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Introduction: Monitoring the leaf area index (LAI), which is directly related to the

growth status of rice, helps to optimize and meet the crop’s fertilizer requirements

for achieving high quality, high yield, and environmental sustainability. The remote

sensing technology of the unmanned aerial vehicle (UAV) has great potential in

precisionmonitoring applications in agriculture due to its efficient, nondestructive,

and rapid characteristics. The spectral information currently widely used is

susceptible to the influence of factors such as soil background and canopy

structure, leading to low accuracy in estimating the LAI in rice.

Methods: In this paper, the RGB andmultispectral images of the critical periodwere

acquired through rice field experiments. Based on the remote sensing images

above, the spectral indices and texture information of the rice canopy were

extracted. Furthermore, the texture information of various images at multiple

scales was acquired through resampling, which was utilized to assess the

estimation capacity of LAI.

Results and discussion: The results showed that the spectral indices (SI) based on

RGB andmultispectral imagery saturated in themiddle and late stages of rice, leading

to low accuracy in estimating LAI. Moreover, multiscale texture analysis revealed that

the texture of multispectral images derived from the 680 nm band is less affected by

resolution, whereas the texture of RGB images is resolution dependent. The fusion of

spectral and texture features using random forest and multiple stepwise regression

algorithms revealed that the highest accuracy in estimating LAI can be achieved

based on SI and texture features (0.48m) frommultispectral imagery. This approach

yielded excellent prediction results for both high and low LAI values.With the gradual

improvement of satellite image resolution, the results of this study are expected to

enable accurate monitoring of rice LAI on a large scale.
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1 Introduction

Rice (Oryza sativa L.) is one of the most important food

crops in the world and plays a vital role in food security and

socio-economic development globally, especially in Asia (Zhang

et al., 2023). Leaf Area Index (LAI) is an essential parameter in

ecology and agricultural science, defined as the total leaf area of

plants per unit of ground area (Sun et al., 2023). LAI plays a

crucial role in understanding the functioning of plant

communities, the carbon cycle of ecosystems, the hydrological

cycle, and the accuracy of climate models (Yuan et al., 2023). In

agriculture, LAI monitoring helps guide crop management

practices such as irrigation, fertilization, and pest control.

Proper LAI contributes to higher crop yield and quality while

reducing resource wastage (Che et al., 2023).

Traditionally, LAI was accessed mainly through manual

destructive sampling. This method is time-consuming, labor-

intensive, and causes irreversible damage to plants, making it

difficult to apply for monitoring crop growth over large areas (Jay

et al., 2019). Numerous studies have also been conducted on the

inversion of crop LAI through physical modeling. Although the

physical meaning of this method is clear, it involves many input

parameters, a complicated process, and the problem of

“pathological inversion”, which is not convenient for practical

application (Zhao et al., 2023). Remote sensing technology, with

its advantages of low cost, large coverage area, rapid data

acquisition, and dynamic monitoring capabilities, offers the

possibility of non-destructive and precise monitoring of crop

growth (Lee et al., 2023). Unmanned Aerial Vehicles (UAVs) can

capture various types of images via low-altitude flights, making

them well-suited for agricultural applications. They effectively

address the limitations of satellites and ground-based platforms,

offering a valuable tool for precision agriculture (Osco et al., 2021).

UAVs are not affected by cloud cover and provide greater flexibility

in terms of temporal resolution. In addition, due to the advantages

of low hardware cost, high flexibility, ease of operation, and high

spatial and temporal resolution of the acquired images, UAVs

provide a new technological tool for extracting crop growth

information in the field in a fast and non-destructive manner

(Luo et al., 2022a, b).

Various sensors carried by drones are utilized in different

scenarios. Hyperspectral cameras, for example, are frequently

used for the estimation of LAI and chlorophyll content (Cheng

et al., 2022; Xie et al., 2014). Thermal infrared and LiDAR sensors

are employed to measure vegetation canopy temperature and water

content, as well as to estimate biomass and yield (Andújar et al.,

2013; Noguera et al., 2020). However, these sensors are heavy for

UAVs, expensive, and the acquired data is challenging to process

and analyze. Relatively inexpensive RGB cameras can acquire ultra-

high-resolution visible light images and are commonly practiced in

agriculture as well (Li et al., 2019). Additionally, multispectral

cameras can be applied to acquire remote sensing data at high

spatial resolution (centimeter level) across multiple wavelengths

(from visible to near-infrared) and can strike a balance between cost

and availability (Deng et al., 2018). Therefore, RGB and
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multispectral cameras were selected for the comparative analysis

in this study.

In recent years, a large number of applications based on

spectroscopic principles have emerged for analyzing the

absorption and reflection of electromagnetic spectra by different

crop canopy components, and thus constructing vegetation indices

(VIs) to monitor crop growth (Lu et al., 2020). Vegetation canopy

spectra are closely related to vegetation growth since the plant

canopy reflectance carries valuable information about the

interaction of the canopy with solar radiation, including

absorption and scattering by the vegetation (Derraz et al., 2023).

Moreover, on the basis of spectral information, different textures

have been proposed to assist in the extraction of growth parameters

such as crop LAI, above-ground biomass, and canopy chlorophyll

content (Hlatshwayo et al., 2019; Qiao et al., 2020; Zhang et al.,

2022). For example, the gray-level covariance matrix (GLCM) was

adopted to characterize the distribution of wheat and soil at

different stages, which enhanced the accuracy of estimating

aboveground biomass of wheat and addressed the problem of

underestimating biomass at later stages (Yue et al., 2019). Fourier

texture was exploited to simulate the growth trend of rice and to

identify the characteristics of monopoly planting to characterize the

growth orientation of leaves. Compared with VIs, it was less

susceptible to soil and water effects and estimated rice LAI over

the entire period with higher accuracy (Duan et al., 2019). Wavelet

texture was used to eliminate the effect of rice spikes on the canopy

during the heading period, enhancing the accuracy of estimating

rice LAI after tasseling (Zhou et al., 2022). At present, the roles of

different kinds of textures in the estimation of rice growth

parameters and the appropriate scales are still unclear, and the

mechanism of textures is challenging to interpret and requires

further investigation.

In this study, rice was chosen as the research object, and the

RGB and multispectral images of rice canopy were obtained at

various time points, and spectral indices as well as multiscale texture

information were extracted. The specific objectives are: (1)

comparison of the ability of RGB-SI and MCA-SI to estimate

single-period and multi-period LAI in rice; (2) comparison of the

ability to estimate single-period and multi-period LAI in rice based

on multi-scale texture features derived from RGB and MCA

imagery; and (3) comparison of the ability of RF and MSR

algorithms to incorporate SI and texture features for estimation of

multi-period LAI in rice, and to perform multi-period LAI mapping

in rice.
2 Materials and methods

2.1 Experimental design

The rice experiment was carried out from January to March

2023 at the South Propagation Base in Hainan Province (18°31′47″
N, 110°3′35″E). A total of ten different types of fertilizers were

designed in the experiment to simulate the growth condition of rice

in reality, while no fertilizer (T1) and over-fertilization (T2) were
frontiersin.org
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used as control treatments. Two rice varieties, Fengyou No. 4 and

Fengyou Xiang No. 1, which are widely planted locally, were

selected as experimental subjects and randomly planted in

4m×8m plots and replicated three times, containing a total of 72

plots. The planting density was 288,000 plants/ha. Each fertilizer

treatment was spaced by a black plastic film to prevent different

fertilizer treatments from influencing each other. Of these, data

from 48 plots were used for model construction, and the remaining

24 were used for model accuracy validation. The field management

was performed by specialized personnel, and regular irrigation,

drainage and weeding were carried out to ensure the normal growth

of rice. The specific type of fertilizer was not the focus of this paper,

so the formulation of the dosage forms involved in the experiment

as well as the method of fertilizer application were not given. The

control variables in this experiment were the fertilization

treatments, which were kept consistent in terms of fertilization

levels and field management such as drainage and irrigation, except

for the different types of fertilizers used. The specific plots were

distributed as shown in Figure 1.
2.2 UAV images and pre-processing

An autonomous modified octocopter UAV and a consumer-

grade quadcopter UAV were used as remote sensing platforms to

acquire rice remote sensing image data. Data were collected on 25

January (jointing stage), 13 February (booting stage), and 4 March

(heading stage). The acquired image data include MCA

multispectral and RGB images. There are twelve single-channel

cameras (490, 520, 550, 570, 670, 680, 700, 720, 800, 850, 900, and

950 nm) integrated in the MCA camera (Tetracam, Inc.,

Chatsworth, CA, USA), each of which has independent CMOS

(Complementary Metal-Oxide-Semiconductor) sensors, lenses,

filters, and other image acquisition elements. Each CMOS sensor

has a resolution of 1280*1024 pixels. DJI Phantom 4 Pro

quadcopter drone was used for acquiring RGB visible light

images. The flight path was set at 30 m altitude, 90% overlap in
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heading, 70% overlap in side direction, and equal time intervals for

taking photos. The geometric processing of the UAV multispectral

images acquired based on the MCA camera, including vignetting

correction, band alignment, and aberration correction, was done in

the PixelWrech2 (Tetracam, Inc., Chatsworth, CA, USA) software.

The radiometric processing of MCA images consists mainly of

radiometric calibration, which is referenced to (Luo et al., 2022b).

Stitching and geometric correction of RGB images were done in

Agisoft Photoscan Professional v1.4.5 software (Agisoft LLC, St.

Petersburg, Russia).

In this paper, images of different spatial scales were obtained by

nearest neighbor method resampling. Nearest neighbor resampling

is a spatial interpolation method commonly used in image

processing, computer vision, and geographic information systems

(Brandsma and Können, 2006). The core idea of this approach is to

estimate the data values at unknown locations by finding the nearest

known data points on the basis of known data points. This method

has been shown to be effective in feature extraction of UAV images

of different resolutions. For each target pixel point, one or more

pixel points closest to it were found for interpolation based on its

position in the original image. The position of the target pixel point

was mapped to the original image and then the closest pixel value

was selected as the value of the target pixel point to complete the

resampling of the image.
2.3 Leaf area index measurement

LAI was measured non-destructively by the LAI2200C canopy

analyzer (LI-COR, Lincoln, Nebraska USA). LAI was calculated by

measuring the above and below value (abbreviated as A and B

values) of the rice canopy. According to the instructions in the

LAI2200C manual, the instrument was placed in the middle of the

two rows of rice plants when measuring the B value (ten B values in

this work), and the B value measurements were evenly distributed

throughout the plot. In addition, the instrument was covered with a

270°cover cap to avoid the influence of surveyors.
FIGURE 1

Experimental design and Distribution of rice plots.
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2.4 Feature extraction based on remote
sensing images

2.4.1 Spectral index
VI calculated from the combination of reflectance in two or

more bands is one of the spectral features of UAV multispectral

imagery and is the most commonly used image feature in rice LAI

estimation. The calculation of spectral index (SI) based on RGB

images is similar to the multispectral VIs, which is normalized by

the DN values of different bands. The spectral indices (RGB-SI and

MCA-SI) selected in this paper based on RGB and MCA images are

shown in Table 1.

2.4.2 Gray level co-occurrence matrix
Gray-level Co-occurrence Matrix (GLCM) is a technique used

to characterize image texture in image processing and analysis. It

captures texture information by investigating the spatial correlation

of the gray values of pixels in an image (Sethy et al., 2020). The basic

concept of GLCM is to count the co-occurrence frequency of pixel

pairs with specific gray values at a certain spatial distance and

direction. A variety of texture features such as contrast and

homogeneity can be extracted from GLCM, which are capable of

rice growth characteristics such as roughness, uniformity, sharpness

and complexity. In this paper, a total of eight parameters of mean

(Mea), variance (Var), homogeneity (Hom), contrast (Con),

dissimilarity (Dis), entropy (Ent), second moment (Sec), and

correlation (Cor) in different bands were extracted as

texture features.
2.5 Model construction and
accuracy validation

Among all the samples were divided into training set and

validation set according to 2:1 ratio, and two commonly used

machine learning models, random forest (RF) and multiple

stepwise regression (MSR), were used for LAI estimation (Lee and

Lee, 2013; Shi et al., 2021). The model accuracy was assessed using

the coefficient of determination (R2), root mean square error

(RMSE), and mean absolute error (MAE). In the training set, the

above metrics are Rcali
2, RMSEC, and MAEC. ln the validation set,

the above metrics are Rvali
2, RMSEV, and MAEV.
3 Results

3.1 Correlation analysis of spectral indices
and LAI for single and multiple periods

The spectral information of the rice canopy at different periods

was extracted and correlated with the corresponding LAI using

single-period and multi-period SI, and the results are shown in

Figure 2. It can be seen that for MCA images, single-period SIs

generally have high correlations with LAI. For example, the

correlation between near-infrared (NIR) reflectance, different VIs
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and LAI exceeds 0.8. The correlation between multi-period SI and

LAI decreases significantly and is generally below 0.6. For RGB

images, the correlation between single-period and multi-period SI

and LAI followed a similar trend to that of MCA-SI, with generally

lower correlations for multiple periods than for single periods.

However, the DN values of the original bands show the opposite
TABLE 1 The spectral indices selected in this paper based on RGB and
multispectral images.

Types Spectral
indices

Formula
References

RGB-based
spectral indices
(RGB-SI)

R DN values of R band –

G DN values of G band –

B DN values of B band –

r R/(R + G + B) (Woebbecke
et al., 1995)

g G/(R + G + B) (Woebbecke
et al., 1995)

b B/(R + G + B) (Woebbecke
et al., 1995)

ExR 1.4r - g (Woebbecke
et al., 1995)

ExG 2g - r - b (Woebbecke
et al., 1995)

ExB 1.4b - g (Woebbecke
et al., 1995)

ExG-ExR 3g - 2.4r - b (Woebbecke
et al., 1995)

VARI (g - r)/(g + r - b) (Gitelson
et al., 2002)

GRVI (g - r)/(g + r) (Zhu
et al., 2023)

MCA-based
spectral indices
(MCA-SI)

Reflectance Reflectance of 12
MCA bands

–

NDVI (R800nm - R670nm)/
(R800nm + R670nm)

(Yan
et al., 2022)

NDRE (R800nm - R720nm)/
(R800nm + R720nm)

(Davidson
et al., 2022)

EVI2 2.5(R800nm -
R670nm)/(R800nm +

2.4R670nm + 1)

(Mondal, 2011)

GNDVI (R800nm - R550nm)/
(R800nm + R550nm)

(Rodrıǵuez-
López

et al., 2020)

CIred edge R800nm/R720nm - 1 (Zheng
et al., 2016)

CIgreen R800nm/R550nm - 1 (Zhang
et al., 2015)

VARI (R550nm - R670nm)/
(R550nm + R670nm)

(Schneider
et al., 2008)

OSAVI 1.16(R800nm -
R670nm)/(R800nm +

R670nm + 0.16)

(Steven, 1998)
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trend, especially for the blue band, with a correlation with LAI of

more than 0.8. Overall comparison shows that the correlation

between MCA-SI and LAI is higher than that of RGB-SI.
3.2 Correlation analysis of multiscale
GLCM and LAI for single and
multiple periods

3.2.1 RGB image-based GLCM
The results of the correlation between texture and LAI for

different bands of RGB im-ages with different resolutions are shown
Frontiers in Plant Science 05
in Figure 3. It can be found that among all the compared

resolutions, the image texture at 1 cm resolution has the highest

correlation with LAI, and the correlation between RGB-GLCM and

LAI drops gradually as the resolution decreases. From different

bands, among all the discussed resolution textures, those based on

the blue band have the strongest correlation with LAI, and Mea

shows the most out-standing performance, with a correlation with

LAI close to 0.8. At 1-4 cm resolution, the GLCM in each band

demonstrated a strong correlation with LAI. However, at

resolutions below 16 cm, the correlation between texture and LAI

in each band remained essentially unchanged, except for Mea,

where the correlation was always very low. Therefore, the ultra-
FIGURE 2

Correlation of spectral indices with LAI in single and multiple periods: (A) MCA-based spectral indices; (B) RGB-based spectral indices.
FIGURE 3

Correlation between texture and LAI in different bands of RGB images with different resolutions: (A) 1 cm; (B) 4 cm; (C) 8 cm; (D) 16 cm; (E) 24 cm;
(F) 32 cm; (G) 40 cm; (H) 48 cm.
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high resolution RGB image texture can well characterize the

variation of rice LAI, and the coarse resolution will lead to a

degradation of its performance.

3.2.2 MCA image-based GLCM
The acquired raw MCA images (with a resolution of 8 cm)

were used to analyze the correlation of texture in different bands

with LAI in a single period as well as in multiple periods, and the

results are shown in Figure 4. Overall, it can be seen that the

correlation between texture and LAI in each band of the single-

period MCA image is stronger than that of the multi-period, with

Mea showing the strongest correlation. Overall, it can be seen that

the correlation between texture and LAI in each band of the

single-period MCA image is stronger than that of the multi-

period, with Mea showing the strongest correlation. In terms of

different bands, the correlations between different textures based

on the red bands (670 and 680 nm) and LAI are generally greater

than 0.6 for both single-period and multi-period, with some

higher than 0.8. Therefore, the 680 nm band of the MCA image

was chosen to compute the texture for the subsequent studies in

this paper.
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MCA images in the 680 nm band were utilized to resample to

obtain other resolution images and to calculate the GLCM texture.

The correlation between MCA image texture and LAI at different

resolutions for single and multiple periods is shown in Figure 5. It

can be observed that the correlation between texture and LAI based

on each resolution remains basically stable with values around 0.7

in 8-40 cm resolution images. In addition, the correlation between

multi-period texture and LAI is higher than that of single-period,

and the texture information in this band shows great potential in

the estimation of multi-period LAI in rice. The correlation of Var

and Con with LAI decreases slightly in the 48 cm image. Overall, it

appears that the correlation between texture and LAI is largely

independent of resolution in the MCA 680 nm band images.

3.2.3 Normalized difference GLCM
Similar to the calculation of normalized difference vegetation

index (NDVI), different textures were normalized to enhance the

ability of texture to characterize LAI. The correlation between

normalized difference texture (NDT) and multi-period LAI is

analyzed for images with different resolutions in the blue band of

RGB images, and the results are shown in Figure 6. The larger the
FIGURE 4

Correlation between texture and LAI in different bands of MCA images: (A) 490 nm; (B) 520 nm; (C) 550 nm; (D) 570 nm; (E) 670 nm; (F) 680 nm;
(G) 700 nm; (H) 720 nm; (I) 800 nm; (J) 850 nm; (K) 900 nm; (L) 950 nm.
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area of the squares and the closer the color is to blue or orange, the

stronger the correlation is indicated. It can be seen that MeaHom,

MeaEnt, MeaSec, MeaCor, VarCon have the strongest correlation

with LAI in the original 1cm resolution image. As the resolution

drops, the overall correlation between each NDT and LAI decreases,

with only MeaHom, MeaSec, and MeaCor maintaining a stable

correlation with LAI.

Based on the 680 nm band of MCA images, the correlation

between NDT and multi-period LAI was analyzed for different

resolution images, and the results are shown in Figure 7. It can be

noticed that there are more parameters that exhibit higher

correlations with LAI for MCA-NDT compared to RGB-NDT, e.g.,

MeaHom, MeaSec, VarHom, VarDis, VarEent, VarSec, HomCon.

With decreasing resolution, the correlation of most of the NDTs with

LAI remains stable, especially for the combined NDTs of Sec, Cor,

and Hom (two columns adjacent to the right and the third row).

3.2.4 Estimating leaf area index using
multiscale GLCM

The multi-period LAI estimation models based on all texture

features including GLCM and NDT are constructed and validated

using RF and MSR algorithms. The results of LAI estimation based
Frontiers in Plant Science 07
on RGB texture features are shown in Table 2. It can be shown that

although the LAI estimation model using RF algorithm has high

training accuracy, the validation accuracy is obviously low. The

accuracy of LAI estimation using RF decreases gradually as the

resolution decreases. When estimating LAI using MSR, the

difference between the validation and training accuracy is not

significant, indicating that the model of MSR is more adaptable.

When the resolution decreases, the accuracy of LAI estimation

using MSR increases and then decreases, and reaches the highest

accuracy at 4 cm resolution (R2 = 0.7, RMSE = 0.65, MAE = 0.5).

When using all textures to estimate LAI, the accuracy is not

significantly improved and the model complexity is markedly

increased. On the whole, it seems that the LAI estimation

accuracy and model adaptation of MSR are higher than that of

RF at the corresponding resolution.

The results of LAI estimation using MCA image textures with

different resolutions are shown in Table 3. It can be recognized that

the MCA-based texture features estimate LAI with higher accuracy

(R2 greater than 0.7) compared to RGB texture features. When

using RF, the validation model accuracy is lower than the training

accuracy. The LAI estimation accuracy remains essentially stable as

the resolution decreases. When using MSR, the validation accuracy
FIGURE 5

Correlation between texture and LAI in the 680 nm band for MCA images of different resolutions: (A) 8 cm; (B) 16 cm; (C) 24 cm; (D) 32 cm; (E) 40
cm; (F) 48 cm.
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remains generally consistent as the resolution changes, and the

accuracy is higher than that of RF. The accuracy of LAI estimation

for RF and MSR was slightly improved when all textures are utilized

as input variables, with MSR obtaining the highest accuracy at 16

cm resolution and all resolution texture inputs (R2 = 0.79, RMSE =

0.47, MAE = 0.38).
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3.3 Estimating leaf area index integrating SI
and GLCM

RF and MSR were used to estimate multi-period rice LAI based

on RGB and MCA images with SI, texture, and SI+texture as input

variables, respectively, and the results are shown in Table 4. It can
FIGURE 6

Correlation between NDT and LAI in the blue band of RGB images with different resolutions: (A) 1 cm; (B) 4 cm; (C) 8 cm; (D) 16 cm; (E) 24 cm;
(F) 32 cm; (G) 40 cm; (H) 48 cm.
FIGURE 7

Correlation between NDT and LAI of MCA images (680 nm) with different resolutions: (A) 8 cm; (B) 16 cm; (C) 24 cm; (D) 32 cm; (E) 40 cm;
(F) 48 cm.
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TABLE 2 Models and accuracy of estimating multi-period LAI using multiscale texture features based on RGB images.

Resolution dataset
RF MSR

Equation
R2 RMSE MAE R2 RMSE MAE

1cm
Cali 0.88 0.39 0.30 0.66 0.65 0.54

LAI=15.448-0.179*Mea1-9.274*meacor1
Vali 0.65 0.62 0.49 0.67 0.67 0.52

4cm
Cali 0.86 0.42 0.32 0.66 0.66 0.55

LAI=9.863-0.175*Mea4-12.465*homcor4
Vali 0.62 0.64 0.50 0.70 0.65 0.50

8cm
Cali 0.85 0.43 0.34 0.64 0.67 0.55

LAI=51.659-45.959*meaent8-45.078*homcor8
Vali 0.61 0.65 0.51 0.63 0.73 0.56

16cm
Cali 0.84 0.45 0.36 0.63 0.68 0.56

LAI=30.86-30.048*meacor16-64.9*seccor16
Vali 0.59 0.67 0.52 0.62 0.72 0.56

24cm
Cali 0.85 0.43 0.35 0.64 0.67 0.55

LAI=29.268-28.6*meacor24-92.39*seccor24
Vali 0.54 0.71 0.55 0.61 0.73 0.57

32cm
Cali 0.85 0.44 0.34 0.66 0.65 0.55

LAI=28.65-28.022*meacor32-119.2*seccor32
Vali 0.49 0.75 0.58 0.64 0.73 0.58

40cm
Cali 0.88 0.38 0.31 0.65 0.66 0.55

LAI=4.148-30.288*meacor40 + 28.014*cor40
Vali 0.55 0.70 0.53 0.60 0.76 0.60

48cm
Cali 0.85 0.43 0.34 0.64 0.67 0.56

LAI=-11.124-32.27*meacor48 + 44.35*Hom48
Vali 0.53 0.71 0.55 0.63 0.74 0.59

All
Cali 0.90 0.35 0.27 0.77 0.53 0.43 LAI=-38.476 + 74.826*Hom40 + 0.621*Var4-

29.84*seccor4-0.192*Var1-33.566*meahom1Vali 0.64 0.62 0.49 0.70 0.60 0.49
F
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TABLE 3 Models and accuracy of estimating multi-period LAI using multiscale texture features based on MCA images.

Resolution dataset
RF MSR

Equation
R2 RMSE MAE R2 RMSE MAE

8cm
Cali 0.86 0.41 0.31 0.70 0.61 0.50

LAI=5.935-6.795*meahom8-4.759*vardis8
Vali 0.72 0.56 0.42 0.77 0.51 0.40

16cm
Cali 0.87 0.40 0.29 0.70 0.61 0.49

LAI=7.879-7.626*meahom16
Vali 0.74 0.53 0.38 0.79 0.49 0.38

24cm
Cali 0.87 0.40 0.29 0.71 0.60 0.48

LAI=7.933-7.109*measec24
Vali 0.73 0.54 0.41 0.76 0.51 0.39

32cm
Cali 0.87 0.40 0.29 0.68 0.63 0.52

LAI=6.007-4.948*meacor32
Vali 0.72 0.55 0.41 0.73 0.54 0.42

40cm
Cali 0.86 0.41 0.30 0.71 0.61 0.50

LAI=5.759-4.722*meacor40
Vali 0.73 0.54 0.41 0.74 0.53 0.41

48cm
Cali 0.88 0.39 0.30 0.73 0.58 0.46

LAI=4.145-4.045*meacor48-1.746*discor48
Vali 0.75 0.52 0.39 0.77 0.51 0.38

All
Cali 0.90 0.35 0.26 0.75 0.56 0.45

LAI=5.568-5.823*measec24-2.108*discor48
Vali 0.77 0.50 0.38 0.79 0.47 0.38
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be noted that for training using the RF algorithm, the LAI

estimation accuracy of MCA-based images is higher than that of

RGB-based images when SI, texture, and SI+texture are used as

input variables, respectively. The LAI estimation accuracy when

modeled by the MSR algorithm is similar to that when modeled by

the RF algorithm, i.e., the estimation accuracy based on MCA

images is higher than that of RGB images. When estimating

multi-period LAI, the accuracy of the model using texture

features is higher than that using SI. In particular, the LAI

estimation accuracy based on MSR-MCA and fusing SI and

texture features is the highest (Rvali
2 = 0.86, RMSEV=0.46,

MAEV=0.35),and the validation accuracy is little different from

the training accuracy with excellent stability.
Frontiers in Plant Science 10
3.4 Leaf area index mapping of rice

Based on the LAI estimation model of SI and NDT fusion

constructed by MSR-MCA, the LAI of rice at different periods was

mapped and the results are shown in Figure 8. We applied a pixel-

by-pixel application of the corresponding image using LAI’s

prediction formulas and then assigned different color

representations. It can be observed that the spatial distribution

map of LAI over time can well demonstrate the growth condition of

rice. Under the spatial resolution of 48 cm, the growth differences

within rice plots can be clearly observed, which is conducive to the

optimization of field management and has important reference

value for the large-scale application of high-resolution remote
FIGURE 8

Spatial distribution of rice LAI in different periods: (A) jointing stage; (B) booting stage; (C) heading stage.
TABLE 4 Models and accuracy of estimating multi-period LAI using spectral indices and multiscale texture features based on RGB and MCA images.

Type Index Equation Rcali2 RMSEC MAEC Rvali2 RMSEV MAEV

RF-RGB

SI – 0.84 0.44 0.36 0.61 0.65 0.51

Texture – 0.90 0.35 0.27 0.64 0.62 0.49

SI+
Texture

– 0.90 0.36 0.28 0.65 0.62 0.48

RF-MCA

SI – 0.91 0.33 0.27 0.76 0.51 0.3.9

Texture – 0.90 0.35 0.26 0.77 0.50 0.38

SI+
Texture

– 0.92 0.31 0.23 0.79 0.47 0.37

MSR-RGB

SI LAI=6.085-0.042B-5.82ExB 0.66 0.65 0.54 0.68 0.70 0.53

Texture
LAI=-74.8Hom40 + 0.6Var4-

29.84seccor4-0.19Var1-33.6meahom1
+ 38.5

0.77 0.53 0.43 0.70 0.60 0.49

SI+
Texture

LAI=-48.92-0.2Mea48 + 56.34Hom40
+ 0.02G

0.72 0.60 0.50 0.76 0.61 0.48

MSR-MCA

SI LAI=-0.209 + 32.94*R900-24.29*R800 0.77 0.54 0.43 0.74 0.62 0.49

Texture LAI=5.568-5.8measec24-2.11discor48 0.75 0.56 045 0.79 0.47 0.38

SI+
Texture

LAI=-3.2meacor48 + 18.68R900-
4.85VARI+2.2

0.89 0.36 0.28 0.86 0.46 0.35
fr
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sensing images. A gradual increase in rice LAI over time could be

obviously observed during the three different periods. Moreover,

LAI displayed significant differences among 48 plots during a single

period, which were influenced by the amount of fertilizer applied

and the application method. In addition, for rice fields outside the

study area, the model of this study can well reflect their growth

conditions, indicating that the results of this study are generalizable.
4 Discussion

4.1 Trends in SI and texture with LAI

As can be seen from Figure 2, single-period SI has a strong

correlation with LAI (the correlation coefficients between most of

the SIs and LAI can exceed 0.8). However, for multiple periods, the

correlation with LAI based on both RGB-SI and MCA-SI is

significantly lower. Figure 5 shows that the correlation between

texture and multi-period LAI is significantly higher compared to a

single period. Analysis of the trends of SI and texture with LAI
Frontiers in Plant Science 11
(Figure 9) shows that NDRE, NDVI, and ExR can effectively

characterize plot-scale LAI differences within a single period, but

all indicators exhibit some level of saturation with increasing LAI

across different periods. Hom, Dis, and Cor based on RGB imagery

are strongly homogeneous within a single period, making it difficult

to characterize LAI differences under different fertilizer treatments.

The differences in these textures show large variations with changes

in LAI at different periods. For the texture of MCA images, Hom,

Dis, and Cor can not only characterize changes in rice LAI within a

single period but also changes in LAI within different periods.

Spectral reflectance or VIs are often saturated in the estimation

of crop LAI, biomass and other growth parameters (Yamaguchi

et al., 2021). Since it is difficult for the spectral information of

remote sensing images to penetrate deep into the canopy interior, it

is difficult for VIs to characterize the true state of growth for denser

crops, which results in the underestimation of growth parameters in

the middle and late stages of crop growth (Li et al., 2023). Texture,

as a variable that portrays distinct relationships between different

pixels, can be used to add descriptive information about crop

growth to the spectral information (Li et al., 2019; Yuan et al.,
FIGURE 9

Trends in SI and texture with LAI at different stages: (A) NDRE; (B) NDVI; (C) ExR; (D) Hom-RGB; (E) Dis-RGB; (F) Cor-RGB; (G) Hom-MCA;
(H) Dis-MCA; (I) Cor-MCA.
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2023). During the tillering and jointing stages of rice, the field

canopy consists mainly of rice and soil background. In the mid- to

late-growth period, rice density gradually increases, and the field

canopy is mainly composed of rice, which gradually increases in

homogeneity and decreases in heterogeneity. Thus, these textural

features can characterize rice LAI changes over time.
4.2 Role of multiscale texture in estimating
rice LAI

In recent years, texture features based on different remote

sensing images have been widely used to enhance the estimation

of crop growth parameters (Zhang et al., 2022; Zhou et al., 2022).

When using texture for the estimation of crop physiological and

biochemical parameters, both image resolution and direction of

texture computation are important variables that directly affect the

relationship between texture and growth parameters. Yue et al.

(2019) investigated the effect of image resolution on biomass

estimation using texture and concluded that of all the resolutions

studied (1-30 cm), the combination of textures at the highest (1 cm)

and lowest (30 cm) resolutions was most suitable for estimating

wheat biomass (Yue et al., 2019). Zheng et al. (2020) evaluated the

effect of texture computation direction on estimating rice growth

parameters and found that the texture computed perpendicular to

the direction of the ridge was the most suitable for estimating rice

nitrogen content (Zheng et al., 2020). Therefore, the texture

calculation in this study adopts perpendicular to the monopoly

direction as well.

Changes in image resolution directly affect the canopy

information reflected by the image. Yue et al. (2019) suggested

that this is related to the differences in what the high-frequency

information inside the image pixel represents at different

resolutions. At centimeter resolution (1 cm), there are mostly

pure pixels in the canopy image, when the high-frequency

information reflects the growth of wheat, while at decimeter

resolution (30 cm), there are mostly mixed pixels in the image,

when the high-frequency information reflects the coverage of

wheat, and thus the highest estimation accuracy can be obtained

by combining the 1 cm and 30 cm textures (Yue et al., 2019). For the
Frontiers in Plant Science 12
high-resolution image (RGB1cm, MCA8cm), the contrast between

rice and soil background is shown in Figure 10. It can be observed

that for the different bands of the RGB image, the blue band

(Figure 10D) more accurately reflects the contrast relationship

between the rice and the soil background. The red band

(Figure 10E) of the MCA image more clearly illustrates the

relationship between the soil background and the rice crop than

the RGB image. Therefore, in Figure 3, the B-band texture of the

RGB image shows a stronger correlation with LAI, and in Figure 5,

the red-band texture derived from the MCA image exhibits a

stronger correlation with LAI compared to the RGB image.

For LAI estimation using images with different resolutions, the

results in Table 2 indicate that the accuracy of LAI estimation based

on RGB image texture decreases as image resolution decreases.

Conversely, the results in Table 3 demonstrate that the accuracy of

LAI estimation based on MCA image texture remains consistent

despite variations in image resolution. This is due to the fact that the

ultra-high resolution RGB image (Figure 10A) can clearly depict the

relationship between the rice ridges and the soil background.

However, after the resolution is reduced, as shown in Figure 11, it

becomes challenging to distinguish the rice ridges in the image

texture. At this point, there is no clear regularity in the contrast

relationship between the soil and the rice. The resolution of the

original MCA image is lower than that of the RGB image, so there is

no difference in the relationship between rice and soil reflected as

the resolution changes.
4.3 Advantages of fusing SI and texture
features for estimating LAI in rice

Accurate crop canopy spectra reflect the interrelationship

between crop growth dynamics and sunlight (Yu et al., 2023).

The estimation results of estimating LAI using SI, texture, SI

+texture, and based on the MSR algorithm, respectively, are

shown in Figure 12. It can be seen that when estimating LAI

based on RGB-SI, it is overestimated at low values of LAI

(Figure 12A). After fusing texture and SI, the low LAI value is

still overestimated (Figure 10E). The reason for this phenomenon

may be that the SI calculation of RGB images does not strictly utilize
FIGURE 10

Images of rice fields in different bands: (A) RGB image; (B) red band of RGB image; (C) green band of RGB image; (D) blue band of RGB image;
(E) 680 nm band of MCA image.
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FIGURE 12

Comparison of predicted and measured LAI values for multiple periods: (A) SI-RGB; (B) texture-RGB; (C) SI+texture-RGB; (D) SI-MCA; (E) texture-
MCA; (F) SI+texture-MCA.
FIGURE 11

RGB images of rice fields at different resolutions: (A) 8 cm; (B) 16 cm; (C) 24 cm; (D) 32 cm; (E) 40 cm; (F) 48 cm.
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canopy reflectance. This inaccurate spectral information makes it

difficult to accurately characterize the variability of rice LAI. In

contrast, MCA-SI did not overestimate or underestimate rice LAI at

low values, which is consistent with the findings of related studies

using multispectral or hyperspectral data (Liu et al., 2021). When

using MCA-SI to estimate LAI, there was an obvious

underestimation at high values of LAI (Figure 12B), which was

caused by the saturation of multispectral SI in the mid- to late-stage

of rice. The LAI continued to increase even when the SI reached its

maximum value. On the other hand, MCA texture could have a

beneficial auxiliary effect. As shown in Figure 10D, MCA texture

can prevent the underestimation of high LAI values. After

combining MCA-SI and texture features, both high and low LAI

values can be predicted (Figure 12F).

In this study, MSR was utilized to fully fuse the SI and 0.48 m

multispectral image texture information. The results of this research

have significant potential for satellite-scale applications. With the

continuous development of sensors, high-resolution satellite images

are emerging (Yang et al., 2011). For example, the GeoEye-1 satellite

has the capability to capture images at 0.41 m panchromatic

resolution and 1.65 m multispectral resolution (Luo et al., 2017).

Through image fusion, it can produce 0.41 m multispectral images.

In addition, there are SuperView-1, WorldView-1, andWorldView-

2 remote sensing images with approximately 0.5-meter resolution.

All of these images have the potential for cross-platform application

of the results of this study.
5 Conclusions

In this study, spectral indices and multiscale texture

information obtained using RGB and MCA images are proved to

be valuable for spatial and temporal prediction and mapping of rice

LAI. The following conclusions can be obtained by comparing the

accuracy of RF and MSR algorithms in fusing different information

to estimate rice LAI.
Fron
1. The single-period SI based on RGB and MCA images

showed a high correlation with LAI, but saturation in the

mid- and late-growth stages of rice led to a significant

decrease in the correlation between multi-period SI

and LAI.

2. The texture features based on RGB images were influenced

by resolution, while the 680 nm band texture of MCA

images exhibited a strong correlation with multi-period rice

LAI and remained unaffected by resolution. The ability to

estimate rice LAI was enhanced by applying normalized

difference processing to texture.

3. The accuracy of rice LAI estimation was significantly

improved by fusing SI and texture features compared to

single utilization of SI or texture features. Among the

models based on fused information, MSR-based LAI

estimation accuracy was the highest.
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Andújar, D., Rueda-Ayala, V., Moreno, H., Rosell-Polo, J. R., Escolà, A., Valero, C.,
et al. (2013). Discriminating crop, weeds and soil surface with a terrestrial LIDAR
sensor. Sensors 13, 14662–14675. doi: 10.3390/s131114662

Brandsma, T., and Können, G. P. (2006). Application of nearest-neighbor resampling
for homogenizing temperature records on a daily to sub-daily level. Int. J. Climatol. 26,
75–89. doi: 10.1002/(ISSN)1097-0088

Che, Y. P., Wang, Q., Xie, Z. W., Li, S. L., Zhu, J. Y., Li, B. G., et al. (2023). High-
quality images and data augmentation based on inverse projection transformation
significantly improve the estimation accuracy of biomass and leaf area index. Comput.
Electron. Agric. 212, 11. doi: 10.1016/j.compag.2023.108144

Cheng, J. P., Yang, H., Qi, J. B., Sun, Z. D., Han, S. Y., Feng, H. K., et al. (2022).
Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative
transfer model and UAV multispectral imagery. Comput. Electron. Agric. 202, 15.
doi: 10.1016/j.compag.2022.107401

Davidson, C., Jaganathan, V., Sivakumar, A. N., Czarnecki, J. M. P., and Chowdhary,
G. (2022). NDVI/NDRE prediction from standard RGB aerial imagery using deep
learning. Comput. Electron. Agric. 203, 11. doi: 10.1016/j.compag.2022.107396

Deng, L., Mao, Z. H., Li, X. J., Hu, Z. W., Duan, F. Z., and Yan, Y. N. (2018). UAV-based
multispectral remote sensing for precision agriculture: A comparison between different
cameras. Isprs J. Photogram Remote Sens. 146, 124–136. doi: 10.1016/j.isprsjprs.2018.09.008

Derraz, R., Muharam, F.M., Nurulhuda, K., Jaafar, N. A., and Yap, N. K. (2023). Ensemble
and single algorithm models to handle multicollinearity of UAV vegetation indices for
predicting rice biomass. Comput. Electron. Agric. 205, 13. doi: 10.1016/j.compag.2023.107621

Duan, B., Liu, Y. T., Gong, Y., Peng, Y., Wu, X. T., Zhu, R. S., et al. (2019). Remote
estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant
Methods 15, 12. doi: 10.1186/s13007-019-0507-8

Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D. (2002). Novel algorithms
for remote estimation of vegetation fraction. Remote Sens. Environ. 80, 76–87.
doi: 10.1016/S0034-4257(01)00289-9

Hlatshwayo, S. T., Mutanga, O., Lottering, R. T., Kiala, Z., and Ismail, R. (2019).
Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using
texture combinations computed from SPOT-6 pan-sharpened imagery. Int. J. Appl.
Earth Observ Geoinformation 74, 65–77. doi: 10.1016/j.jag.2018.09.005

Jay, S., Baret, F., Dutartre, D., Malatesta, G., Héno, S., Comar, A., et al. (2019).
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