection,

which require further validation and refinement.

In order to improve the image segmentation accuracy, YanPing

Zhao introduced a similarity calculation method addressing the K-

means algorithm’s limitations, utilizing weighted and Euclidean

distances. Experimental results demonstrate that this new algorithm

surpasses the traditional K-means in efficiency, accuracy, and

stability (Zhao and Zhou, 2021). Shyr-Shen Yu proposed a

hierarchical approach with three-level and two-level K-means

algorithms, where a robust set of initial clustering centres

mitigates anomalies, enhancing data clustering accuracy (Yu

et al., 2018). Chaturvedi E N introduced a novel K-means

clustering algorithm that systematically calculates the initial

centre of mass, improving both accuracy and processing time

(Chaturvedi and Rajavat, 2013). To ensure successful separation

of fruit stalks from the fruit stalk image, the K-means++ clustering

method is applied to initialize cluster centres. Furthermore,

Silhouette coefficients are used to automatically determine the

optimal number of clusters for segmenting the fruit stalk region.

The results demonstrate that the improved K-means segmentation

algorithm not only effectively distinguishes the background from

the fruit stalks but also accurately separates the fruit stalks from

overlapping fruits, thus enhancing depth accuracy. However, this

approach may face challenges when dealing with high-complexity

scenes and may exhibit reduced segmentation performance under

extreme lighting conditions. These limitations warrant further

investigation and resolution in future research.
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To solve the problem of missing depth values due to the limited

accuracy of depth cameras. The quadratic extraction method in this

paper is analysed in comparison with the algorithms proposed by other

researchers. Satapathy Sukla addressed missing data in depth maps by

employing hyperpixel division on the corresponding RGB image; the

method estimates missing information in degraded observations

through self-similarity across non-local patches within the hyperpixel

search window (Satapathy and Sahay, 2021). Hsu H applied a

supervised learning approach to address depth value discrepancies in

colour images, effectively predicting depth values within gaps (Hsu

et al., 2022). Ali M A used deep metric learning to make Mis GAN for

multi-taskmissing data filling. The semantic representation of an image

is extracted using an image feature extraction network and deep metric

learning is performed to learn good feature embeddings by maximizing

inter-class differences and minimizing intra-class differences. The

proposed method is demonstrated to significantly outperform other

methods by conducting several experiments on the dataset (Al-taezi

et al., 2024). In this study, the secondary extractionmethod is employed

to retrieve effective depth values from binarized images of fruit stalks

and compare them with the original depth values of picking points to

ascertain accurate depth measurements. This method achieves optimal

depth determination for picking points, ensuring precision in depth

estimation crucial for tomato harvesting applications. The findings

underscore the method’s efficacy in tackling challenges related to the

slender nature of fruit stalks and maintaining depth map integrity,

thereby enhancing overall accuracy in depth estimation.
5 Conclusions

In this study, we chose the fruit stalks of bunch tomatoes grown by

hanging in greenhouses as the research object.Specifically, we

conducted an in-depth investigation into the visual localisation of the

picking position for bunch tomatoes. To address the challenge of

identifying and locating the picking points of bunch tomatoes in

complex environments, a picking point identification and localisation

method based on FastMLCA-YOLOv8 and RGB-D information fusion

is proposed, which initially constructs a FastMLCA-YOLOv8 model

for identifying the fruit stalks of bunch tomatoes; subsequently, a

cropping algorithm is used to crop the fruit stalks individually out of

the bunch tomato image, and then a improved K-means, corrosion

algorithm, zhang refinement and other algorithms are used to segment,

denoise and refine the skeletal lines of the fruit stalk region to obtain the

specific coordinate information of the picking point of the string

tomato in the image; finally, the depth value of the fruit stalk is

extracted by using the RGB-D depth camera and the secondary

extraction method to obtain the three-dimensional coordinate

information and depth value of the picking point. The results show

that this study achieves 91.1% recognition rate for fruit stalks, which

improves the accuracy by 2.8% compared to the YOLv8 model. The

improved K-means algorithm is able to completely separate the fruit

stalk region from the background region compared to the original

algorithm. The error range of the depth value is only ±2.5 mm, which

provides the necessary data support for the picking robot.

Simultaneously, the identification and localisation method proposed

in this study is not only applicable to the picking points of tomato
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bunches, but also applicable to the identification and localisation of

picking points of other bunches of harvested fruits in complex

environments. Nevertheless, there are some limitations in this study,

future efforts will focus on improving and optimizing the picking point

identification and localization method to enhance system performance

and stability.

In this study, ripe bunch tomato fruit stalks grown by hanging

in greenhouse greenhouses were selected as the research object, and

the picking location of bunch tomatoes was studied in depth for

visual localisation. In order to solve the problem of identifying and

locating the picking points of string tomatoes in complex

environments, an improved YOLOv8 and depth camera fusion

method for identifying and locating the picking points of string

tomato fruit stalks is proposed, which firstly constructs a

FastMLCA-YOLOv8 model for identifying the fruit stalks of ripe

string tomatoes; after that, a cropping algorithm is used to crop the

fruit stalks individually out of the string tomato images, and then an

improved After that, the fruit stalk is cropped out from the bunch

tomato image using the cropping algorithm; then the fruit stalk is

segmented, denoised and the skeletal lines are refined using the

improved K-means, corrosion algorithm and zhang refinement

algorithms to obtain the specific coordinate information of the

picking point of the bunch tomato in the image; finally, the depth

value of the fruit stalk is extracted using the RGB-D depth camera

and the quadratic extraction method, and then the three-

dimensional coordinate information and the depth value of the

picking point are obtained. The results indicate that the recognition

rate of fruit stalks in this study reaches 91.1%, which represents a

2.8% improvement in accuracy compared to the YOLOv8 model.

The improved K-means algorithm can completely separate the fruit

stalk region from the background region compared to the original

algorithm. The depth value error is limited to ±2.5 mm, providing

essential data support for the picking robot. Simultaneously, the

identification and localization method proposed in this study is not

only applicable to the identification and localization of the picking

points of string tomatoes but also to the identification and

localization of the picking points of other string-harvested fruits

in complex environments.

However, there are some limitations in this study, and

subsequently we will further enhance the accuracy and stability of

detecting targets at fruit stalk picking points of bunch tomatoes to

ensure that the targets can be effectively identified and localized in a

variety of complex scenarios. Secondly, the current detection

method for fruit stalk picking points has challenges in dealing

with the situation where the fruit stalks are occluded, and further

research and improvement of the algorithm are 646 needed. In the

future, we will focus our research on the study of occluded fruit

stalks and fruit stalks that are too short to accurately find the

picking point, and reduce the error of the depth camera in acquiring

the depth value. Finally, the proposed method will be refined and
Frontiers in Plant Science 18
optimized to enhance the identification and localization of picking

points for various fruits and vegetables.
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