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Seed germination vigor is one of the important indexes reflecting the quality of

seeds, and the level of its germination vigor directly affects the crop yield. The

traditional manual determination of seed germination vigor is inefficient,

subjective, prone to damage the seed structure, cumbersome and with large

errors. We carried out a cucumber seed germination experiment under salt stress

based on the seed germination phenotype acquisition platform. We obtained

image data of cucumber seed germination under salt stress conditions. On the

basis of the YOLOv8-n model, the original loss function CIoU_Loss was replaced

by ECIOU_Loss, and the Coordinate Attention(CA) mechanism was added to the

head network, which helped the model locate and identify the target. The small-

target detection head was added, which enhanced the detection accuracy of the

tiny target. The precision P, recall R, andmAP of detection of themodel improved

from the original values of 91.6%, 85.4%, and 91.8% to 96.9%, 97.3%, and 98.9%,

respectively. Based on the improved YOLOv8-ECS model, cucumber seeds

under different concentrations of salt stress were detected by target detection,

cucumber seed germination rate, germination index and other parameters were

calculated, the root length of cucumber seeds during germination was extracted

and analyzed, and the change characteristics of root length during cucumber

seed germination were obtained, and finally the germination activity of

cucumber seeds under different concentrations of salt stress was evaluated.

This work provides a simple and efficient method for the selection and breeding

of salt-tolerant varieties of cucumber.
KEYWORDS

cucumber seed, phenotype acquisition system, target detection, YOLOv8 improvement,
seed germination vigor assessment
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1 Introduction

At present, climate change, land degradation, and other

environmental problems have brought great challenges to food

security in China and the world. An in-depth analysis of crop

genes to the phenotype of the environmental regulatory network, as

well as the selection and breeding of novel high-yield, high-quality,

green, and anti-stress varieties, can ensure the security of the

national seed industry and food security. Cucumber (Cucumis

sativus L.) is an annual climbing herbaceous plant of the

Cucurbitaceae family, which is rich in nutritive value and

adaptable; it is one of the widely grown vegetable crops in the

world (Alsaeedi et al., 2019). Salt stress is one of the main factors

leading to abiotic stress on plant growth and yield and one of the

ecological crises facing agricultural production (Abdel-Farid et al.,

2020). In China, the promotion of facility-based vegetable

cultivation, especially greenhouse and greenhouse cultivation area,

has expanded dramatically. However, given that soils in these

facilities are seldom subject to rainfall, coupled with over-

application of chemical fertilizers and long-term continuous

cropping, soil secondary salinization (Li et al., 2014) has become

a widespread problem, greatly affecting the efficiency of facility

utilization and the sustainable development of facility vegetables.

Salinity is becoming an increasingly prominent problem in modern

agricultural production (Zhao et al., 2022). Salt stress can lead to

excessive accumulation of salts in plants, causing ion toxicity,

damaging the plant body, and leading to plant death (Zhou et al.,

2021), which can seriously affect crop yield and quality.

Therefore, breeding salt-tolerant varieties that can grow and

develop normally in saline environments has become a pressing

issue in today’s agricultural production to improve the salt tolerance

of crops. Seed germination vigor detection is crucial for the selection

of superior varieties, and traditional seed germination vigor

detect ion mostly rel ies on manual counting, manual

measurement, and visual inspection, which feature low work

efficiency, strong subjectivity, large error, and seed destruction;

unfortunately, these methods are unable to satisfy the needs of

modern breeding technology (ElMasry et al., 2019; Halcro et al.,

2020; Hong et al., 2015; Nguyen et al., 2018). In recent years, image

recognition has been continuously developed and widely used. The

development and advantages of image recognition have been a

significant focus in recent research. Yang et al. (2020) applied the

ResNet50 algorithm to identify surface damage on wind turbine

blades, showcasing the benefits of deep learning classification

methods in image recognition. Mengbei et al. (2021) delved into

image super-resolution reconstruction algorithms based on deep

learning, demonstrating the satisfying effects of incorporating deep

learning ideas into image processing. In recent years, the application

of machine learning (ML) as a non-destructive testing technique

has been widely used in the field of agricultural breeding (Rahman

and Cho, 2016). Joshua Colmer et al. (2020) designed the SeedGerm

system, which combines image acquisition and ML analysis

modules to extract morphological features such as seed size,

width, length, extent, and roundness to gain insight into the

physiological process of seed germination, thereby enabling

automated seed imaging and high-throughput germination
Frontiers in Plant Science 02
analysis. Medeiros et al. (2020) utilized Fourier transform near-

infrared spectroscopy and X-ray imaging to merge data for

nondestructive seed detection and accurate quality classification.

Škrubej et al. (2015) used six ML classification algorithms such as

Support Vector Machines (SVMs) and Artificial Neural Networks

(ANNs) to identify germinating tomato seeds and accurately

calculate the germination rate. Lurstwut and Pornpanomchai

(2017) developed a rice seed germination evaluation system

(RSGES) based on ANN to achieve an accurate assessment of the

germination status of rice in Thailand. Traditional ML is suitable

for small-scale dataset processing and specific shallow feature

information extraction tasks. However, it has difficulty in

adapting to feature recognition in different environments and

meeting the extraction of complex phenotypic gesture feature

recognition in the seed germination process.

In recent years, deep learning techniques have become an

effective method for feature detection; they have made significant

breakthroughs in the field of target detection and have been applied

to agricultural detection in a large number of applications (Yang

et al., 2021). The YOLO series model, as a convolutional neural

network, is widely used in target detection and localization due to its

advantages such as real-time detection and high accuracy. Touko

Mbouembe et al. (2024) realized the detection of tomato fruits in

the natural environment using an improved SBCS-YOLOv5s model

based on YOLOv5; Li et al. (2024) proposed a weed detection

model, YOLOv7-FWeed, which provides an accurate and efficient

solution for weed detection in soybean fields; Zhang et al. (2023)

proposed a new model, MDY7-3PTB, that combines the fast

detection capabilities of DeepLabv3+ and YOLOv7; it realizes the

process of segmenting the tea buds, detecting them, and localizing

them to accurately identify the tea buds’ picking points. Although

the YOLO algorithm is widely used in agriculture, there are few

studies on seed germination vigor detection, and the deep learning

technique greatly reduces the modeling process of seed

discrimination by eliminating the need for feature extraction and

morphological processing of the image during detection (Bai et al.,

2023). Fu et al. (2022) evaluated the germination vigor and salt

tolerance of wheat seeds using the YOLOv4 model; Jiang et al.

(2023) developed the YOLOv8-Peas model to realize the

determination of drought resistance of different varieties of pea

seeds. Rapid identification and localization of seed germination by

deep learning can provide a new solution for seed germination vigor

detection. In this study, using the improved YOLOv8 algorithm

YOLOv8-ECS based on the seed germination phenotype collection

system, we carried out a cucumber germination test in a salt-

stressed environment and successfully extracted the phenotypic

characteristics of cucumber seed germination. Moreover, we

analyzed the characteristics of the changes in the germination

parameters, such as the germination rate, germination index, and

root length, and evaluated the vigor of the cucumber seed

germination under the environment of different concentrations of

salt stress. According to the pre-test, cucumber seeds begin to

sprout their embryonic roots around 24 hours of incubation, and

young leaves sprout after about 48 hours, in order to reduce the

recognition difficulty of the algorithm, we are currently only

investigating the cucumber seed sprouting phenological feature
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extraction within the first 48-hour time period. The system

consisted of three main areas:
Fron
1. The seed germination phenotype acquisition system was

equipped with the growth conditions required for seed

germination, and could realize the complete cycle image

information acquisition and automatic storage of the whole

process of seed germination.

2. The cucumber seed germination test under salt stress

environment was carried out in the collection system, and

NaCl aqueous solution was used to provide the salt stress

environment. Five concentrations of NaCl solution (i.e., 30,

60, 90, 120, and 150 mmol/L) were selected for the test, and

deionized water was used as the control (CK). Images of the

germination of cucumber seeds under different

concentrations of NaCl solution were acquired, and the

cucumber seed germination dataset was constructed.

3. Based on the YOLOv8-n model, the original model loss

function CIOU_Loss was replaced by the ECIoU_Loss loss

function The CA mechanism was added to the model head,

and a small target detection head was added to obtain the

YOLOv8-ECS model for the detection of cucumber seed

germination, which greatly enhanced the accuracy of

phenotypic micro-target feature recognition and

extraction in the process of cucumber seed germination.

The improved model was used to detect the germination

status of cucumber seeds under different concentrations of

salt stress environments, and further calculated and
tiers in Plant Science 03
analyzed germination vigor indexes such as germination

rate, germination index and root length.
2 Materials and methods

2.1 Phenotype acquisition system

The seed germination phenotype acquisition system is shown in

Figure 1, which consisted of three parts: seed germination culture

bin, image acquisition system, and human–computer interaction

module. The incubator was equipped with temperature adjustment

and light adjustment functions, which could adjust the temperature

(15 °C-50 °C) and light in the incubator in real time according to the

environmental status, thereby maintaining a relatively stable

environment for seed germination. Three incubation trays were

placed in the incubator, which could be used to carry out three

concentration stress tests simultaneously. The transmission

mechanism equipped with Hikvision RGB camera (MV-CS060-

10GC) could move back and forth along the linear guideway to

dynamically collect sprouting images at a fixed point. Software

control enabled the timed collection of sprouting images. The

collected images were saved to the corresponding folder through

PLC program control, and the collected sprouting images were

preprocessed and the dataset was produced. A suitable target

detection algorithm was selected to train the produced dataset,

and the optimal model was obtained by comparing the detection
FIGURE 1

Seed germination phenotype acquisition system.
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accuracy and other indexes of each model. Thus, an accurate and

rapid detection result of seed sprouting vitality was obtained, and an

automatic analysis of the seed sprouting phenotypic data could

be realized.
2.2 Data collection and
dataset construction

The experiment was conducted at Nanjing Agricultural

University, and the test variety was ZhiLv 0135 cucumber seed

purchased from Nanjing Green Collar Seed Industry Co. Full,

intact, and uniformly sized cucumber seeds were selected for salt

stress pre-tests in 16 small compartments of culture trays before the

formal test, in which three layers of black filter paper were spread in

the culture trays. The concentrations of 0, 20, 40, 60, 80, 100, 120,

140, 160, 180, 200, 220, 240, 260, 280, and 300 mmol/L NaCl were

applied. To create an aqueous solution, we soaked the seeds in

deionized water for 6 h. After absorbing the water on the surface of

the seeds, the cucumber seeds were spotted in a culture plate, and 16

(4×4) seeds were placed in each small cell and placed into the

germination system for seed germination cultivation. The

temperature of the system was maintained at 26°C (± 1°C).

The mass of the culture trays was weighed at regular intervals

during the germination process using the weighing method, and the

corresponding solution was replenished according to the change in

mass in order to ensure that the concentration of NaCl in the stress

solution was relatively stable. The pre-tests were carried out for 72

h. The NaCl concentration in the 160 mmol/L solution was lower

than that in the 160 mmol/L solution in the pre-tests. Moreover,

seed germination was not observed in the 160 mmol/L

concentration and above. Finally, we chose five NaCl

concentrations of 30, 60, 90, 120, and 150 mmol/L for the formal

test. The formal test seeds were treated in the same way as the pre-

test seeds. A total of 81 (9×9) seeds were placed in each culture

plate, and deionized water was used as the control (CK). Each

concentration was repeated three times. The test parameters are

shown in Table 1, and the specific test steps are shown in Figure 2A.

During the germination process, the camera was set to collect

images every 30 min, and some of the germination images collected

are shown in Figure 2B, which were observed as the phenotypic
Frontiers in Plant Science 04
gesture changed during the germination of cucumber seeds. A total

of 1,728 germination images were collected by applying the

phenotypic collection system. Since the cucumber seed sprouting

phenomenon was not obvious before 24 hours, we eliminated the

images where the sprouting phenomenon was not obvious in the

first 24 hours and selected 500 images among the remaining images

to construct the dataset for the model. We took the root length

elongation to half of the seed length as the germination standard

and used LabelImg software to label the information in the images

into three types: seed, S root (root length not reaching half of the

seed length), and L root (root length more than half of the seed

length), and some of the labeling examples are shown in Figure 2A.

The file marked with LabelImg is stored in xml format, which

cannot be used for training directly. In order to meet the training

requirements of the model, we use the relevant python script to

convert the xml file into a txt file, which contains the normalized

width, height, and center coordinates of the bounding box, as well as

the category labels. After labeling, to enhance the recognition ability

and adaptability to complex environments, prevent overfitting of

the model, and improve the robustness of the model, we performed

image enhancement operations such as horizontal flipping,

rotating, scaling, and adding noise (Figure 3). We processed 100

images with each enhancement to get 500 processed images. Finally,

1000 images were obtained, which were classified into the training

set, validation set, and test set according to the ratio of 7:2:1. After

dividing the dataset, the training set, validation set and test set have

700, 200 and 100 images respectively.

2.2.1 Design of the YOLOv8-ECS algorithm
The You Only Look Once (YOLO) family is a well-known

single-stage target detection network. Since Redmon et al. (2016)

first proposed YOLOv1, the YOLO family has established an

important position in the field of target detection. Released in

2023, YOLOv8 represents the current state-of-the-art in target

detection, image classification, and instance segmentation. As the

latest version of the YOLO series, it offers five different scale models,

namely, YOLOv8-n, YOLOv8-s, YOLOv8-m, YOLOv8-l, and

YOLOv8-x, to accommodate diversified inspection needs. In

constructing its backbone network and Neck part, it draws on the

design concept of YOLOv7 ELAN, which enhances the gradient

flow by adopting the C2f structure instead of the C3 structure, while

adjusting the number of channels according to the different scales of

the model, which significantly improves the performance. In the

Head section, YOLOv8 introduces a novel decoupled head

structure, which is a significant change compared with YOLOv5.

It treats classification and regression tasks separately using two

different loss functions: the classification task uses binary cross

entropy (BCE loss), whereas the regression task combines

distribution focus loss (DFL loss) and complete intersection

union loss (CIoU loss).

Although the YOLOv8 network demonstrates excellent

performance in terms of accuracy and speed of target detection, it

still faces some challenges when detecting tiny targets in complex

environments. To enhance the ability of the model in identifying

and extracting tiny phenotypic features during cucumber seed

germination, we chose YOLOv8-n as the base model. We
TABLE 1 Parameters of emergence test.

Parameters Numerical value

Number of test seeds 1458

Temperature 26°C ( ± 1°C)

Concentration of NaCl (mmol/L) 0 (CK), 30, 60, 90, 120, 150

Number of replicates
per concentration

3

Time of germination 48h

Image acquisition interval 30min

Number of acquired images 1728
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customized and improved it to obtain a model specifically designed

for the detection and identification of tiny targets during the

germination stage of cucumber seeds; this model was named

YOLOv8-ECS. The structure of the model is shown in Figure 4.

The YOLOv8-ECS model mainly consisted of five components:

Input, Backbone, Neck, Head, and Output. First, we replace the

original CIoU loss function with the ECIoU loss function, which
Frontiers in Plant Science 05
facilitated the adjustment of the prediction frames and accelerated

the regression rate. Second, we added a CA mechanism in the Neck

part, which strengthened the localization and recognition capability

of the model for specific targets. Lastly, for the recognition of tiny

phenotypic features in the germination of cucumber seeds, we

added a small-target detecting head, which effectively improved

the model’s detection accuracy.
FIGURE 2

Experimental procedures and dataset construction. (A) Experimental pre-treatment and dataset construction. (B) Image of cucumber seed
germination process.
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2.2.2 EfficiCIoU-Loss loss function
In the field of target detection, the detection process usually

consists of two key components: localization and recognition. The

accuracy of localization mostly relies on the modulation of the loss

function, and several novel loss functions have been proposed
Frontiers in Plant Science 06
(Zheng et al., 2020; Vakili et al., 2023; Sun et al., 2020).

Intersection Over Union (IoU) is widely used in bounding box

regression as a mainstream metric to measure the similarity

between predicted and real bounding boxes. The IoU loss

function was developed to improve the effectiveness of IoU;
FIGURE 3

Data set enhancement.
FIGURE 4

Structure of the YOLOv8-ECS model.
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however, the IoU loss function may fail when the prediction frame

does not overlap with the true frame. To address this challenge,

researchers have developed various IoU-based evaluation

mechanisms to improve the limitations of the original IoU loss

function and significantly enhance its robustness. Among these

methods, including loss functions such as Generalized IoU (GIoU)

(Rezatofighi et al., 2019), Distance Intersection over Union (DIoU),

and Complete Intersection over Union (CIoU) (Zheng et al., 2020),

all of them have achieved remarkable results in the field of target

detection. However, there is still room for optimization. In

particular, CIoU_Loss is one of the best-performing boundary

regression loss functions, which integrates three key geometric

factors, namely, overlap area, centroid distance, and aspect ratio.

It combines the IoU, the Euclidean distance, the corresponding

aspect ratio, and the angle to evaluate the degree of overlap between

the target and the real frame, which is calculated by the following

formulas:

RCIoU =
r2ðb,bɡtÞ

c2
+ av (1)

v =
4
p 2 (arctan

wɡt

hɡt
− arctan

w
h
)2 (2)

LCIoU = 1 − IoU +
r2b,bɡt

c2
+ av (3)

The width and height of the prediction box during regression

cannot be increased or decreased at the same time. In cases where

the width–height differences and their confidence levels are not real,

once the model converges to a line-to-line ratio between the width

and height of the predicted and real frames, it sometimes prevents

the model from optimizing the similarity effectively. To solve the

problem of CIOU_Loss, we calculate the loss function EIOU_Loss

by splitting the aspect ratio influence factor on the basis of

CIOU_Loss to ensure that the aspect of the predicted and real

frames can be optimized effectively. When distant edges are present,

the computation of EIOU_Loss may slow down but will not

converge prematurely. To cope with this problem, we propose a

new augmented loss function, ECIOU_Loss, which facilitates the

adjustment of prediction frames and accelerates the regression rate.

ECIOU_Loss is based on two loss functions: CIOU_Loss and

EIOU_Loss. First, the predicted aspect ratio is adjusted by

CIOU_Loss until it converges to a suitable range. Each edge is

then carefully tuned by EIOU_Loss until it converges to the correct
Frontiers in Plant Science 07
value. ECIOU_Loss is calculated as follows.

ECIOULoss = 1 − IOU + av +
r2(bɡt ,b)

c2
  +  

r2(hɡt ,h)
c2h

+
r2(wɡt ,w)

c2w
(4)
2.2.3 CA mechanism
Attention Mechanism (AM) (Niu et al., 2021; Guo et al., 2022)

is an approach inspired by studies of human vision. In the field of

cognitive science, as a result of the limitations of information

processing, humans selectively focus on a portion of information

while ignoring others. To rationally utilize the limited visual

information processing resources, humans need to select specific

regions and focus their attention on these regions (Sun et al., 2021).

AM consists of two main aspects: selecting the parts that require

attention and allocating limited information processing resources to

the important information. Currently popular in deep learning

networks is the SE (Hu et al., 2018) attention mechanism, which

achieves a significant performance improvement by computing

channel attention on top of 2D pooling, and the computational

cost is relatively low. However, SE attention only considers the

coding of information between channels and ignores the

importance of location information. To solve this problem, Hou

et al. (2021) proposed the Coordinate Attention (CA) mechanism,

which is able to encode horizontal and vertical location information

in the channel attention, thereby enabling the network model to

focus on a wide range of location information without adding

excessive computational cost. The network structure of the CA

mechanism is shown in Figure 5.

2.2.4 Small-target detection head
The original YOLOv8 has three detection heads: P3/8

corresponds to a detection feature map size of 80×80, detecting

targets with a size of 8×8 or more; P4/16 corresponds to a detection

feature map size of 40×40, detecting targets with a size of 16×16 or

more; and P5/32 corresponds to a detection feature map size of

20×20, detecting targets with a size of 32×32 or more. Problems

such as missed detection or poor results can occur in the detection

of tiny targets for seed germination. As shown in Figure 4, we added

a P2/4 detection head to the original model, which corresponded to

a 160×160 detection feature map, and it could be used to detect

more than 4×4 targets to enhance the detection accuracy of tiny
FIGURE 5

Coordinate attention mechanism.
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targets. This improvement slightly increased the amount of model

computation. However, by obtaining additional feature information

from tiny targets, it greatly improved the detection ability of small

targets and effectively reduced the misdetection and omission of

objects at different scales.
2.3 Model training parameter setting

In this study, the environment configuration used was as

follows: we chose an Intel(R) Xeon(R) Gold 6248R @ 3.00GHz

processor equipped with an NVIDIA GeForce RTX3090 graphics

card. The deep learning modeling framework used was Pytorch

2.0.0 and Python 3.8, the CUDA version chosen was 11.7, and the

operating system was Windows 11. To ensure fairness and

comparability of model effects in the study, we did not use pre-

trained weights for model training in all ablation and comparison

trials. In the training phase, we resized the input image to 640 × 640

pixels and set the total number of iterations to 300. Table 2 provides

details about the important parameter settings during the

training process.
2.4 Model evaluation indexes and
cucumber seed germination vigor
evaluation indexes

We chose Precision, Recall, Average Precision (AP), and mean

Average Precision (mAP) as the evaluation indexes of model

detection accuracy, and their formulas were as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

AP =
Z 1

0
 P(R)dR (8)

mAP = o
N
n=1APn

N
(9)
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where True Positive (TP) denotes the number of correctly

identified cucumber seed and radicle samples, False Positive (FP)

denotes the count of incorrectly identified positive cucumber seed

and radicle samples, and False Negative (FN) denotes the number of

missed cucumber seed and radicle samples.

We chose seed root length elongation to half of the seed length

as a marker of cucumber seed germination. We utilized germination

rate, germination index, and root length as indicators of

germination vigor.

Germination   rate( % ) =
Ns

N
� 100% (10)

Germination   index( % ) =oðGt   =DtÞ (11)

Mean   root   lenɡth

= total   root   lenɡth=number   of   ɡerminated   seeds (12)

where NS denotes the number of germinated seeds in s hours, N

denotes the total number of seeds, Gt is the number of germination

in t hours, and Dt is the time of germination.
3 Results

3.1 Ablation test

To verify the effectiveness of the improved model, we conducted

an ablation test, using the model detection accuracy as a measure of

the index price, and the test results are shown in Table 3. First, the

original loss function CIoU_Loss was replaced by ECIoU_Loss, and

the model mAP improved by 0.5%. The CA mechanism was added

to the head, and mAP was further improved to 93.4%. Finally, the

small-target detection head was added to obtain the YOLOv8-ECS

model, and mAP reached 98.9%. To further highlight the

visualization advantages of the improved model, we chose five

images of different sprouting periods (Figures 6A–E) for detection

analysis, where the part circled in green indicates leakage detection,

and the part circled in yellow indicates repetitive detection. No

leakage was detected in the seeds. However, for the detection of

the roots, in the beginning of the sprouting period (b), YOLOv8-n

had a high number of missed detections, and the number

of missed detections decreased slightly after adding the

ECIoU loss function and the CA mechanism. The addition of the

small-target detection head strengthened the ability to capture tiny

targets, with no missed detections. The number of missed detections
TABLE 2 Model training parameters.

Parameters name Parameters value

Epoch 300

Batch size 8

Image size 640×640

NMS IoU 0.7

Learning Rate 0.01

Momentum 0.937

Weight Decay 5×10-4
TABLE 3 Comparison of ablation test parameters.

Model Precision (%) Recall (%) mAP50 (%)

YOLOv8-n 91.6 85.4 91.8

YOLOv8-n+ECIoU 92.1 85.5 92.3

YOLOv8-n
+ECIoU+CA

92.2 88.2 93.4

YOLOv8-ECS 97.2 97.4 98.9
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decreased in each model at mid-emergence (c) and (d), but missed

detections still occurred in the first three models. No missed

detections occurred in YOLOv8-ECS. In the later stages of

germination (e), the models essentially stopped missing

detections. The ablation test clearly showed that our improved

YOLOv8 model had high accuracy for cucumber seed germination

phenotypic feature recognition, which verified that our changes

were effective.
3.2 Comparative tests

Using the same training environment and experimental

parameters, we compared the detection results of different

network models. Table 4 shows the performance differences

exhibited by the detection models using various modules,

which mainly examined the mAP values of the models. The

mAP50 value of detection using YOLOv8-n as the training model
Frontiers in Plant Science 09
was higher than that of the other base models, so we chose

YOLOv8-n as the base model and improved it to obtain the

YOLOv8-ECS model.
FIGURE 6

Comparison of ablation test effects. (A–E) Denote the results of the experiments for different germination periods.
TABLE 4 Comparison of detection performance of different models.

Model Precision (%) Recall (%) mAP50 (%)

Faster R-CNN 89.5 86.3 89.3

YOLOv3 85.1 78.9 86.7

YOLOv4 88.7 89.1 89.6

YOLOv5s 93.4 92.1 90.9

YOLOv7-tiny 94.2 88.3 90.1

YOLOv8-n 91.6 85.4 91.8

YOLOv8-ECS 97.2 97.4 98.9
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To show the performance of the models in these evaluation

metrics, we plotted the histograms of the detection accuracy of the

different models, and the results are shown in Figure 7. Among the

tested models, YOLOv8-ECS had the highest Precision, Recall, and

mAP50 (%). Thus, the YOLOv8-ECS model demonstrated good

accuracy and applicability in cucumber seed germination

state detection.
3.3 Evaluation of seed germination vigor of
cucumber under different concentrations
of salt stress environment

Salt stress is one of the main factors leading to abiotic stress on

plant growth and yield and one of the ecological crises facing

agricultural production (Song et al., 2023). We carried out a

cucumber seed germination test under salt stress environment,

according to the pre-test germination environment. We set five

concentrations of NaCl solution at 30, 60, 90, 120, and 150 mmol/L,

and deionized water was used as a control (CK). We obtained a

continuous image of the complete cycle of cucumber seed

germination in different salt solutions. Figure 8 shows the

characteristics of cucumber seed germination in different

concentrations of NaCl solution over time. The acquired images

of the germination cycle were used for target detection with the

YOLOv8-ECS model. The germination rate and germination index

patterns and trends of cucumber seeds in different concentrations of

NaCl solution were calculated, as shown in Figures 8 and 9.

Figure 10A demonstrates the germination rate of cucumber

seeds sprouting in deionized water (CK) as well as in different
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concentrations of NaCl solution over time. The germination rate

gradually decreased at each time point with the increase in the

concentration (60, 90, 120, and 150 mmol/L) of NaCl solution.

However, the germination rate was significantly higher than that of

other concentrations and higher than that of the control group at

28–36 h at 30 mmol/L. Figure 10B shows the results of the

cucumber seed germination index in deionized water (CK) and

different concentrations of NaCl solution over time. At each time

point, the germination index in the 30 mmol/L NaCl solution was

higher than those in the other concentrations and CK. As the

concentration of NaCl solution increased, the germination index

gradually decreased. In general, NaCl solution has an inhibitory

effect on the germination of cucumber seeds. The higher the

concentration, the more pronounced the inhibitory effect, but at a

certain germination time period, a certain concentration of NaCl

solution could promote the germination of cucumber seeds.

Extract all L root targets detected by the YOLOv8-ECS model

targets as shown in Figure 11A, approximate the root length

characteristics during cucumber seed germination with the

diagonal length of the detection frame, converted the pixel

points into lengths proportionally, and added the extracted root

length data. We then divided them by the number of sprouted

seeds to obtain the average root lengths of seed germinated under

different concentrations of NaCl solution and determine the

characteristics of the changes over time. A 3D histogram is

shown in Figure 11B. The characteristics of root length and

germination rate of cucumber seed germination under different

concentrations of NaCl solution were consistent with the role of

promoting root elongation under 30 mmol/L NaCl solution. High

concentrations of NaCl solution could inhibit root elongation; as
FIGURE 7

Histogram of comparison of different models.
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the concentration increased, the inhibition of root elongation

became more obvious.
4 Discussion

To explore the germination vigor of cucumber seeds under salt

stress environment and solve the drawbacks of traditional manual

monitoring of seed germination vigor index, we carried out a

germination test on cucumber seeds under salt stress environment

based on the seed germination phenotype collection system and

obtained the germination images. Based on the YOLOv8-n model,
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the YOLOv8-ECS model applicable to the detection of cucumber seed

germination state was proposed, and the germination state detection

was carried out on the captured images of cucumber seed germination,

and the germination vitality index of cucumber seed germination was

analyzed to obtain the cucumber seed germination vitality index under

the salt stress environment, which provides a convenient and fast new

method for selecting and breeding salt-tolerant cucumber varieties. The

main tasks of the model were as follows:
1. Based on the seed germination phenotype acquisition

system, the system mainly consisted of three parts: seed

germination culture bin, image acquisition system, and
frontiersin.or
FIGURE 8

Images of the germination process of cucumber seeds in deionized water and different concentrations of NaCl solution (0, 30, 60mmol/L).
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human–computer interaction module, which realized the

function of phenotypic dynamic acquisition of the complete

cycle of seed germination in three stations. The cucumber seed

germination test was carried out in the system under the stress

environment of five concentrations of NaCl solution. The

images were collected once every 30 min during the

germination process. A total of 1728 germination images were

obtained, and a continuous process dataset of cucumber seed

germination was constructed.

2. By comparing the detection accuracy of different models,

YOLOv8-n was selected as the base model, and the original

loss function was replaced by ECIoU_Loss loss function. CA
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mechanism was added to the head, and small-target detection

head was added for tiny targets. The YOLOv8-ECS model was

obtained. The precision P, recall R, and mAP of the improved

model increased from the original 91.6%, 85.4%, and 91.8% to

96.9%, 97.3%, and 98.9%, respectively. Compared with the

original model, the model volume increased slightly, which

effectively improved the model’s ability to recognize the

phenotypic features of cucumber seed germination.

3. The germination rate, germination index, and root length as the

germination vigor index were detected. We analyzed the

germination images through the YOLOv8-ECS model. The

cucumber germination rate, germination index, and root
frontiersin.or
FIGURE 9

Images of the germination process of cucumber seeds in different concentrations of NaCl solution (90, 120, 150mmol/L).
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length were obtained under different salt solution environments.

A graph of the change in each parameter over time was drawn to

determine the characteristics of cucumber seed germination in a

salt solution environment. The data showed that a low

concentration of salt solution could promote the germination
Frontiers in Plant Science 13
of cucumber seeds, and the seed germination vigor gradually

decreased with the increase in salt concentration. Thus, a high

concentration of salt solution had an inhibitory effect on the

germination of cucumber seeds. The higher the concentration,

the stronger the inhibitory effect.
FIGURE 10

Trends of germination rate and germination index in deionized water and different concentrations of NaCl solution. (A) Shows the germination rate
and (B) shows the germination index.
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Through the comparative experiments we have done above, it

can be seen that the detection accuracy of the YOLOv8-ECS model

developed by us is higher than that of other models, and its mAP

reaches 98.9%, which greatly improves the detection performance

and reduces missed detections and repeated detections. At the same

time, compared with the methods used by Fu et al. (2022) and Jiang

et al. (2023) cited above, our method can roughly calculate the root

length characteristics of the seed germination process, and use more

seed germination vigor characteristics to evaluate the germination

vigor of seeds, making our seed germination vigor assessment

method more realistic and reliable.

However, the model we developed has some limitations. The

model will have a small amount of misjudgment for the detection
Frontiers in Plant Science 14
of long and short roots, probably because the model is not

sensitive enough to the length information and cannot well

understand the sprouting judgment criteria in terms of length;

on the other hand, we focused on the detection accuracy of the

model when choosing the model evaluation index, which resulted

in the increased size of the improved model, which is not

conducive to the deployment of the practical application in the

later stage.

In the future, we will further improve the performance of the

seed germination phenotype collection system, embed the model

into the germination system, realize the real-time monitoring and

recording of the germination vigor of seeds, and explore the other

phenotypic characteristics in the germination of cucumber seeds.
FIGURE 11

(A) Schematic diagram of root length measurement (B) Changes in root length of cucumber sprouting in different concentration solutions.
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Such work will allow us to provide an accurate, efficient, and quick

method for the selection and breeding of good varieties.
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