
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Mohamed Mannaa,
Pusan National University, Republic of Korea

REVIEWED BY

Henda Mahmoudi,
International Center for Biosaline Agriculture
(ICBA), United Arab Emirates
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The microbiome and
metatranscriptome of a panel
from the Sarracenia mapping
population reveal complex
assembly and function involving
host influence
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Lin Jiang5, Russell Malmberg3† and Magdy Alabady3*

1Department of Statistics, University of Georgia, Athens, GA, United States, 2Department of Biology,
University of Georgia, Athens, GA, United States, 3Department of Plant Biology, University of Georgia,
Athens, GA, United States, 4Quantitative Sciences Unit, Department of Medicine, Stanford University,
Stanford, CA, United States, 5School of Biological Sciences, Georgia Institute of Technology, Atlanta,
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Sarracenia provide an optimal system for deciphering the host-microbiome

interactions at various levels. We analyzed the pitcher microbiomes and

metatranscriptomes of the parental species, and F1 and F2 generations from

the mapping population (Sarracenia purpurea X Sarracenia psittacina) utilizing

high-throughput sequencing methods. This study aimed to examine the host

influences on the microbiome structure and function and to identify the key

microbiome traits. Our quality datasets included 8,892,553 full-length bacterial

16s rRNA gene sequences and 65,578 assembled metatranscripts with microbial

protein annotations. The correlation network of the bacterial microbiome

revealed the presence of 3-7 distinct community clusters, with 8 hub and 19

connector genera. The entire microbiome consisted of viruses, bacterial,

archaea, and fungi. The richness and diversity of the microbiome varied among

the parental species and offspring genotypes despite being under the same

greenhouse environmental conditions. We have discovered certain microbial

taxa that are genotype-enriched, including the community hub and connector

genera. Nevertheless, there were no significant differences observed in the

functional enrichment analysis of the metatranscriptomes across the different

genotypes, suggesting a functional convergence of the microbiome. We found

that the pitcher microcosm harbors both rhizosphere and phyllosphere

microbiomes within its boundaries, resulting in a structurally diverse and

functionally complex microbiome community. A total of 50,424 microbial

metatranscripts were linked to plant growth-promoting microbial proteins. We

show that this complex pitcher microbiome possesses various functions that

contribute to plant growth promotion, such as biofertilization, bioremediation,

phytohormone signaling, stress regulation, and immune response stimulation.

Additionally, the pitcher microbiome exhibits traits related to microbe-microbe

interactions, such as colonization of plant systems, biofilm formation, and
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microbial competitive exclusion. In summary, the demonstrated taxonomical

divergence and functionally convergence of the pitcher microbiome are

impacted by the host genetics, making it an excellent system for discovering

novel beneficial microbiome traits.
KEYWORDS

carnivorous plants, pitcher plant, sarracenia, microbiome, metatranscriptome, plant-
microbiome interaction, structural and functional core microbiome
Introduction

Plants live in association with a wide range of microorganisms,

including bacteria, fungi, protists, nematodes, and viruses, all

referred to as the plant microbiome. In natural habitats, through

this association, microorganisms play a significant role in

enhancing plant growth, productivity, and health (Trivedi et al.,

2020). Experimental evidence has demonstrated that plants have

the ability to modify the abundance and diversity of microbiomes in

their environments (Mahnert et al., 2015). Nevertheless, the precise

mechanisms through which this occurs remain unidentified. Plants

may have acquired genetic traits that impact their interaction with

their microbiomes. The identification of these traits and their

mechanisms are essential for the success of the ongoing efforts to

harness and manipulate microbiomes in order to optimize their

advantages for the host plants (Ke et al., 2021; Afridi et al., 2022;

Morales Moreira et al., 2023).

Carnivory evolved independently on 13 occasions in flowering

plants, which includes four instances in monocots (three in Poales

and one in Alismatales) and nine instances in eudicots (three in

Caryophyllales, three in Lamiales, two in Ericales, and one in

Oxalidales). There is a total of 810 species belonging to 21 plant

genera, which are distributed across 13 families and six orders

(reviewed in (Fu et al., 2023)). As a result of convergent evolution,

some carnivorous species have developed modified leaves that allow

them to capture and kill insect prey. These species also host a

complex microbiome that aids in the digestion of the captured prey

and support plant growth through an array of direct and indirect

traits. These traits might be considered as extensions of the host

plant traits, which are equally significant to the inherent plant traits

(the concept is reviewed in (Whitham et al., 2006, 2008)). The

“pitfall” carnivorous plants evolved to trap insects in three separate

lineages (Albert et al., 1992). Using modified leaves called ‘pitchers’,

they digest insect prey with the aid of a complex microbiome that

develops inside their pitcher’s fluid. In the genus Sarracenia, species

differ in their pitcher morphology, which in turn affects the insect

species they capture for nutrients (Ellison et al., 2003a, 2004), and

also affects the initial assembly of the pitcher microbiomes. The

factors involved in shaping the microbiome community likely

involve host plant genetics, local environmental conditions, as

well as prey’s microbiomes. The interactions between the
02
Sarracenia, its microbiome, and captured prey likely played a role

in driving the process of plant speciation. In return, the host species

genetics may have evolved traits to impact the composition and

function of their microbiome communities. The host impact can be

measured by examining the taxonomic divergence and functional

convergence of the pitcher microbiome, which are two prevalent

phenomena in microbial systems (Louca et al., 2016, 2018).

The bacteria, archaea and eukaryotes that reside in the Sarracenia

pitchers have been described by organismal methods (Ellison et al.,

2003b; Baiser et al., 2013) and by environmental sequencing

(Adlassnig et al., 2011; Boyer and Carter, 2011; Koopman and

Carstens, 2011). Multiple studies have explored the impact of the

Sarracenia host plant on the microbiome assembly by comparing the

microbial communities in natural and artificial pitchers (Koopman

et al., 2010; Bittleston et al., 2018; Ellison et al., 2021; Grothjan and

Young, 2022), as well as among various Sarracenia species (Heil et al.,

2022). These studies concluded that Sarracenia may play an active

role in shaping the structure of their microbiome. However, is this

impact is regulated in part by the genetic makeup of the host (i.e.,

deterministic impact)? To address this question, we are using a

Sarracenia mapping population in a controlled environment to

characterize the microbiome diversity, structure and function

among genotypes of same genetic background.

Malmberg et al. developed a Sarracenia genetic linkage map of

437 SNP and SSR markers with a total length of 2017 cM using an F2

generation of 280 plants from a genetic cross between Sarracenia

purpurea (Spu) and Sarracenia psittacina (Spa) (Malmberg et al.,

2018). They mapped 64 pitcher QTLs traits that were involved in prey

attraction, capture and kill, and digestive processes/mechanisms.

Despite the fact that the morphological characteristics of these

traits are indicative of their adaptation to prey capture, their impact

on the structure and function of the microbial community remains

uncertain. We hypothesize that Sarracenia evolved genetic features

for interacting with their vital microbiomes in a manner similar to the

convergent evolution observed in their leaf structure.

Pitcher plants are ideal for studying host-microbiome and

microbiome-microbiome interactions at the experimental and

molecular levels for several reasons. Firstly, each fluid-containing

pitcher is a natural microcosm with well-defined boundaries,

making it experimentally amenable. This differs from other

symbiotic microbial systems that are less amenable to
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experimentation, such as gut microbiomes, or those that do not

have well-defined boundaries such as plant rhizosphere and

phyllosphere microbiomes. Secondly, different species within the

Sarracenia genus have varying leaf traits associated with differing

microbial communities, that attract and digest different species of

insects (Grothjan and Young, 2019). These genetically determined

characteristics may have allowed pitcher plants to impose control

over the microbiome assembly in their pitchers. Thirdly, the various

species of Sarracenia can hybridize readily, offering a unique

opportunity to incorporate a genetic approach to examine plant

genome influences on microbiome assembly (Furches et al., 2013).

Although pitcher plants have long attracted biologists, we know

little about the assembly mechanisms involved in the microbiome

assembly and structure in their pitchers (Grothjan and Young,

2019). It has been suggested that factors other than prey capture and

colonization by eukaryotic species may affect the recruitment of

bacteria to their pitchers (Grothjan and Young, 2019).

The objectives of this study are to evaluate the variations in the

microbiome structure and function among different genotypes of

the Sarracenia mapping populations, namely Spu, Sps, F1 and F2,

and to characterize the composition and functions of the Sarracenia

microbiome. For a panel of these genotypes, we utilized the single

molecule (Oxford Nanopore Technology, ONT) and short reads

(Illumina) technologies to sequence the full-length 16S rRNA gene

(microbiome) and total mRNA (metatranscriptome), respectively,

from their pitcher fluids (Figure 1A). We employed a variety of

specialized databases, as well as bioinformatical tools to analyze the

data (Figures 1B–D).
Materials and Methods

Genotypes

The samples of parental species are true biological replicates

because they are clones of the same individuals, but the samples

from the F1 and F2 generations are separate individuals. To simplify

the study, we treated the F1 individuals as biological replicates of

each other and referred to them as “F1”. Similarly, the F2

individuals were treated as biological replicates and referred to

them as “F2”. Comprehensive information regarding this mapping

population is published in our earlier paper (Malmberg et al., 2018).

All plants were grown under the same conditions in the greenhouse.

Briefly: plants were grown in 4-6-inch pots on flats without holes

and filled with 1/2 to 3/4 inch of water to simulate a tiny bog. The

plants are top watered daily in the summer and less often in the

autumn, winter, and early spring. The bottom inch of soil was

immersed in standing water in the flats, keeping it saturated while

the top 3 inches were moist but never saturated.
Collecting Sarracenia pitcher fluid

We collected the fluid from the pitchers of Spu, Sps, F1 and F2

plants (Figure 1A). All pitchers were at least 8 weeks old to ensure
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stable microbiome communities. The pitcher fluid was collected

using sterile glass pipettes. For Spu, F1 and F2 plants, the glass

pipettes were easily inserted into the pitchers as the flap is open. The

Sps plants have a narrow body and a closed flap, which required a

small incision in the flap to insert the glass pipette into the pitcher

(Figure 1A). Due to the morphology of Sps, some pitchers were dry

or contained a small amount of fluid. In these cases, sterilized water

was added to elute the microbiome that is attached to pitcher’s

internal surface. The fluid samples were collected into 50 ml conical

sterilized tubes and stored in a -20 °C freezer.
Sample preparation

We thawed the pitcher fluid samples on ice for 30-40 minutes,

followed by filtration using the Steriflip Sterile Centrifuge Tube Top

Filter Unit (Cat# SCNY00020) to remove any plant material and

dead insect matter. A schematic diagram of the sample preparation

is shown in Figure 1B. The filtered fluid was a cloudy and

homogenous mixture, indicating the presence of microbial

growth. We centrifuged the samples at 3000 rpm at 4°C for 20

minutes to precipitate the microbiota, discarded the supernatant,

suspended the pellet in 450 µl of PBS buffer, and mixed by pipetting.

We added 750 µl of DNA/RNA Shield (Cat# R2002) to the

suspension and mixed by pipetting and inverting. The material

was transferred into a bead-bashing lysis tube and battered at high

frequency for 2 minutes. Next, the samples were then centrifuged

for 30 seconds at 16,000 rpm, divided into 400 µl aliquots in 2 ml

tubes with 2 volumes of the DNA lysis buffer added to each tube.

Finally, we used the ZymoBIOMICS DNA/RNA Miniprep Kit

(Cat# R2002) to isolate both DNA and RNA.
Microbiome DNA isolation

We transferred the entire sample into a SpinAway Yellow Filter

unit, followed by centrifugation at 16,000 rpm for 30 seconds. The

flow-through, which contained the RNA, was saved in a 15 ml tube.

An equal volume of 100% ethanol was added, and the tube was

placed on ice. After processing the entire sample, a new collecting

tube was used and 400 µl of DNA/RNA Prep Buffer was added to

the column, followed by centrifugation at 16,000 rpm for 30

seconds, adding 700 µl of DNA/RNA wash buffer to the column,

and centrifugation at 16,000 rpm for 30 seconds. Another 400 µl of

the wash buffer was added to the column followed by centrifugation

at 16,000 rpm for 2 minutes. We then carefully transferred the

yellow filter into a nuclease-free 1.5 ml tube and added 50 µl of

DNase/RNase-free water directly in the center of the yellow column

matrix and incubated it at room temperature for 5 minutes. While

waiting, we assembled a Zymo-Spin III-HRC Filter unit and added

600 µl of ZymoBIOMICS HRC Prep Solution into it, followed by

centrifugation at 8000 rpm for 3 minutes. The elution column was

then centrifuged at 16,000 rpm for 30 seconds, and the eluted DNA

was transferred into the prepared HRC filter unit and centrifuged

for 16,000 rpm for 3 minutes to elute the final DNA into1.5 ml tube.
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Microbiome RNA extraction

Wetransferred theRNAsample intoaSpinAwayGreenFilterunit,

followed by centrifugation at 16,000 rpm for 30 seconds, replacing the

collection tube, adding 400 µl of DNA/RNA buffer to the column,

mixing by pipetting, and centrifugation at 16,000 rpm for 30 seconds.

We added 700 µl of DNA/RNA wash buffer to the column and

centrifuged at 16,000 rpm for 30 seconds, followed by adding

another 400 µl of the wash buffer to the column, centrifugation at

16,000 rpm for 2minutes.We then carefully transferred the greenfilter

into a nuclease-free 1.5 ml tube, added 30 µl of DNase/RNase-free

water directly in the center of the yellow columnmatrix, and incubated

it at room temperature for 5minutes.While waiting, we assembled the
Frontiers in Plant Science 04
Zymo-Spin III-HRC unit, added 600 µl of HRC prep solution, and

centrifuged at 8000 rpm for 3 minutes. The green columnmatrix was

centrifuged at 16,000 rpm for 30 seconds to elute the RNA into the

nuclease-free tube. The eluted RNA was transferred into the prepared

HRC filter in another 1.5 ml nuclease-free tube and centrifuged at

16,000 rpm for 3 minutes to elute the final RNA in 1.5 ml tube. The

RNA tubes were labeled and stored at -80˚C.
DNA and RNA quality assessment

We used the Fragment Analyzer Long Fragment (LF) assay to

examine the DNA quality and the Bioanalyzer Pico RNA Assay to
FIGURE 1

Summary of the experiment and analysis pipelines. (A) Photos of the parents (Spu and Sps) and selected F1 and F2 individuals of the Spu X Sps
mapping population, and a sample of the collected pitcher fluid. (B) The experimental process of preparing the pitcher fluid samples and
sequencing. (C) Modules of the 16S rRNA microbiome analysis pipeline. (D) Modules of the metatranscriptome RNA analysis pipeline.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1445713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2024.1445713
assess the RNA integrity. The concentrations were assessed using

the Qubit 4 fluorometer high-sensitivity assays.
Full-length 16S rRNA gene libraries
and sequencing

we used the Oxford Nanopore Technology (ONT) amplicon

sequencing method to build the 16s rRNA gene libraries and

sequence them on the MinIon Mk IC platform. First, we built the

libraries using the 16S barcoding kit (SQK-16S024) following the

manufacturer ’s protocol. Briefly, the ONT primers (F:

TTTCTGTTGGTGCTGATATTGCAGRGTTYGATYMTG

GCTCAG, and R: ACTTGCCTGTCGCTCTATCTTCRGYTACCT

TGTTACGACTT) were used to amplify the full-length rRNA gene

from the isolated microbiome DNA samples. The amplicons

(~ 1500 bp) were barcoded by PCR using the ONT barcoding

primers (SQK-16S024), followed by multiplexing, and ONT adapter

ligation. The Final library pool was sequenced on the Mk IC

platform using FLO-MIN106 flow cells. The final pool of 16S full-

length ONT libraries included 13 samples (4 Spu, 3 Sps, 3 F1, and 3

F2). One of the three F2 samples failed in the sequencing, leaving

only two F2 samples.
Metatranscriptomic library preparation
and sequencing

We treated the metatranscriptome total RNA with the

FastSelect 5S/16S/23S reagent (Qiagen, cat# 335921) to deplete

the rRNA following the manufacturer protocol. We started with

12.5 µl total RNA, fragmented for 2 min at 89 ˚C, and eluted the

fragment RNA in 18 µl RNase-free water. The rRNA depleted was

used immediately to prepare the metatranscriptome libraries using

the SEQuoia complete RNAseq kit (Bio-Rad cat# 17005726)

following the manufacturer ’s procedures without any

modifications. The final sequencing libraries were assessed on the

Fragment analyzer, pooled equimolarly, and sequenced on the

NextSeq 500 sequencer using a mid-output kit. The sequencing

run produced over 171 million reads.
Microbiome data analysis

Taxonomical classification and abundance
We carried out the primary analysis using the EPI2ME 16S

workflow (ONT 16S workflow 2019) to generate the taxonomic

classification and abundance of the 16S genes for all samples. The

16S workflow uses the Centrifuge algorithm (Kim et al., 2016) to map

the full-length 16s reads to the NCBI 16S-18S database and classify

them according to the taxonomy of their best matches. The obtained

taxonomical matrix for all samples was then used for more in-depth

analysis using R as described in the results section. The overall analysis

pipeline (Figure 1C) is divided into three modules: data preprocessing,

microbiome comparison, and core and hubmicrobiome analyses. The

R packages and analysis tools utilized in this study pipeline are listed

in Figure 1C and will be elaborated on in the results section.
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Statistical analysis of alpha and beta diversity
We utilized the Alpha diversity test to evaluate microbial

diversity within each group, that is, among replicates of the same

genotype (4 Spu, 3 Sps, 3 F1, and 2 F2). The alpha diversity was

assessed using three methods: Chao1 (Chao, 1984), Pielou’s

Evenness (Volvenko, 2014), and Shannon (Shannon, 2001). The

pairwise Wilcoxon test (Wilcoxon, 1992) was then used to test the

significance of the variance of the alpha diversity among genotypes.

The difference in the microbiome composition among genotypes

was calculated using beta diversity analysis, followed by

visualization using PCoA (Principal Coordinate Analysis) (Gower,

1966). The sample distances were calculated using Bray-Curtis

distances (Bray and Curtis, 1957; Kers and Saccenti, 2022).

Ubiquitous, genotype-enriched, and
core microbiomes

We used an abundance-based approach to identify ubiquitous

microbiomes, which is the microbiome existing in all samples above

the background noise. This was followed by an overlap analysis

using the ggvenn R package (Yan, 2021) to identify the genotype-

enriched microbiomes. As for the core microbiome, we used the

microbiome R package (Lahti and Shetty, 2018) to identify the core

pitcher microbiome after optimizing the prevalence and limit of

detection factors. We then employed the Linear Discriminant

Analysis Effect Size (LEfSe) (Segata et al., 2011) method to

identify the most distinctive microbial genera showing significant

differential abundance between each pair of genotypes. The LefSe

method is powerful because it combines statistical significance with

the evaluation of biological consistency (effect size) using several

tools including the Kruskal-Wallis test (Kruskal and Wallis, 1952)

and Linear Discriminant Analysis (LDA) (Fisher, 1936).

Network and hub microbiome
We implemented network analysis to gain insights into the

structure of the pitcher microbiome community. We deployed

ggClusterNet (Wen et al., 2022) to infer the correlation network

followed by visualization using Gephi (Bastian et al., 2009).

Subsequently, we computed three scores for each node: hub score,

within-module connectivity Z-score, and participation coefficient

scores. The scores reflect the node’s connectivity to all other nodes

in the network, to nodes within the same community, and the

evenness of edges distribution within each community, respectively.

The network structure, and hence all three node scores, will change

when the number of nodes, the threshold for correlations, and the

p-values are altered. Therefore, we examined the changes in the

network structure across various correlation criteria, p-values, and

node counts (Supplementary Figure S1). As a result, we set the

correlation criterion to 0.7 and the p-value cutoff to 0.05.
Metatranscriptome data analysis

Metatranscriptome assembly and annotation
The metatranscriptome analysis pipeline is shown in Figure 1D.

First, we trimmed the sequencing reads to remove adapter traces

as well as short and low-quality reads using Trim_galore. Then
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we used the rRNA database v4 and sortMeRNA (Kopylova et al.,

2012) to remove rRNA reads from each sample. The remaining

metatranscriptomic mRNA reads from all samples were combined

and assembled using rnaSPAdes (Bushmanova et al., 2019). The

assembled metatranscriptome was deduplicated to remove identical

metatranscripts followed by annotation against a customized

uniprot_sprot protein database, which included bacterial, fungal,

viral and archaea sprot sequences (uniprot_sprot_microbial) using

diamond blastx (–top 1 –evalue 0.05). Also, we mapped the

metatranscriptome to the NCBI nonredundant and GTDB protein

databases using diamond blastx to obtain accurate taxonomical

lineages. Subsequently, we mapped the cleaned sequence reads of

each sample to the annotated metatranscriptome using STAR (Dobin

et al., 2013) and compiled the count matrix for all samples with

taxonomical information. Lastly, we converted the count matrix to

CPM matrix.
Abundance of genera and metaproteins
In order to determine the abundance of taxa, the count matrix

was transformed from reads per protein to genus abundance. The

genus abundance was determined by counting all metatranscripts

mapped to proteins from the same genus (according to the

uniprot_sprot annotation) for the Spu, Sps, F1, and F2 samples.

Next, we calculated the z-core and p-value for each genus count in

each sample and filtered out all genera with p-values > 0.05. The

TMM method was used to normalize the abundances of the filtered

genera. Similarly, in order to identify prevalent proteins, the

metatranscripts count matrix was transformed into a metaprotein

abundance matrix. The metaprotein abundance was determined by

counting the metatranscripts mapped to the same protein, based on

the uniprot_sprot annotation, from multiple genera. Next, we

calculated the z-core and p-value for each metaprotein count in

each sample and filtered out all metaproteins with p-values > 0.01,

followed by a TMM normalization.
Functional core microbiome
We used two criteria to identify the functional core

microbiome: prevalence > 0.4 and limit of detection > 50

metatranscripts. Unlike the structural core microbiome, which

was identified based on the 16S rRNA gene data, the functional

core microbiome relies on the prevalence and abundance of

protein-coding metatranscripts, hence their functions.
Genotype functional-enrichment analysis
We conducted function category enrichment analysis on the

proteins that were enriched in each genotype (p-value < 0.05) using

ShinyGO 0.80 (Ge et al., 2020) and Acidobacteria Bacteriam

13_1_20CM_53_8STRINGdb as a reference. The pathway

databases of the enrichment analysis included GO biological

processes, GO cellular components, GO molecular functions,

annotated UniProt keywords, and local network clusters

(STRING). We then manually filtered the list of enriched

functions to remove redundancy, which existed as a result of

using multiple databases.
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Overall microbiome functional analysis
We used the intensively curated Plant Growth-Promoting

Traits (PGPT) (Patz et al., 2024) from the Plant-associated

Bacteria (PLaBAse) project (Patz et al., 2021) to gain insights into

the major functions of the pitcher microbiome community. The

metatranscriptome was mapped to the mgPGPT protein database

using the Diamond blastx (mini. E-value ≤ 0.05) and used the

Megan software (Gautam et al., 2023) to further analyze and

visualize the results.
Results

Microbiome sequencing data

The ONT sequencing run produced 9,772,540 full-length 16S

rRNA gene sequences of which 9,742,538 reads were taxonomically

classified (~ 99%) with an average classification accuracy of 93%.

The read length average and mode are 1,244bp, and 1,780bp,

respectively. The quality score average and mode are 13.91, and

14.05 respectively. Reads without valid barcodes were removed

leaving a total of 8,999,370 sequences. The EPI2ME 16S workflow

assigned a lowest common ancestor (LCA) score (Munch et al.,

2008) to each full-length 16S read (Supplementary Table S1). The

LCA score is used instead of the classical “num_genus_taxid” and is

used to store records of the classification status. It has three values: 1

for a species-level classification without accurate genus

classification; 0 for both species and genus classification; -1 for

unsuccessful species classification. We removed 106,817 reads that

had a -1 LCA score. The remaining 8,892,553 reads (minimum

classification accuracy is 77%) were used in the subsequent analyses.
Microbiome diversity and
intergenotype variance

The use of full-length 16S rRNA genes in this analysis offers a

heightened degree of precise classification analysis, hence

eliminating the necessity for data rarefaction. The non-rarefied

count matrix was further normalized as Counts Per Million (CPM)

and was utilized to create the phyloseq (McMurdie and Holmes,

2013) object for further examination in the subsequent analysis.

Alpha diversity
The alpha diversity is measured using Chao1 (Chao, 1984),

Pielou’s Evenness (Volvenko, 2014), and Shannon (2001) methods

(Figure 2A). Each method measures particular aspects of microbial

diversity. Chao1 assesses the species richness, Pielou’s Evenness

focuses on the evenness of species distribution, and Shannon

measures both richness and evenness. All three measures reveal

noticeable variations in microbial richness and evenness between

the genotypes (intergenotype) and among the replicates of the same

group (intragenotype). When both richness and evenness are

assessed simultaneously using Shannon’s approach, the median

alpha diversities of all samples were more closely aligned. The
frontiersin.org

https://doi.org/10.3389/fpls.2024.1445713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2024.1445713
observed variations may be attributed to the limited number of

replicates, variations in sequence depth among samples, genetic

differences among the replicates of the F1 and F2 samples, as well as

the differences in microbial diversity. We then used the pairwise

Wilcoxon method (Wilcoxon, 1992) to test if the alpha diversity

among the parents, F1 and F2 is significantly different. All of the p-

values were close to 1 (Supplementary Table S1), indicating that

none of the pairs’ diversity showed a significant difference. This

suggests that the low replication and sequencing depth variation did

not result in any statistically significant difference in the diversity

and species evenness observed across the samples. In the

subsequent analysis, we assume there is no significant difference

in the alpha diversity among the parents, F1, and F2 generations.

Beta diversity
In Figure 2B, we illustrate the beta diversity among genotypes

using the PCoA (Principle Coordinate Analysis) (Gower, 1966),

where the colored ellipse depicts the dispersion of all samples from

each genotype, encompassing 95% of the diversity, assuming a

normal distribution. Since there are only two replicates in the F2, it

is infeasible to construct an ellipse for it, and hence it uses a straight

line to indicate the dispersion. The results show that the

microbiome compositions of the two parent species, Spu and Sps,
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are different from the descendant generations, F1 and F2. To further

explore the inter-genotype microbiome differences, we

implemented PERMANOVA (Anderson, 2001) to test the

difference in the distribution between genotypes. The p-value for

the test is 0.011, which indicates significant differences in microbial

community structure between genotypes. We also implemented the

PERMDISP test (Anderson, 2006) to assess inter-genotypes

microbiome dispersion. The p-value of the test is 0.825, indicating

the microbiome dispersion is not significantly different between

genotypes. Combining the results from the two tests, we can

conclude that there is a significant difference in the microbial

community structure between the parental species and their F1,

and F2 genotypes.

The genotype-enriched and core microbiomes
We identified the genotype-enriched and core microbiomes in

the pitcher fluids of the parents, F1, and F2 groups. Specifically, a

genus is deemed genotype-enriched only if it is represented in every

replicate of that genotype by at least one full-length 16S rRNA read.

Accordingly, out of 1,960 identified bacterial genera, the pitcher

microbiomes of Spu, Sps, F1, and F2 contained 180, 177, 213, and 155

bacterial genera, respectively (Table 1; Supplementary Table S1).

There is a total of 342 non-redundant bacterial genera constituting
FIGURE 2

Microbiome diversity assessment. (A) Comparison of alpha diversity of different genotypes using Chao, Pielou, and Shannon tests to assess richness,
evenness, and both, respectively. (B) Visualization of the relationship between every sample using Principal Coordinate Analysis. The color represents
the genotype of each sample. The ellipses mark the variation of each genotype.
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both the ubiquitous (62), and genotype-specific (145) bacterial taxa,

as well as taxa existed in two to three genotypes (135). We utilized the

ggvenn R package (Yan, 2021) to identify the microbiome overlap

among genotypes (Figures 3A, C). Specifically, 62 (18.1%) bacterial

genera exist in all samples of Spu, Sps, F1, and F2, among which the

top 5 abundant genera are Aeromonas, Rhodopseudomonas,

Achromobacter, Paraburkholderia, and Azospirillum.

For the core microbiome, we considered a genus to be a member

of the core microbiome if its least prevalence under different

detection thresholds is greater than 40%, as described in the

microbiome analysis R package (Lahti and Shetty, 2018). Unlike

the ubiquitous microbiome, the core microbiome requires a specific

abundance (the detection threshold) in a specific proportion of

samples (prevalence) instead of in every sample. The heatmap in
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Figure 3B illustrates the prevalence of the core microbiome under

different detection thresholds (100 to 1,000). With a prevalence

equal to 0.4 and a detection limit equal to 500, a total of 58 bacterial

genera constituted the core microbiome of Spu, Sps, F1, and F2

(Supplementary Table S1). The top 5 genera with the highest CPM

normalized count in the core microbiome are Azospirillum,

Achromobacter, Rhodopseudomonas, Mucilaginibacter, and

Aeromonas. There are 42 genera that are shared by the ubiquitous

and the core microbiomes, representing 67.7% and 72.4% of each,

respectively (Supplementary Table S1).

In the genotype-enriched microbiome, 35 genera (10.2%) are

unique to the Spu genotype, 23 genera (6.7%) to the Sps genotype,

68 genera (19.9%) to the F1 genotype, and 19 genera (5.6%) to the

F2 genotype (Figure 3A). The results show that the microbiome of

the F1 genotype differs significantly from that of the other

genotypes. A similar observation can be obtained from the

comparisons presented in Figure 3C. The microbiomes of the two

parents (Sps and Spu) exhibit a greater similarity to each other than

to either the F1 or F2 microbiomes (Figure 3A). The proportion of

shared genera between Sps and Spu microbiomes is 37.8% when

compared to F1 and 44.5% when compared to F2 microbiomes,

which is much higher than the overlap between F1 and F2

microbiomes (Figure 3C). The overlaps between F1 and F2

microbiomes are 35.4 relative to the Spu and 36.8 relative to the

Sps microbiomes. The results confirm that the Sps microbiome is

similar to that of Spu, while the F1 microbiome is more closely

related to the F2 microbiome (Figure 2B).

We employed LEfSe analysis (Segata et al., 2011) to examine the

microbiomes of Spu, Sps, F1, and F2 to identify the most distinctive

microbial genera showing significant differences in abundance

across all genotype. Figure 3D displays the LEfSe analysis results

for the comparisons Sps vs. F1, Spu vs. F1, and Spu vs. Sps. The F2

microbiome was excluded from the analysis due to having only two

replicates, as previously explained. At a log10 LDA score of 2, there

are more distinct genera in the microbiomes of F1 compared to Spu

and Sps, than between Spu and Sps (Figure 3C). These results are

consistent with the PCoA analysis (Figure 2B) and microbiome

overlapping analysis (Figures 3A, C).
The microbiome communities networks
and hubs

This analysis included 582 genera (out of 1,960) with an

accumulative normalized abundance of more than 100 across all

samples. In the correlational network (Figure 4A), nodes with

correlation ≥ 0.7 and p-value ≤ 0.05 are connected with edges.

The greedy algorithm (Clauset et al., 2004) assigned the network

nodes to 5 microbiome communities (clusters), which are indicated

by the node and edge colors (Figure 4A-left). The edge colors

represent the correlation values of connected nodes, where blue and

red edges signify positive and negative correlations, respectively.

Two communities contain less than 10 genera (Cluster 1, 2), and the

majority of the genera (97%) are assigned to the other three

communities (Cluster 3, 4, 5). Cluster 1 (dark green) is located in

the negatively correlated part of the network and serves as the hub
TABLE 1 summary of the results.

Bacterial 16s rRNA gene reads classification and analysis

Full-length classified 16S rRNA gene 8,892,553 reads

Classified bacteria 1960 genera

Ubiquitous and genotype-enriched (non-redundant): 432 genera

Spu 180 genera

Sps 177 genera

F1 213 genera

F2 155 genera

Structural core microbiome 58 genera

Community clusters 3-7 clusters

Community hubs 4 genera

Community Connectors 23 genera

Microbial Metatranscriptome classification
and functions

Metatranscripts with microbial protein annotation 65,578 metatranscripts

Microbial genera based on metatranscriptome: 2157

Viral 121 genera

Bacterial 1067 genera

Archaeal 11 genera

Fungal 270 genera

Functional core microbiome 90 genera

Bacterial 68 genera

Fungal 22 genera

Genotype-enriched microbes (p-value < 0.05) 25 genera

Non-redundant microbial protein matches 9,693 proteins

Genotype-enriched microbial proteins (p-value < 0.01) 212 proteins

Metatranscripts mapped to PGPT1 proteins: 50424 metatranscripts

Direct effect traits 13,519 metatranscripts

Indirect effect traits 29,029 metatranscripts
1Plant-grwoth promoting traits (PGPT).
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node for the other three major microbiome communities. Cluster 2

(orange) has very few connections to the rest of the network. Cluster

3 (pink), Cluster 4 (light green), and Cluster 5 (blue) construct the

main part of the microbiome network. The top 5 genera with the

highest normalized count in these five communities are:

Sphingobacterium, Pedobacter, Tissierella, Epilithonimonas, and

Diaphorobacter for Cluster 1; Gracilibacter, Desulfonatronobacter,

Desulfococcus, Maritalea, and Desulfoconvexum for Cluster 2;

Azospirillum, Mucilaginibacter, Legionella, Terriglobus, and

Methylacidimicrobium for Cluster 3 ; Achromobacter ,

Rhodopseudomonas, Aeromonas, Comamonas, and Burkholderia

for Cluster 4; Sphingomonas, Luteibacter, Granulicella, Reyranella,

and Terrimonas for Cluster 5.

We also computed the within-model connectivity z-score and

participation coefficient (Guimera and Nunes Amaral, 2005) for

each node in the whole network, which indicates the connectivity

within and between communities, respectively (Figure 4A-right).

Nodes are classified into four categories based on their scores:

peripheral, connections, module hubs, and network hubs (Guimera

and Nunes Amaral, 2005). A network hub node has a stronger
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connection to the network than the ordinary node. Connector and

module hub nodes have more connectedness across and within

communities than the average of community nodes. The remaining

genera are classified as peripheral. As shown in Figure 4A-right, the

whole network has 2 module hubs and 10 connectors. The module

hubs are Schlesneria andMethylophaga, whereas the connectors are

Dendronalium , Calothris , Lacrimispora , Sphingobium ,

Mesorhizbobium , Parabacteroides , Legionella , Leifsonia ,

Lactococcus, and Desulfococcus.

To gain a closer insight into the microbiome communities, we

zoomed in on the top 100 genera ranked by their hubscore, within-

model connectivity z-score, normalized abundance, and

participation coefficient (Figures 4B–E). In the co-occurrence

subnetworks (Figures 4B–E, left), node colors denote the greedy

algorithm-detected clusters and node sizes represent the

accumulated abundance in all 12 samples. The connectivity scores

of the four subnetworks are illustrated in Figures 4B–E (right

panel), respectively. The inferred networks of the top 100 genera

ranked by hubscore and within-model z-score have similar

topology including 3 highly connected community clusters each,
FIGURE 3

The core and genotype enriched microbiome analysis. (A) A Venn diagram showing the number of overlapped genera among Spu, Sps, F1, and F2.
(B) Heatmap of the prevalence of different microbiomes under different detection thresholds. The detection value and prevalence cut-off limits are
represented by the horizontal red line and transparent area, respectively. (C) Four Venn diagrams comparing the overlapping genera among every
three genotypes to highlight the genotype specific numbers. (D) Genotype-enriched genes detected by Linear discriminant analysis Effect Size.
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two module hubs (Schlesneria and Methylophaga), and no

connectors or network hubs (Figures 5B, C). The high

connectivity in these two subnetworks can be explained by the

fact that both the hubscore and within-model connectivity z-score

prioritize the connections of each node, resulting in a highly

interconnected network with fewer distinct clustering patterns.

Similarly, the inferred subnetworks of the top 100 genera ranked

by normalized abundance and participation coefficient (Figure 4E,

E) have similar structures with 6 and 7 clusters, and

Phenylobacterium and Schlesneria as module hubs, respectively.

The abundance-based subnetwork has the following 11 connector
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nodes: Phenylobacterium, Schlesneria, Chitinophaga, Rhodoferax,

Rhizobium , Flavobacterium , Dokdonella , Caballeronia ,

Gluconacetobacter, Calothrix, Erythobacter, Novosphingobium,

Arcicella, and Entrobacter (Figure 4E-right). The abundance and

participation coefficient subnetworks seem to capture more of the

network topological information and identify more community

connectors and hubs.

The overlap among the four subnetworks is presented in Figure 5.

A total of 67 genera (50.4%), including a module hub (Schlesneria),

appeared in both hubscore and z-score subnetworks (Figure 5A). On

the other hand, only 22 genera (12.4%) are common to both the
FIGURE 4

Network analysis. (A) the whole network of 582 filtered genera (left) and connectivity scores (Right). (B-E left) the subnetworks of top 100 genera
ranked by their hubscore (B), z-score (C), normalized abundance (D), and participant coefficient (E). The connectivity scores of the four subnetworks
are in their corresponding right panels.
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abundance and participation coefficient subnetworks (Figure 5B).

Interestingly, no module hubs or connectors were shared between

these two subnetworks. Only two genera overlapped among the four

subnetworks (Figure 5C). The participation coefficient quantifies the

overall connectivity of each node, making it a valuable tool for

capturing the structure of the network of the top 100 genera. While

there is minimal overlap between the genera in the abundance and

participation coefficient subnetworks (Figure 5B), both networks

have a similar topology, suggesting that these two parameters

represent comparable community clusters. The heatmap in

Figure 5D illustrates the TMM normalized abundance of the

discovered hubs and connector genera in the parents, F1, and F2

data. It reveals three clusters and six subclusters. Also, it reveals the

presence of a cluster of extremely prevalent hub and connector nodes

in each of the genotypes, indicating that the genotype of the host may

impact the formation of the hubs and connectors within the

microbiome community.
Characterization of the
pitcher metatranscriptome

The assembled pitcher metatranscriptome included a total of

132,710 metatranscripts, with an N50, average and maximum length

of 211 bp, 219 bp, and 8048 bp, respectively. About 65,578 (49.4%),
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62,382 (47%), and 63,105 (47.6%) metatranscripts have blastx protein

hits (e-value ≤ 0.05) in the uniprot_sprot_microbial, NCBI

nonredundant, and GTDB protein databases, respectively. Figure 6A

shows a random example of the blastx alignment ofmetatranscripts to

reference protein (min. coverage ≥ 70%). The total number of non-

redundant proteins is 9693. These best protein hits come from 2157

microbial species representing 121 viral, 1067 bacterial, 11 archaeal

and 270 fungal lineages (Table 1; Supplementary Table S2). At the

microbial level, the highest represented viral clade is Riboviria (71

metatranscripts), the highest bacterial taxon is proteobacteria (17,517

metatranscripts), and an unclassified Archaea (3975metatranscripts).

About 9021 metatranscripts mapped to proteins from eukaryotic

organisms, the highest among them were Cryptophyceae (432),

Discoba (302), Opisthokonta (503), and Sar (4765) (Figure 6B). The

metatranscriptome data revealed a functional core microbiome

consisting of 90 microbial species, including 68 bacterial taxa and 22

fungal taxa (Supplementary Table S2). Interestingly, sixteen bacterial

taxa are part of both the structural and functional microbiomes

(Supplementary Table S2). The taxonomy tree generated from the

metatranscripts (Figure6B) offers a visual representationof the general

classification of the microbial taxa in the pitcher microbiome. It is

worth noting that there can be heterogeneity in the microbiome

structure from one individual to another. However, as a whole, the

pitcher microbiome appears to have a very intricate structure with

multiple levels of interactions.
FIGURE 5

Genera overlapping among subnetworks and abundance of hub genera. (A-C) Venn diagrams showing the number of overlapped nodes (genera)
among the four subnetworks. Overlapping between the hubscore and z-score top most 100 genera (A), normalized abundance and participant
coefficients (B), and all four subnetworks (C). (D) A heatmap showing the normalized abundance of all hub and connector genera in the Spu, Sps, F1,
and F2 samples.
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Genotype-based differences in the
pitcher metatranscriptomes

We examined the differences in the pitcher metatranscriptome

among the genotypes (Spu, Sps, F1, and F2) using the genera and

metaproteins enrichment analysis. For each genotype, we selected the

genera with p-value < 0.05 and metaproteins with p-values < 0.01.

Therewere 25 genera and212metaproteinsmeeting these criteria. The

normalized abundance of these genera and proteins is illustrated in the

heatmaps in Figure 7. It is evident from the heatmap clustering that

there are differences in the genera abundance (Figure 7A) and

metaprotein accumulation (Figure 7B) among the genotypes. Note

that in Figure 7B, the heatmap includes only 25 proteins, but the

complete list of proteins is provided in Supplementary Table S2.

Despite the intergenotypic difference in the genera diversity and

metaproteins, the enriched functional categories in all genotypes

seem to be very similar, with small variations in the fold changes and
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number of genes in each category (Figure 8). For each of genotype,

proteinswith p-values < 0.01 (seematerials andmethods)were used in

the functional category enrichment analysis. These sets included 199,

237, 236, and 201 proteins in Spu, Sps, F1, and F2 respectively. The

analysis revealed a significant (FDR<0.01) enrichment (more than two

folds) of multiple functional categories in all genotypes. Nevertheless,

there were no discernible differences in the enriched categories across

the different genotypes (Figure 8), suggesting a microbial function

convergence in the pitcher microcosm despite variations in structure

and diversity.
Phyllosphere and rhizosphere microbiomes

We compared the identified pitcher microbial taxa with

previously reported phyllosphere and rhizosphere microbiomes

(reviewed in (Saeed et al., 2021; Bashir et al., 2022)). As presented
FIGURE 6

Taxonomy tree of the identified taxa based on the pitcher metatranscriptome alignment to proteins. (A) Metatranscripts of variable lengths aligned to
the protein MAG TPA: carbamoyl-phosphate synthase large subunit (Sphingobacterium sp.). The vertical gray lines represent gaps. (B) The taxonomy
tree of the identified taxa. The circles represent the log scale of number of metatranscripts assigned to the tree nodes and leaves. The numbers
listed after each taxon name is the number of metatranscripts mapped to the proteins of this taxon.
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in Table 2, groups of 30, 23, and 20 microbial taxa that were

reported to be performing different functions in the phyllosphere,

rhizosphere, and both, respectively, were also present in the pitcher

microbiomes in this study. Furthermore, many of these microbes

were community connector hubs, indicating that they play a major

role in microbiome assembly and functions (Table 2). The richness

of the pitcher microbiome with both phyllosphere and rhizosphere

microbes indicates its intricate nature and suggests that its functions

extend beyond the traditional role of supporting plant nutrition.
The pitcher metatranscriptome functions

Our analysis of the pitcher metatranscriptome using the PGPT

database revealed major function categories (Table 1; Figure 9).

About 50,424 metatranscripts were mapped to PGPT proteins that

are associated with different plant growth-promoting functional

categories. Globally, 13,519 and 29,028 metatranscripts are mapped

to functional groups with direct and indirect effects on plant growth

traits, respectively (Figure 9). Among the microbiome traits that have
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direct effects on plant growth are biofertilization, bioremediation, and

phytohormonal plant signals. The microbiome traits that have

indirect effect on plant growth include stress control, immune

response stimulation, colonizing plant systems and microbial

competitive exclusion. As shown in Figure 9, the size of the green

circle represents the log scale of the number of metatranscripts

assigned to the corresponding function. Altogether, there are 44

major microbiome traits that have direct effect on the host-

microbiome and microbiome-microbiome interactions. Traits that

are represented by over a thousand metatranscripts include nitrogen

acquisition (1003), phosphate solubilization (1751), heavy metals

detoxifications (2413), plant vitamin production (1069),

neutralizing biotic stress (1578), neutralizing abiotic stress (6230),

universal stress response (1062), chemotaxis (1033), plant-derived

substrate usage (7067), colonization surface attachment (1485), cell

envelop remodeling (1618), biofilm formation (2313), bacterial

fitness (2526), and bacterial secretion (1188). These findings reveal

the complex functions of the pitcher microbiome at several levels,

providing a chance to investigate a wide range of microbiome traits

and their host interactions.
FIGURE 7

The pitcher metatranscriptome: the abundant genera and proteins showing species-related patterns. (A) heatmap showing the TMM normalized
abundance of the genera in the samples of Spu, Sps, F1, and F2 (p-values < 0.05). (B) similar to “A” but showing the abundance of the 25 protein with
lowest P-values.
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Discussion

The Sarracenia genus relies on its microbiome to facilitate the

digestion of trapped prey and to provide important nutrients such

as nitrogen (N) for protein synthesis, phosphorus (P) for nucleic

acid synthesis, and magnesium (Mg) and iron (Fe) for chlorophyll

synthesis. Previous research suggested that factors other than prey

capture and colonization by eukaryotic species may affect the
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recruitment of bacteria to the pitchers (Grothjan and Young,

2019). Also, It has been demonstrated that plants have the ability

to modify the composition of the microbiomes in their

surroundings (Mahnert et al., 2015) and host genetic variations

have an impact on the structure and functions of the microbiome in

humans (Turnbaugh et al., 2009; Blekhman et al., 2015). Extensive

research has been conducted on the convergent evolution of

carnivorous plant leaves, particularly those belonging to the
FIGURE 8

Function enrichment of the genotype-enriched metaproteins against the Go functional categories, uniprot keywords, STRING functional lists of
Acidobacteria. The number of genes, FDR and fold enrichment of the significantly enriched functional categories in Spu, Sps, F1, and F2
metatranscriptomes are shown in (A-D), respectively.
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TABLE 2 The phyllosphere (PS) and Rhizosphere (RS) bacterial (B) and fungal (F) taxa in the pitcher microbiome and metatranscriptome.

Literature1 This study

Microbes Plant space Type Microbiome Metatranscriptome Core/Hub

Aureobasidium PS F D

Azorhizobium PS B D D

Beijerinckia PS B D D

Chaetomium PS F D

Cladosporium PS F D

Clonostachys PS F D

Colletotrichum PS F D

Cryptococcus PS F D

Curtobacterium PS B D

Enterobacteria PS B D

Erwinia PS B D D

Exiguobacterium PS B D D

Fusarium PS F D C

Gluconacetobacter PS B D D Co

Halomonas PS B D D

Hymenobacter PS B D D

Hyphomicrobium PS B D D C

Massilia PS B D

Methylobacterium PS B D D C

Microbacterium PS B D D

Mycobacterium PS B D D C

Nocardia PS B D D

Pseudochrobactrum PS B D

Pseudoxanthomonas PS B D D C

Rathayibacter PS B D

Rhodopseudomonas PS B D D C

Saccharothrix PS B D

Sphingomonas PS B D D C

Stenotrophomonas PS B D D C

Xanthomonas PS B D D C

Acidovorax RS B D D C

Agromyces RS B D

Azoarcus RS B D D

Azospirillum RS B D D C

Bradyrhizobium RS B D D C

Brevibacillus RS B D D

Brevibacterium RS B D D

Brevundimonas RS B D D C

(Continued)
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TABLE 2 Continued

Literature1 This study

Microbes Plant space Type Microbiome Metatranscriptome Core/Hub

Corynebacterium RS B D D

Cronobacter RS B D D

Debaryomyces RS F D C

Dietzia RS B D

Escherichia RS B D D C

Halobacillus RS B D D

Kluyvera RS B D

Leptolyngbya RS B D

Micrococcus RS B D D

Neurospora RS F D C

Nocardioides RS B D D

Paenibacillus RS B D D

Rahnella RS B D D

Ralstonia RS B D D C

Rhizopus RS F D C

Achromobacter PS, RS B D D C

Acinetobacter PS, RS B D D C

Alcaligenes PS, RS B D D

Arthrobacter PS, RS B D D

Bacillus PS, RS B D D C

Burkholderia PS, RS B D D C

Candida PS, RS B D C

Citrobacter PS, RS B D D

Enterobacter PS, RS B D D Co

Flavobacterium PS, RS B D D Co

Klebsiella PS, RS B D D C

Pantoea PS, RS B D D

Penicillium PS, RS F D C

Pseudomonas PS, RS B D D C

Psychrobacter PS, RS B D D

Rhizobium PS, RS B D D Co

Rhodococcus PS, RS B D D

Saccharomyces PS, RS F D C

Staphylococcus PS, RS B D D C

Streptomyces PS, RS B D D C

Variovorax PS, RS B D D C
F
rontiers in Plant Science
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1 (Saeed et al., 2021; Bashir et al., 2022).
The listed microbial taxa have been found in the phyllosphere and/or rhizosphere of many plant species. Here we report the coexistence of both PS and RS taxa in the Sarracenia pitcher fluids. D,
detected; Co, community connector, and C, core genera.
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Sarracenia genus (Thorogood et al., 2018; Wheeler and Carstens,

2018; Chomicki et al., 2024). The evolution of the composite trait of

the insect-trapping pitchers in carnivorous plants is believed to have

occurred through separate modifications of shape, coloration, and

biosynthetic pathways (reviewed in (Chomicki et al., 2024)). We are

exploring the concept of considering the pitcher microbiome

properties as an extension of plant traits that have evolved

alongside carnivory as a part of the insect-trapping composite

trait. Our hypothesis is that carnivorous plants have gained

genetic traits during the convergent evolution of their pitcher

trait, enabling them to interact with their vital microbiomes. Our

results show that pitcher plants impact the structure and function of

their microbiomes, which in turn have a broader effect on their

growth, extending beyond mere nutritional support.
The host genotype significantly influence
the microbiome assembly

In their natural habitats, the microbiome diversity diverged

among the Sarracenia host species (Heil et al., 2022). In this study,

we detected statistically significant differences in the structure of the

pitcher microbiome communities among the parental species and

their F1 and F2 genotypes under the same greenhouse conditions.

The finding is supported by the PERMANOVA analysis, which

indicated that the variations in distribution among genotypes are

statistically significant (p-value = 0.011). The PERMDISP test

indicated that there is no significant difference in the dispersion

(p-value = 0.825) between genotypes, ruling out the possibility that

difference in sequencing depth between samples could have

produced the observed distribution differences. Both Alpha-

diversity and PCoA (Figure 2) analyses unveiled differences in the

microbiome diversity among individuals of the same group and

between the genotypes. Although the majority of the microbial taxa

existed in the microbiomes of all species and genotypes, there were

genotype-enriched microbial taxa (Figures 3A–D). The microbiome

of the F1 generation differed significantly from all other samples,

which could be attributed to its dominant genetics that are

expressed in more distinctive traits. The variation in the

microbiota between the parental species is smaller than the

variation observed between either of them and their F1 and F2

genotypes. This observation is reinforced by the number of

distinctive genera, as identified by the LEfSe analysis, between the

parental species and their F1 and F2 generation (Figure 3C). The F2

generation exhibits increased genotype complexity and genetic

variation, resulting in a wide range of traits, including those that

influence the assembly and structure of their microbiome. The

abundance patterns of the overall microbiome community hub and

connector genera varied significantly among the different genotypes

(Figures 4, 5). This suggests that the genotypes may influence the

development of their respective local community hubs and

connectors. By utilizing the Sarracenia mapping population, our

results suggest that host genetic factors are impacting the observed

significant variance in the microbiome structure.
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The core microbiomes and plant growth-
promoting traits

The richness and diversity of the Sarracenia core microbiome

suggests that it possesses a wide range of complex traits and levels of

interactions. Over 1900 bacterial genera were identified using 16S

the rRNA gene, including 62 ubiquitous genera, 145 genotype-

enriched genera, and 58 genera constituting the structural core

microbiome. More than 2100 microbial genera were found using

the metatranscriptomic data, including 68 bacterial and 22 fungal

genera constituting the functional core microbiome. There are 16

genera existed in both structural and functional core microbiomes,

including Acidovorax, Bradyrhiobium, Bukholderia, Caulobacter,

Chromobacterium, Clostridium, Cupriavidus, Magnetospirilllum,

Mesorhizobium , Novosphingobium , Paraburkholder ia ,

Pseudomonas, Rhizobium, Rhodopesudomonas, Rickettsia, and

Stenotrophomonas. The functional core microbiome relies on the

prevalence and abundance of protein-coding metatranscripts, while

the identification of the structural microbiome relies on the

prevalence and abundance of 16S rRNA gene reads. Many of the

core genera especially the prevalent ones are among the group of

plant-associated microbes known as plant growth-promoting

Rhizobacteria (PGPR) (Beneduzi et al., 2012; Agarwal et al.,

2020). As shown in Table 2, we identified the fungal and bacterial

taxa in the pitcher microbiome, which have previously been

discovered in rhizospheres and/or phyllosphere of other plant

species (reviewed in (Saeed et al., 2021; Bashir et al., 2022)).

While PGPR has traditionally been found in the rhizosphere, it is

not unexpected to discover them in the pitcher microbiome

(phyllosphere) due to the fact that this plant species depends on

pitcher leaves for acquiring essential nutrients. This finding

prompts inquiries into the functional and structural interactions

between the rhizosphere and phyllosphere microbiomes while

coexisting in the confined microenvironment of the pitchers. The

functional traits of these PGPR genera include the ability to enhance

plant growth through biofertilization, act as biocontrol agents to

combat pests, and serve as biological fungicides to protect their

specific host plants.
Microbiome community clusters and hubs

The network analysis (Figures 4, 5) unveiled many clusters of

microbial communities (Supplementary Table S1), resulting in the

identification of community hubs and connector genera. The

number of community clusters varied between 3 and 7,

depending on the network factors used to identify the clusters.

For example, the analysis revealed the presence of five distinct

community clusters in the entire network. Additionally, the

networks of the top 100 abundant and top 100 participation

coefficient nodes (genera) exhibited the identification of six and

seven community clusters, respectively. But regardless of the

method, there are always distinctive community clusters in the

inferred microbiome network. The key characteristic of these
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communities is the discovery of a total of 27 genera playing the hub

and connector roles in these communities. It is crucial to note that

the hub and connector genera, based on hubscore, within-model

connectivity z-score, and participation coefficient, have a low

abundance. This indicates that the genera that perform important

roles in the microbiome community are not always the most

prevalent genera. Interestingly, the analysis of the normalized

abundance of the 27 hub and connector genera in the parents, F1,
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and F2 genotypes uncovers distinct clusters of genera that vary

significantly in their abundance among the genotypes (Figure 5D).

This suggests that the host genetic makeup influences the selection

of the microbiome hubs and connectors. For instance, the genus

Schlesneria appeared as a hub genus in the whole network, as well as

in the subnetworks, despite not being among the highly abundant

genera compared to the other hub and connectors genera

(Figure 5D; Supplementary Table S1). As shown in Table 2, the
FIGURE 9

Classification of the major function categories of the pitcher microbiome based on the number of metatranscripts mapped to PGPT ontology. The
circles represent the log scale of number of metatranscripts assigned to each function. The number following each function is the number of
metatranscripts mapped to this function.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1445713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2024.1445713
majority of the hub and connector genera are commonly reported

as plant-associated genera living in the plant’s phyllosphere and

rhizosphere (Mahnert et al., 2018). Overall, the inferred

microbiome networks offered insights into the assembly and

organization of the pitcher microbiome. This involved the

identification of many subcommunities, each with their hub

genera, as well as connector genera that facilitate communications

between these subcommunities. Interestingly, the community

networks also show that the hub and connector genera exhibit

varying levels of abundance across different genotypes (Figure 5D),

suggesting that the host genotypes may have an impact on

their development.
The complex function of
pitcher microbiome

Although our findings demonstrate a considerable influence of

the host on the diversity and organization of the microbiome, we

did not discover any notable genotype-related variations in the

enriched functional categories in the metatranscriptome (Figure 8).

This analysis, however, lacks the level of detail necessary to discover

any fine functional differences. Nevertheless, it suggests that even

though there may be fine difference in the microbiome functions

among genotypes, the overall microbiome traits and functions

remain consistent. This could be explained by functional

redundancy among the taxa of the pitcher microbiome and a

microbiome functional convergence to achieve similar functional

traits (Louca et al., 2016, 2018). A similar conclusion was reached by

analyzing the microbial communities and functions in Spu

populations in natural habitats (Grothjan and Young, 2019). The

functional analysis, however, revealed complex and multifaceted

functional traits of the pitcher microbiome (Figure 9). At the host-

microbiome interaction level, approximately 13.5% of the

metatranscripts that have been classified functionally are related

to genes involved in biofertilization activities. These activities

encompass nitrogen acquisition, phosphate solubilization, and

iron acquisition. The presence of a significant portion of the

pitcher microbiome that contributes to plant biofertilization is

expected, given that acquiring nutrients from leaves is a key

characteristic associated with the carnivorous behavior.

Nevertheless, the discovery of the pitcher microbiome’s

bioremediation (6%) and phytohormonal plant signal generation

(7%) activities are novel additions to our understanding of the

Sarracenia-microbiome interaction. The microbiome has a

significant role in the detoxification of heavy metals (2413

metatranscripts) and the degradation of xenobiotics (607

metatranscripts) in the pitcher fluid, which serves to safeguard

the host plant. These functions directly impact the fitness and

defense of the pitcher plant and can be considered extended plant

traits. Approximately 58% of the pitcher metatranscriptome is

assigned to a set of functions categorized as traits that have an

indirect impact on the host plan (Figure 9). The most prevalent

functions, as indicated by the abundance of metatranscripts, are

those associated with stress regulation, promotion of plant immune
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response, and colonization of plant systems. On the microbiome-

microbiome interaction level, the analysis revealed that major

portions of the metatranscriptome are involved in microbial

competitive exclusion activities (8376 metatranscripts) and usage

of plant-derived substrates (7067 metatranscripts).

These results offer a comprehensive understanding of the

functions of the microbiome in connection to the host plant,

microbial community, and environmental conditions inside the

pitcher microcosm. Furthermore, they highlight some strategies

utilized by the host plant to regulate the assembly of the

microbiome, such as plant immunity and the release of

extracellular substrates. The pitcher contains a varied microbial

population with complicated multiscale functions, which can be

used for metagenomic mining to discover new beneficial

microbial taxa.
Conclusions and prospects

The variations in the assembly and structure of the microbial

communities within the pitchers of the Sarracenia mapping

population can be attributed, at least in part, to the genetic

characteristics of the host. The pitcher microbiome performs

multiple functions that have both direct and indirect effects on the

host. Nevertheless, the precise genetic and biochemical pathways via

which the host plant interacts with the microbiome are still

unidentified. Our goal is to link the extended traits of the Sarracenia

plant (namely, microbiome traits and functions) to the genetic

elements of Sarracenia using cross-species QTL linkage mapping.

This will enable us to gain insights into the mechanisms underpinning

the interactions between the host and its microbiome, which is an

essential requirement for the pursuits of microbiome engineering.
Data availability statement

The raw sequencing data are deposited in NCBI RSA under

bioporjct PRJNA1163405. The RSA Ids of the datasets are 43849136

through 43849147.
Author contributions

JC: Data curation, Formal analysis, Software, Visualization,

Writing – original draft, Writing – review & editing. IM:

Investigation, Methodology, Writing – review & editing. WR:

Investigation, Methodology, Writing – review & editing,

Resources. MZ: Writing – review & editing, Formal analysis. LJ:

Writing – review & editing, Resources. RM: Resources, Writing –

review & editing. MA: Conceptualization, Funding acquisition,

Resources, Writing –review & editing, Data curation, Formal

analysis, Investigation, Methodology, Project administration,

Software, Supervision, Validation, Visualization, Writing –

original draft.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1445713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2024.1445713
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
Frontiers in Plant Science 20
reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1445713/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Examining the changes in the network structure under various correlation, p-

value, and node counts criteria.

SUPPLEMENTARY TABLE S1

microbiome data.

SUPPLEMENTARY TABLE S2

metatranscriptome data.
References
Adlassnig, W., Peroutka, M., and Lendi, T. (2011). Traps of carnivorous pitcher
plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. Ann.
Bot. 107, 181–194. doi: 10.1093/aob/mcq238

Afridi, M. S., Ali, S., Salam, A., César Terra, W., Hafeez, A., Sumaira,, et al. (2022).
Plant microbiome engineering: hopes or hypes. Biol. (Basel) 11, 1782. doi: 10.3390/
biology11121782

Agarwal, P., Giri, B. S., and Rani, R. (2020). Unravelling the role of rhizospheric
plant-microbe synergy in phytoremediation: A genomic perspective. Curr. Genomics
21, 334–342. doi: 10.2174/1389202921999200623133240

Albert, V. A., Williams, S. E., and Chase, M. W. (1992). Carnivorous plants: phylogeny
and structural evolution. Science 257, 1491–1495. doi: 10.1126/science.1523408

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of
variance. Austral Ecol. 26, 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x

Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate
dispersions. Biometrics. 62. doi: 10.1111/j.1541-0420.2005.00440.x

Baiser, B., Buckley, H. L., Gotelli, N. J., and Ellison, A. M. (2013). Predicting food-
web structure with metacommunity models. Oikos 122, 492–506. doi: 10.1111/j.1600-
0706.2012.00005.x

Bashir, I., War, A. F., Rafiq, I., Reshi, Z. A., Rashid, I., and Shouche, Y. S. (2022).
Phyllosphere microbiome: Diversity and functions. Microbiol. Res. 254, 126888.
doi: 10.1016/j.micres.2021.126888

Bastian, M., Heymann, S., and Jacomy, M. (2009). “Gephi: An Open Source Software
for Exploring and Manipulating Networks.” in Proceedings of the International AAAI
Conference on Web and Social Media. 3, 361–362. doi: 10.1609/icwsm.v3i1.13937

Beneduzi, A., Ambrosini, A., and Passaglia, L. M. P. (2012). Plant growth-promoting
rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol.
Biol. 35, 1044–1051. doi: 10.1590/S1415-47572012000600020

Bittleston, L. S., Wolock, C. J., Yahya, B. E., Chan, X. Y., Chan, K. G., Pierce, N. E.,
et al. (2018). Convergence between the microcosms of Southeast Asian and North
American pitcher plants. eLife 7, e36741. doi: 10.7554/eLife.36741.023

Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., et al.
(2015). Host genetic variation impacts microbiome composition across human body
sites. Genome Biol. 16, 191. doi: 10.1186/s13059-015-0759-1

Boyer, T., and Carter, R. (2011). Community analysis of green pitcher plant
(Sarracenia oreophila) bogs in Alabama. Castanea 76, 364–376. doi: 10.2179/10-048.1

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities
of Southern Wisconsin. Ecol. Monogr. 27, 325–349. doi: 10.2307/1942268

Bushmanova, E., Antipov, D., Lapidus, A., and Prjibelski, A. D. (2019). rnaSPAdes: a
de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 8,
giz100. doi: 10.1093/gigascience/giz100

Chao, A. (1984). Nonparametric estimation of the number of classes in a population.
Scandinavian J. Stat 11, 265–270. Available online at: https://www.jstor.org/stable/
4615964.
Chomicki, G., Burin, G., Busta, L., Gozdzik, J., Jetter, R., Mortimer, B., et al. (2024).
Convergence in carnivorous pitcher plants reveals a mechanism for composite trait
evolution. Science 383, 108–113. doi: 10.1126/science.ade0529

Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding community structure
in very large networks. Phys. Rev. E 70, 066111. doi: 10.1103/PhysRevE.70.066111

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013).
STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. doi: 10.1093/
bioinformatics/bts635

Ellison, A. M., Buckley, H. L., Miller, T. E., and Gotelli, N. J. (2004). Morphological
variation in Sarracenia purpurea (Sarraceniaceae): geographic, environmental, and
taxonomic correlates. Am. J. Bot. 91, 1930–1935. doi: 10.3732/ajb.91.11.1930

Ellison, A. M., Gotelli, N. J., Błędzki, L. A., and Butler, J. L. (2021). Regulation by the
Pitcher Plant Sarracenia purpurea of the Structure of its Inquiline FoodWeb. amid 186,
1–15. doi: 10.1674/0003-0031-186.1.1

Ellison, A. M., Gotelli, N. J., Brewer, J. S., Cochran-Stafira, D. L., Kneitel, J. M., Miller,
T. E., et al. (2003a).The evolutionary ecology of carnivorous plants. In: Advances in
Ecological Research (Academic Press). Available online at: https://www.sciencedirect.
com/science/article/pii/S0065250403330090 (Accessed March 16, 2024).

Ellison, A. M., Gotelli, N. J., Brewer, J. S., Cochran-Stafira, D. L., Kneitel, J. M., Miller,
T. E., et al. (2003b). The evolutionary ecology of carnivorous plants. Adv. Ecol. Res. 33,
1–74. doi: 10.1016/S0065-2504(03)33009-0

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann.
Eugenics 7, 179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x

Fu, C.-N., Wicke, S., Zhu, A.-D., Li, D.-Z., and Gao, L.-M. (2023). Distinctive
plastome evolution in carnivorous angiosperms. BMC Plant Biol. 23, 660. doi: 10.1186/
s12870-023-04682-1

Furches, M. S., Small, R. L., and Furches, A. (2013). Hybridization leads to
interspecific gene flow in Sarracenia (Sarraceniaceae). Am. J. Bot. 100, 2085–2091.
doi: 10.3732/ajb.1300038

Gautam, A., Zeng, W., and Huson, D. H. (2023).DIAMOND + MEGAN
Microbiome Analysis. In: Metagenomic Data Analysis (New York, NY: Springer US)
(Accessed May 6, 2024).

Ge, S. X., Jung, D., and Yao, R. (2020). ShinyGO: a graphical gene-set enrichment
tool for animals and plants. Bioinformatics 36, 2628–2629. doi: 10.1093/bioinformatics/
btz931

Gower, J. C. (1966). Some distance properties of latent root and vector methods used
in multivariate analysis. Biometrika 53, 325–338. doi: 10.1093/biomet/53.3-4.325

Grothjan, J. J., and Young, E. B. (2019). Diverse microbial communities hosted by the
model carnivorous pitcher plant Sarracenia purpurea: analysis of both bacterial and
eukaryotic composition across distinct host plant populations. PeerJ 7, e6392.
doi: 10.7717/peerj.6392

Grothjan, J. J., and Young, E. B. (2022). Bacterial recruitment to carnivorous pitcher
plant communities: identifying sources influencing plant microbiome composition and
function. Front. Microbiol. 13, 791079. doi: 10.3389/fmicb.2022.791079
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1445713/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1445713/full#supplementary-material
https://doi.org/10.1093/aob/mcq238
https://doi.org/10.3390/biology11121782
https://doi.org/10.3390/biology11121782
https://doi.org/10.2174/1389202921999200623133240
https://doi.org/10.1126/science.1523408
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1111/j.1541-0420.2005.00440.x
https://doi.org/10.1111/j.1600-0706.2012.00005.x
https://doi.org/10.1111/j.1600-0706.2012.00005.x
https://doi.org/10.1016/j.micres.2021.126888
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1590/S1415-47572012000600020
https://doi.org/10.7554/eLife.36741.023
https://doi.org/10.1186/s13059-015-0759-1
https://doi.org/10.2179/10-048.1
https://doi.org/10.2307/1942268
https://doi.org/10.1093/gigascience/giz100
https://doi.org/10.1126/science.ade0529
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.3732/ajb.91.11.1930
https://doi.org/10.1674/0003-0031-186.1.1
https://www.sciencedirect.com/science/article/pii/S0065250403330090
https://www.sciencedirect.com/science/article/pii/S0065250403330090
https://doi.org/10.1016/S0065-2504(03)33009-0
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1186/s12870-023-04682-1
https://doi.org/10.1186/s12870-023-04682-1
https://doi.org/10.3732/ajb.1300038
https://doi.org/10.1093/bioinformatics/btz931
https://doi.org/10.1093/bioinformatics/btz931
https://doi.org/10.1093/biomet/53.3-4.325
https://doi.org/10.7717/peerj.6392
https://doi.org/10.3389/fmicb.2022.791079
https://doi.org/10.3389/fpls.2024.1445713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2024.1445713
Guimera, R., and Nunes Amaral, L. A. (2005). Functional cartography of complex
metabolic networks. nature 433, 895–900. doi: 10.1038/nature03288

Heil, J. A., Wolock, C. J., Pierce, N. E., Pringle, A., and Bittleston, L. S. (2022).
Sarracenia pitcher plant-associated microbial communities differ primarily by host
species across a longitudinal gradient. Environ. Microbiol. 24, 3500–3516. doi: 10.1111/
1462-2920.15993

Ke, J., Wang, B., and Yoshikuni, Y. (2021). Microbiome engineering: synthetic
biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol.
39, 244–261. doi: 10.1016/j.tibtech.2020.07.008

Kers, J. G., and Saccenti, E. (2022). The power of microbiome studies: some
considerations on which alpha and beta metrics to use and how to report results.
Front. Microbiol. 12, 796025. doi: 10.3389/fmicb.2021.796025

Kim, D., Song, L., Breitwieser, F. P., and Salzberg, S. L. (2016). Centrifuge: rapid and
sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729. doi:
10.1101/gr.210641.116

Koopman, M. M., and Carstens, B. C. (2011). The microbial phyllogeography of the
carnivorous plant sarracenia alata.Microb. Ecol. 61, 750–758. doi: 10.1007/s00248-011-9832-9

Koopman, M. M., Fuselier, D. M., Hird, S., and Carstens, B. C. (2010). The
carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial
communities. Appl. Environ. Microbiol. 76, 1851–1860. doi: 10.1128/AEM.02440-09
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