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Introduction: In the field of facility agriculture, the accurate identification of

tomatoes at multiple stages has become a significant area of research. However,

accurately identifying and localizing tomatoes in complex environments is a

formidable challenge. Complex working conditions can impair the performance

of conventional detection techniques, underscoring the necessity for more

robust methods.

Methods: To address this issue, we propose a novel model of YOLOv8-EA for the

localization and identification of tomato fruit. The model incorporates a number

of significant enhancements. Firstly, the EfficientViT network replaces the original

YOLOv8 backbone network, which has the effect of reducing the number of

model parameters and improving the capability of the network to extract

features. Secondly, some of the convolutions were integrated into the C2f

module to create the C2f-Faster module, which facilitates the inference

process of the model. Third, the bounding box loss function was modified to

SIoU, thereby accelerating model convergence and enhancing detection

accuracy. Lastly, the Auxiliary Detection Head (Aux-Head) module was

incorporated to augment the network's learning capacity.

Result: The accuracy, recall, and average precision of the YOLOv8-EA model on

the self-constructed dataset were 91.4%, 88.7%, and 93.9%, respectively, with a

detection speed of 163.33 frames/s. In comparison to the baseline YOLOv8n

network, the model weight was increased by 2.07 MB, and the accuracy, recall,

and average precision were enhanced by 10.9, 11.7, and 7.2 percentage points,

respectively. The accuracy, recall, and average precision increased by 10.9, 11.7,

and 7.2 percentage points, respectively, while the detection speed increased

by 42.1%. The detection precision for unripe, semi-ripe, and ripe tomatoes

was 97.1%, 91%, and 93.7%, respectively. On the public dataset, the accuracy,

recall, and average precision of YOLOv8-EA are 91%, 89.2%, and 95.1%,

respectively, and the detection speed is 1.8 ms, which is 4, 4.21, and

3.9 percentage points higher than the baseline YOLOv8n network. This

represents an 18.2% improvement in detection speed, which demonstrates

good generalization ability.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1447263/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1447263/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1447263/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1447263&domain=pdf&date_stamp=2024-09-05
mailto:zqy9080@163.com
https://doi.org/10.3389/fpls.2024.1447263
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1447263
https://www.frontiersin.org/journals/plant-science


Fu et al. 10.3389/fpls.2024.1447263

Frontiers in Plant Science
Discussion: The reliability of YOLOv8-EA in identifying and locating multi-stage

tomato fruits in complex environments demonstrates its efficacy in this regard

and provides a technical foundation for the development of intelligent tomato

picking devices.
KEYWORDS

image recognition, object detection, YOLOv8, EfficientViT, auxiliary detection
head, tomato
1 Introduction

Tomatoes, with their rich nutrients and unique flavor, are

highly favored by consumers. As market demand continues to

grow, so too does the production and cultivation scale of

tomatoes (Su et al., 2022). Currently, the harvesting process still

relies on manual labor which is subject to personal judgment and

past experience, leading to issues such as low efficiency, high costs,

and untimely harvesting (Han et al., 2022; Yang et al., 2024). The

use of intelligent robotic harvesters to replace human labor in

tomato picking holds significant importance and prospects for the

modernization of the tomato industry. Given that tomatoes have a

short ripening period and are not easy to store, it is necessary to

screen tomatoes at different maturity stages according to actual

needs; this plays a positive role in increasing farmers’ income

(Nassiri et al., 2022). The basic requirement for achieving

intelligent harvesting lies in accurately identifying and locating

multi-stage tomato fruits – a key step towards implementing

precision agriculture (Bai et al., 2023; Lin et al., 2024). Therefore,

enhancing model detection performance is crucial for realizing the

automation of tomato harvesting.

Traditional image processing methods extract features such as

color, shape, and texture from images by analyzing high-

resolution pictures and designing artificial features to match and

recognize target fruits. However, these methods have limitations

in automatic feature extraction, detection speed, and accuracy

(Wang et al., 2022). They are susceptible to environmental

influences and the number of fruit colors, lacking reliability and

robustness in complex scenarios, which makes it difficult to meet

practical demands (Zhang et al., 2023a). With the continuous

development of machine vision technology, Convolutional Neural

Networks (CNN) show enormous potential in agriculture due to

their rapid processing capabilities and adaptability to complex

scenes. The current mainstream algorithms are divided into two

categories: a second-order detection algorithm based on candidate

regions represented by the R-CNN series; and a first-order

monitoring algorithm based on network regression represented

by the YOLO series. Long Jiehua et al. (Long et al., 2021) proposed
02
an improved Mask R-CNN model that provides a basis for

detecting maturity levels of tomatoes and intelligent picking

operations. Mu et al. (Mu et al., 2020) integrated Faster R-CNN

with transfer learning for detecting unripe tomato fruits. Li

Tianhua (Li et al., 2021) et al. proposed a recognition method

that fuses YOLOv4 with HSV to segment red areas on tomatoes;

however, this approach does not perform well when multiple

fruits overlap one another. Zeng et al. (Zeng et al., 2023)

reconstructed the backbone network of YOLOv5 using

lightweight Bneck modules they also pruned it which resulted in

a 78% reduction in model parameters and an 84.15% decrease

floating-point operations per second leading greatly increased

detection efficiency though its efficiency at spotting ripe

tomatoes was lower. Liu Fang (Liu et al., 2020) and others

proposed the multi-scale IMS-YOLO, which achieves a tomato

detection accuracy of 97.13% in complex greenhouse

environments, but performs poorly in detecting small objects.

Zhang Junning (Zhang et al., 2023b) integrated the CBAM

attention mechanism into the YOLOv5s network to give more

focus on green tomatoes, enhancing the recognition accuracy of

two types of tomatoes. Similarly, (Appe et al., 2023) replaces the

DIoU loss function on this basis and achieves an average detection

accuracy of up to 88.1% for overlapping targets and small target

tomatoes. Gao (Gao et al., 2024) proposed an improved Soft-NMS

algorithm for improving YOLOv5s by taking into account the

real-time condition of the picking robot in continuous working

condition, which significantly improves the recognition of tomato

in continuous working. Miao Ronghui (Miao et al., 2023) and

others adopted an improved YOLOv7 model to detect multistage

cherry tomatoes, effectively reducing the amount of model

parameters and memory usage while speeding up inference.

Chen et al. (Chen et al., 2024a) proposed the MTD-YOLOv7

model, used for multitask maturity detection of cherry tomato

bunches and fruits, achieving a detection accuracy of 86.6% and an

inference speed of 4.9ms, demonstrating outstanding

performance. Based on information mapping and morphological

operations, the SimAM attention module and MobileNeXt are

integrated into YOLOv7-tiny, while the improved DeepSORT
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algorithm is integrated to propose a real-time detection algorithm

for multiple maturity tomatoes with good results (Meng

et al., 2024).

Recently, many scholars have also considered deploying the

improved YOLO algorithm on edge devices for tasks such as tomato

fruit morphology recognition (Du et al., 2023; Fu et al., 2024), pest

and disease dynamics detection (Jin et al., 2024; Wang and Liu,

2024), and growth monitoring (Chen et al., 2024b; Tian et al., 2024),

and its excellent task completion performance demonstrates

notable competitiveness.

The above research demonstrates the feasibility and potential

application of deep learning-based multi-stage target detection for

tomatoes, but the following issues still exist: Fruits and small targets

that are obscured may be missed or incorrectly identified; the model

structure is complex and has a large number of parameters, leading

to redundant feature extraction; under complex environments,

detection efficiency and accuracy are relatively low. Based on this,

the paper proposes an improved YOLOv8 model aimed at efficiently

recognizing tomatoes at different growth stages in complex

greenhouse environments. By reducing the number of parameters

and optimizing network structure, a balance between model

accuracy and efficiency is achieved.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Data collection and preprocessing

2.1.1 Data collection
The data collection site is located at the Yuzhong Greenhouse

Complex in Zhongmu County, Zhengzhou City, Henan Province,

China (34.66°N, 114.06°E), As shown in Figure 1. focusing on

tomatoes cultivated on greenhouse ridges. This study selected the

locally representative “YingFen-No.58” variety of tomatoes as the

research subject and used an EOS M50 Mark II camera to take

photographs from December 14 to 27, 2023, between 9:00 AM and

5:00 PM.

To enhance the model’s generalization ability and diversify the

dataset, we seek to downplay structured features of greenhouses.

Batches of tomato plants were photographed in their natural

environment in the greenhouse, taking into account different time

periods, densities, shading conditions, light conditions, and other

actual picking conditions in the sampling process. After screening,

716 high-resolution images (3024 pixels x 4032 pixels) were

obtained. Figure 2 Sample image collection displays some images

from the dataset.
FIGURE 1

Data collection point location (34.66°N, 114.06°E).
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2.1.2 Data preprocessing
This study utilizes Roboflow to annotate the collected raw

images, accurately delineating the contours of the fruit using

minimal bounding rectangles to ensure each box contains only

one piece of fruit and minimizes background noise. Do not label

fruit that is severely obscured or relatively small. According to the

experience of local farmers “Ripe-Tomato” (Ripe tomatoes in bright

red)、”Semi-ripe Tomato” (light orange-yellow semi-ripe

tomato)、”Unripe-Tomato” (Green unripe tomatoes) Three

categories. After the annotation is complete, use the built-in

scaling feature to process the image, uniformly adjusting the

resolution of the image to 640 pixels × 640 pixels. Save this as

a.txt file. The stored information includes: target category,

coordinates of the bounding box center point, and dimensions

such as width and height.

Divide the dataset randomly into training, validation, and test

sets in a 7:2:1 ratio. To enhance the model’s robustness and its

ability to resist interference, as well as to avoid overfitting, the

training set was augmented using Roboflow tools through methods

such as Gaussian blur and random cropping. As shown in Figure 3,

each original image generated four new images, resulting in a total

of 2720 images.
Frontiers in Plant Science 04
2.2 Construction of experimental platform
and parameter settings

The operating system used for the experiment is Linux, with an

Intel(R) Core(TM) i7–10750H CPU @ 2.60GHz, NVIDIA GeForce

RTX3080Ti GPU, 32GB of RAM, and a 500GB HDD. The

programming language is Python 3.9, utilizing the Pytorch 1.9 deep

learning framework with CUDA 11.8 GPU acceleration. The initial

learning rate is set to 0.01, momentum parameter to 0.937, iteration

rounds to 300, target class number to 3, and Batch_size to 32.
2.3 YOLOv8 network model

YOLOv8 is the latest SOTA (State-of-the-Art) model released by

the Ultralytics team in 2023. Building on the success of YOLOv5, it

incorporates new improvements and features to further enhance

flexibility and performance. The main changes include: replacing the

original C3 module with the C2f module; removing the convolution

operation in the upsampling process; introducing a new anchor-free

decoupled head structure. The network structure of YOLOv8

includes the backbone network, neck network, and head network.
FIGURE 3

Effects of data augmentation. (A) Original Image. (B) Gaussian Blur. (C) Rotate Right+Noise. (D) Random Cropping. (E) Brightness adjustment.
FIGURE 2

Sample image collection. (A) multiple fruits. (B) multiple fruits overlapping. (C) branches and leaves blocking. (D) backlighting obstruction.
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The backbone network adopts the Darknet53 structure, obtaining

features of different sizes through five down-samplings. The C3

module has been replaced with a more abundant C2f module to

increase branches for enriched gradient backpropagation. The neck

network utilizes a PANet, enhancing the receptive field and

improving feature fusion capabilities by bidirectional integration of

dual-layer features. The head network adopts an Anchor Free strategy

and a decoupled head structure, using a parallel branch architecture

to separate positioning from classification tasks while discarding

confidence prediction to accelerate model convergence.

Although the YOLOv8 model belongs to the latest iteration of the

YOLO series, it still has some limitations. For example, the low resolution
Frontiers in Plant Science 05
of the feature map due to the restricted working conditions of the actual

scene makes it perform poorly during small target detection;

furthermore, despite its highly efficient structural design, real-time

processing on resource-constrained devices is still challenging; and

lastly, its sensitivity to occlusion and lighting variations also affects its

robustness and reliability in practical applications.

2.3.1 Improvement of the network model
The improved network structure of YOLOv8-EA, as shown in

Figure 4, utilizes EfficientViT as the backbone network. This version

incorporates variable convolutions into the original C2f module,

switches to SIoU loss function, and adds Aux-Detect. These
FIGURE 4

YOLOv8-EA network architecture diagram. Conv represents ordinary convolution operation; MBConv represents convolution with inverted residual
structure; C2f-Faster introduces a C2f module with partial convolution; Upsample refers to upsampling; Contact denotes concatenation operation;
SPPF stands for fast pooling pyramid module; Aux-Detect is an auxiliary detection head, called only during training; Bbox.Loss and Cls.Loss stand for
bounding box loss and classification loss, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1447263
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fu et al. 10.3389/fpls.2024.1447263
enhancements aim to further strengthen the model’s ability to

capture key features in complex environments, reduce false

negatives and false positives, and enhance the robustness of the

algorithm in detecting tomato fruits under challenging conditions.

a) EfficientViT Network

EfficientViT (Cai et al., 2023) (Efficient Vision Transformer) is a

variant network model based on the Transformer architecture,

facilitating efficient deployment and real-time inference

computing of ViT (Vision Transformer) on edge devices. As

shown in Figure 5, EfficientViT employs linear attention in place

of softmax attention, enhancing the ability to extract local features

via deep convolution; it uses ReLU linear attention to achieve a

global view while reducing complexity and maintaining the

capability to extract both local and global features.

The EfficientViT structure is shown in Figure 5A, and the core

building block “EfficientViT Module” is shown in Figure 5B. This

module consists of a Lightweight MSA (Geser et al., 2006) module (as

shown in Figure 5C) and an MBConv module. The lightweight MSA

module uses linear projection layers to extract Q, K, V tokens, and uses

small convolution kernels for information aggregation to form multi-

scale tokens. By employing a global self-attention mechanism based on

ReLU, each scale feature is weighted to capture information at various

scales. Subsequently, the outputs are concatenated and sent to the final

linear projection layer for feature fusion, producingmore expressive and

diverse global features. This model introduces a method that enhances

the ability to learn globally across multiple scales by aggregating nearby

Q, K, and V values in order to reduce computational and storage costs

while using small convolutional kernels to achieve a balance between

accuracy and efficiency. Meanwhile, the MBConv module enhances

gradient propagation characteristics to better capture local information

(Nascimento et al., 2019).
Frontiers in Plant Science 06
Assuming the input is, the self-attention calculation formula for

the EfficientViT module is as shown in Equation (1)

Contexti =o
N

j=1

Sim(Qi,Kj)

oN
j=1Sim(Qi,Kj)

Vj =o
N

j=1

f(Qi)f(Kj)
T

oN
j=1f(Qi)f(Kj)

T Vj (1)

In the formula:

(Q,K ,V) = xW(Q,K ,V Þ;
Qi—Row i of matrix Q;

Kj—The j-th column of matrix K;

Vj—The j-th column of matrix V;

W(Q,K ,V)—Mapping matrix for learning;

f( : )—Kernel function.

The EfficientViT network introduced in this text can enhance

the recognition of subtle features and improve robustness in

complex environments, by integrating multi-scale information

and strengthening feature fusion, thereby further enhancing the

model’s performance efficiency.

b) SIoU loss function

YOLOv8 uses the CIoU (Zheng et al., 2022) loss function to

optimize localization loss. Although it considers the issues of aspect

ratio and scale loss based on GIoU (Rezatofighi et al., 2019) and DIoU

(Zheng et al., 2019), it relies on the aggregation of bounding box

regression indicators. Due to the neglect of orientation mismatch

issues, during training, the predicted boxes may affect the

convergence speed and detection performance of the model due to

“unordered wandering.” The SIoU (Gevorgyan, 2022) loss function

(as shown in Figure 6) introduces the concept of vector angle,

considers the angle issue between the true box and the predicted

box, redefines the penalty metric, and improves the accuracy of the

detection task. The SIoU loss function consists of four penalty terms:

angle loss, distance loss, shape loss, and IOU loss.
FIGURE 5

EfficientViT network architecture diagram.
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The calculation formula for angle loss L is as shown in

Equations (2), (3):

L = 1 − 2sin2( arcsin (x) −   p4 )   (2)

x =
sin (a),a ≤ p

4

sin (b),a + b = p
2 且a > p

4

 

(
(3)

The formula for calculating the distance loss D is as shown in

Equations (4), (5):

rx =
bgtcx−bcx

cw

� �2
, ry =

bgtcy −bcy
ch

� �2

(4)

D = o
t=x;y

(1 − e−grt ) = 2 − e−grx − e−gry (5)

The shape loss W is defined as as shown in Equations (6), (7):

W = o
t=w,h

(1 − e−wt)q (6)

ww = w−wgtj j
max (w,wgt ) ,wh =

h−hgtj j
max (h,hgt )

(7)

In the formula, q represents the weight of shape loss. q ∈ ½2, 6�
SIoU Loss Function is defined as shown in Equation (8):

LSIoU = 1 − IOU + D+W
2 (8)

c) C2f-Faster Module

The C2f module used in YOLOv8 enhances the image feature

extraction capabilities, but the stacking of Bottleneck modules

inevitably leads to redundancy in information channels and an

increase in inference workloads. To address these issues, the Faster

Block module was integrated into C2f, reducing both model
Frontiers in Plant Science 07
computation and floating-point calculations (Chen et al., 2023).

Partial Convolution (PConv) extracts features from only some

channels of the input feature map, reducing redundant operations

and memory access, thereby enhancing the capture of key spatial

features. Assuming that the number of channels before and after

outputting a feature map remains unchanged and that k is the

kernel size, then PConv’s FLOPs per second (floating-point

operations) and MAC (Memory Access Cost) calculation formula

are as shown in Equations (9), (10):

FLOPs(PConv) = h� w � k2 � c2p (9)

MAC = h� w � 2cp + k2 � c2p ≈ h� w � 2cp (10)

This module performs convolution operations on a portion of

the input channels, Cp, representing the entire feature map while

keeping the remaining channels unchanged. Afterwards, it

concatenates and overlays these processed channels with the

remaining ones for output. Under a typical partial convolution

rate (r=1/4), the computational cost of the improved C2f-Faster is

approximately 1/16 that of C2f’s, featuring low memory occupancy

during convolution and around 1/4 the memory access volume

compared to regular convolutions. This design aims to reduce

redundant computations, maximize channel information

preservation, and enhance feature extraction. See Figure 7 for the

structural layout of C2f-Faster module.

d) Auxiliary detection head

In the YOLO series networks, the reduction of feature map size

and resolution due to downsampling operations leads to the

challenge of losing fine-grained information in learning complex

image features. Therefore, this study introduces the strategy of

Auxiliary Head from YOLOv7 (Wang et al., 2023). By embedding

auxiliary heads in the middle layers of the network, additional
FIGURE 6

SIoU parameters schematic diagram. B(bcx , bcy )and Bgt (bgt
cx , b

gt
cy ) represent the center coordinates of the predicted box and the ground truth box,

respectively; Cw and Ch represent the differences in the horizontal and vertical coordinates between the B and  Bgt points, respectively; a is the
horizontal angle between the center points of the two boxes; w, h, ??? and ℎ?? represent the width and height of the predicted box and the ground
truth box, respectively; s represents the distance between the center points of the ground truth box and the predicted box.
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gradient signals are provided to enhance gradient backpropagation.

During the training process, the auxiliary detection head can extract

more shallow network information, obtain fine-grained feature

maps, and accelerate the regression of the loss function detection

boxes. The introduction of auxiliary learning mode enhances the

model’s understanding of multi-scale targets and complex scenes.

Meanwhile, the auxiliary branch and the main classification branch

merge to calculate the loss function, utilizing a richer gradient

information flow to aid network training, thereby improving

detection accuracy and reducing overfitting risks. Assuming a is

the participation rate of the auxiliary detection head, the loss

calculation for the auxiliary detection head is as shown in

Equation (11):

LOSSG = aLOSSA + (1 − a)LOSSM (11)

In the formula: LOSSG— Total model loss;

LOSSA— Backbone network loss;

LOSSM— Loss of auxiliary detection heads.
2.4 Evaluation metrics

To measure the detection effects and performance between

models, precision (Precision, P), recall rate (Recall, R), mean

average precision (mean Average Precision, mAP), frames per

second (Frames Per Second, FPS), model weight (MB), and

floating-point operations (FLOPs) are selected as evaluation
Frontiers in Plant Science 08
metrics to assess the final effect of the model (Jiang et al., 2018; S

et al., 2023).
3 Results and analysis

3.1 Ablation experiments to improve
the model

This study sets uniform training parameters and conducts 11

groups of ablation experiments aimed at accurately assessing the

impact of various improvement strategies on multi-stage tomato

detection. Given the needs for actual scenario detection, the

YOLOv8n model is chosen as the baseline network. The model is

evaluated through comparative metrics, with experimental results

shown in Table 1.

According to the data in Table 1, Experiment 1 uses the original

YOLOv8n model, achieving an accuracy of 80.5%, recall rate of

77%, and mAP of 86.7%, with a model weight of 5.99MB and

8.1GFLOPs of floating-point operations. Experiment 2, which

replaced the backbone network with EfficientViT, shows increases

in accuracy, recall rate, and mAP by 9.2%, 11.5%, and 6.9%

percentage points respectively, compared to Experiment 1. This

also results in a reduction in model weight and floating-point

operations, indicating that the EfficientViT network significantly

improves model performance by enhancing feature extraction

capability and reducing the size and computational complexity of
FIGURE 7

C2f-Faster module architecture diagram. h and w represent the height and width of the input feature map; c denotes the number of input channels;
cp denotes the number of channels participating in convolution; PConv stands for Partial Convolution; Split represents the channel splitting module.
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the model. Experiment 3 introduced C2f-Faster to optimize the

feature transfer path and accelerate feature fusion, enhancing the

model’s response speed, with accuracy and recall rates improving by

11.42% and 14.93% respectively; the frame rate increased by

49.29%. In Experiment 4, after replacing the SIoU loss function,

the model’s accuracy, recall rate, and mAP all improved, suggesting

that SIoU helps the model converge and enhances its recognition

accuracy and stability. Experiment 5, which added an auxiliary

detection head, led to a 2.7 percentage point increase in mAP,

slightly improving detection accuracy. However, due to the addition

of the detection head, the model weight increased by 1.46MB and

the frame rate dropped by 10.31%. Compared to the baseline

network, the improved model achieves optimal detection

performance, with increases in accuracy, recall rate, and mAP of

10.9%, 11.7%, and 7.2% percentage points respectively. Although

the introduction of more modules led to an increase in model
Frontiers in Plant Science 09
weight and computational requirements, the detection performance

significantly improved. Comprehensive ablation study results prove

that the optimization strategies proposed for the YOLOv8n network

in this study are meaningful.
3.2 Model performance comparison before
and after improvements

Figure 8 shows the comparison between the mean average

precision (mAP) curves at different IOU thresholds and the box

loss function for YOLOv8-EA and YOLOv8n. In Figure 8A, when

the IOU threshold is 0.5, YOLOv8-EA shows a significant

improvement in mean average precision compared to YOLOv8n.

As the IOU threshold increases, the gap in accuracy performance

between the two narrows, but YOLOv8-EA performs better across all
FIGURE 8

Training curves before and after model improvement. (A) Average precision curve (B) Box loss function.
TABLE 1 Results of ablation studies for the improved model.

No.
Efficient

ViT
C2f-Faster SIoU

Aux-
Head

Precision
P/%

Recall
R/%

Mean
Average
Precision
mAP/%

Weight/
MB

Floating
Point

Operations
FLOPs/G

Frames
Per

Second
FPS

(frame/s)

1 × × × × 80.5 77 86.7 5.99 8.1 114.94

2 √ × × × 89.7 88.5 93.6 4.63 6.3 107.53

3 × √ × × 88.1 83.5 88.8 6.58 8.9 171.59

4 × × √ × 85 88.1 91.6 5.97 8.1 107.53

5 × × × √ 89.2 84.9 89.4 7.45 8.1 103.09

6 × √ √ × 83.6 80.2 86.8 4.67 6.7 97.09

7 √ × × √ 91.9 88.5 93.5 9.24 9.4 99.01

8 √ √ × × 93.3 87.7 94.9 6.37 8.7 101.01

9 √ × √ × 87.9 82.3 88.7 5.34 9.4 106.38

10 √ √ √ × 88.1 84.1 91.1 7.8 8.7 167.10

11 √ √ √ √ 91.4 88.7 93.9 8.06 9.4 163.33
f

“×” This policy is not used; “√” to use this policy.
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IOU thresholds. This indicates that the YOLOv8-EA model has

stronger predictive capability for bounding boxes. In Figure 8B,

continuous declines in box loss reflect improvements in bounding

box localization accuracies during training of both models, with

YOLOv8-EA’s loss curve declining more rapidly which demonstrates

its efficiency in learning bounding box localization; it consistently

remains below that of YOLOv8n, showcasing stable training

processes and superior convergence performance. Both in mAP

curve or loss curve comparisons, fluctuations are less pronounced

for YOLOv8-EA than forYOlov2 indicating enhanced learning

capabilities improved stability of the revised model robustness.

The recognition performance of the improved model for multi-

stage tomatoes is shown in Table 2. Compared to YOLOv8n, the

improved YOLOv8-EA has increased the recognition accuracy of

three stages of tomatoes by 10.1%, 17%, and 5.7% respectively, while

increasing computational load by only 16%. This has resulted in an

increase in detection precision mAP@0.5, mAP@0.5:0.95, and

frame rate by 7.2, 7.5, and 81.25 percentage points respectively,

providing powerful technical support for real-time tomato

detection in complex environments.
3.3 Comparison test of different
detection models

To verify the effectiveness of the method discussed in this paper,

it was compared with mainstream object detection algorithms on the

same dataset, with results shown in Table 3. The results demonstrate

that the improved YOLOv8-EA model surpasses other models in

precision, recall rate, and average accuracy, proving that our

enhanced model offers superior detection performance.

Additionally, the improved model features a frame rate

detection that significantly surpasses other models. Even though
Frontiers in Plant Science 10
this model has slightly larger weights and FLOPs compared to

YOLOv8n, it still fits practical scenarios well. After comparing

evaluation parameters, it is known that the improved model

balances speed and efficiency effectively, exhibiting overall

performance superior to other models especially in multi-stage

fruit target detection.

Figure 9 depicts the recognition effects of various mainstream

target detection models on tomatoes at different growth stages. As

observed from Figure 8, under complex conditions such as

overlapping tomato fruits and occlusion by branches and leaves,

other models exhibit instances of missed and false detections.

However, the improved YOLOv8-EA model significantly

ameliorates these issues. It shows enhanced performance in

recognizing small target tomatoes in complex environments, with

an increase also noted in confidence levels.
3.4 Comparative tests of different
detection models on publicly
available datasets

In order to conduct a comprehensive assessment of the

enhanced YOLOv8-EA model, this study was subjected to

evaluation using the publicly accessible dataset provided by

Kaggle (http://www.kaggle.com). The dataset comprises a diverse

range of real-world work scenarios, encompassing a total of 17,345

images that illustrate the various stages of tomato maturation. This

makes it an optimal testing environment for validating the efficacy

of each detection model.

Five mainstream detection models, including YOLOv8-EA,

were selected for this test, and all models were completed under

the same experimental platform to ensure the results were

comparable and the process was fair and consistent. The principal
TABLE 2 Test results before and after improvements of YOLOv8n model.

Stages

YOLOv8n YOLOv8-EA

Precision
P/%

Recall
R/%

mAP@0.5
mAP@0.5:

0.95
Precision

P/%
Recall
R/%

mAP@0.5
mAP@0.5:

0.95

Unripe 85 85.8 0.923 0.871 95.1 93.4 0.971 0.915

Semi-ripe 67.2 67.6 0.784 0.72 84.2 88.8 0.91 0.86

Ripe 89.3 77.5 0.895 0.859 95 83.7 0.937 0.902
TABLE 3 Experimental results of different algorithms.

Models
Precisio
P/%

Recall
R/%

Mean Average
Precision
mAP/%

Weight/MB
Floating Point
Operations
FLOPs/G

Frames Per
Second
FPS

YOLOv5s 83.9 82.3 87.9 14.5 15.8 13.49

YOLOv7 80.7 76.2 84.2 74.8 103.2 53.19

YOLOv7-tiny 81.2 76.8 84.9 46.4 38.6 142.86

YOLOv8n 80.5 77 86.7 5.99 8.1 114.94

YOLOv8-EA 91.4 88.7 93.9 8.06 9.4 163.33
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performance metrics are illustrated in Table 4. The enhanced

YOLOv8-EA model demonstrates robust performance on this

public dataset, exhibiting a precision rate of 91%, a recall rate of

89.2%, and an average precision of 95.1%. These metrics

demonstrate superior performance compared to other models,

confirming the efficacy of optimising the model structure,

particularly in the context of complex backgrounds and high-
Frontiers in Plant Science 11
variability fruit images. Despite the increased weights and

computational requirements of the YOLOv8-EA model, its

detection speed can reach 1.8 ms, indicating that the model

effectively optimises the utilisation of computational resources

while maintaining high processing efficiency. Its exceptional

performance renders it suitable for real-time processing scenarios

where high efficiency and accuracy are paramount.
FIGURE 9

Comparison chart of detection effects. (i) Dense, (ii) Overlapping tomato, (iii) Back overlapping, (iv) Branches and leaves sheltering, (A) Manual
Annotation. (B) YOLOv5s. (C) YOLOv7. (D) YOLOv-tiny. (E) YOLOv8n. (F) YOLOv8-EA.
TABLE 4 Key performance indicators of different models on public datasets.

Models
Precision

P/%
Recall
R/%

Mean Average Precision
mAP/%

Weight/
MB

Floating Point Operations
FLOPs/G

Detect_ time
ms

YOLOv5s 92.2 90.4 92.8 17.7 15.8 18.6

YOLOv7 88.7 83.7 88.9 91.2 101.8 5.15

YOLOv7-
tiny

89.2 84.4 89.6 56.57 38.6 2

YOLOv8n 87.5 85.6 91.5 7.3 8.1 2.2

YOLOv8-EA 91 89.2 95.1 11.2 10.7 1.8
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4 Discussion

We reviewed previous related research work, based on which we

proposed the YOLOv8-EA model for detecting multi-stage tomato

fruits, taking into account the differences between actual tomato

picking conditions and individual fruit ripening stages. The previous

section 3 demonstrates its remarkable performance and accuracy.

EfficientViT employs sandwich-layout blocks, using a single

memory-efficient MHSA between effective feed-forward networks

(FFN), enhancing storage efficiency while increasing the number of

feature channels. It introduces a new Cascaded Group Attention

module (CGA), which maximizes computational cost savings while

ensuring high-quality key feature extraction; SIoU evaluates the overlap

between predicted and ground truth boxes more reasonably, enabling

the model to reach its optimal state more quickly during training;

PConv exploits the redundancy in feature maps by systematically

applying regular convolution (Conv) on a subset of input channels

without affecting others. Additionally, a pointwise convolution

(PWConv) is added on top of PConv to fully and effectively utilize

information from all channels. This approach reduces the number of

parameters and computational complexity while maintaining a certain

receptive field and nonlinear representation capability; Aux-Head

provides additional supervision signals at the early stages of training,

enhancing feature extraction capabilities and thereby improving overall

detection accuracy. This richer information feedback stream accelerates

model convergence and alleviates memory pressure. Aux-Head is used

to capture shallow network information, employing Detect to guide

Aux-Detect in matching positive detection samples, which addresses

performance degradation and poor positive sample quality issues as

model depth decreases. Therefore, the YOLOv8-EA detection model

has both lightweight and high detection performance.

Despite the improvements we have made, which have significantly

enhanced the model’s performance and accuracy, there are still some

limitations that need to be addressed. These issues warrant deeper

exploration in future work. First, the introduction of the EfficientViT

module and the C2f-Faster module has reduced the model’s

parameters and computational complexity, accelerating its running

speed. However, further optimization of the model is still needed in

future work. Second, although the new loss function speeds up the

model’s convergence, the accuracy of bounding box localization may

still be insufficient in cases of complex edges or significant overlap of

target objects. For severely occluded fruits and scenes with significant

lighting variations, the recognition efficiency and accuracy decrease,

necessitating further research to improve the loss function or introduce

newer feature extraction and fusion techniques. Furthermore, while the

auxiliary detection head (Aux-Head) module enhances the network’s

learning capability, it also increases the model’s structural complexity.

This means that more computational resources and storage space are

required during model training and deployment, which could pose

challenges for deployment on resource-constrained edge devices.

Lastly, the model proposed in this study performs excellently on the

tomato dataset, but its generalization ability to other crop datasets

remains to be verified.
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5 Conclusion

This paper is based on the YOLOv8-EA multi-stage detection

model for tomatoes, achieving rapid and accurate detection of

tomato fruits in complex environments. It also validates the

improved model’s detection performance on a homemade dataset,

with the main conclusions as follows:

1) The architecture adopts the EfficientViT network as the

backbone, introduces the SIoU loss function and C2f-Faster

module, along with additional optimized strategies such as

auxiliary detection heads. On the self-constructed dataset,

compared to the baseline network YOLOv8n, with only a 2.07MB

increase in model weight and a 1.3G rise in FLOPs, accuracy

improvements for detecting unripe, semi-ripe, and ripe tomatoes

have respectively increased by 4.8%, 12.6%, and 4.2% points;

meanwhile, the frame rate of detection has improved by 42.1%,

achieving enhancements in both detection efficiency and precision.

2) Whether on the self-built dataset or the open dataset,

compared with the current mainstream target detection models,

the YOLOv8-EA model proposed in this study outperforms other

models in a number of indexes, with obvious advantages in the

comprehensive performance, and has a better detection effect on

multi-stage tomatoes, providing technical support for the

subsequent intelligent picking.

3) Through a visual comparison of detection results, YOLOv8-

EA shows fewer missed and false detections of tomatoes in complex

environments, providing optimal detection ability. This indicates the

feasibility of the proposed object detection algorithm. Subsequent

efforts will further optimize the model’s parameter volume to adapt to

practical environments with limited computing resources.
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