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Background: Cotton pests have a major impact on cotton quality and yield

during cotton production and cultivation. With the rapid development of

agricultural intelligence, the accurate classification of cotton pests is a key

factor in realizing the precise application of medicines by utilize unmanned

aerial vehicles (UAVs), large application devices and other equipment.

Methods: In this study, a cotton insect pest classificationmodel based on improved

Swin Transformer is proposed. The model introduces the residual module, skip

connection, into Swin Transformer to improve the problem that pest features are

easily confused in complex backgrounds leading to poor classification accuracy,

and to enhance the recognition of cotton pests. In this study, 2705 leaf images of

cotton insect pests (including three insect pests, cotton aphids, cotton mirids and

cotton leaf mites) were collected in the field, and after image preprocessing and

data augmentation operations, model training was performed.

Results: The test results proved that the accuracy of the improvedmodel compared

to the original model increased from 94.6% to 97.4%, and the prediction time for a

single image was 0.00434s. The improved Swin Transformer model was compared

with seven kinds of classificationmodels (VGG11, VGG11-bn, Resnet18, MobilenetV2,

VIT, Swin Transformer small, and Swin Transformer base), and the model accuracy

was increased respectively by 0.5%, 4.7%, 2.2%, 2.5%, 6.3%, 7.9%, 8.0%.

Discussion: Therefore, this study demonstrates that the improved Swin

Transformer model significantly improves the accuracy and efficiency of

cotton pest detection compared with other classification models, and can be

deployed on edge devices such as utilize unmanned aerial vehicles (UAVs), thus

providing an important technological support and theoretical basis for cotton

pest control and precision drug application.
KEYWORDS

cotton pests, swin transformer, complex background, deep learning, unmanned
aerial vehicles
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1 Introduction

Cotton is one of the most important cash crops in the world and

occupies an important position in the economic development of

China and the world. Cotton may be subjected to various viruses,

bacteria, fungi, and insects during its growth, which can have a

significant impact on its quality and yield (Chen et al., 2020;

Kiruthika et al., 2022). Cotton aphid infections in the seedling stage

of cotton can lead to short plants and shriveled leaves; infestation by

cotton mirids bugs at the bud stage can lead to bud shedding and

sparse boll setting; cotton leaf mite infestation at the boll stage causes

leaf, bud, flower, and young boll abscission; causing irreparable

damage to growth and yield (Islam et al., 2023; Thivya Lakshmi

et al., 2024). Insect-damaged plants usually show visible signs or

lesions on leaves, stems, flowers, or fruits, and each type of damaged

leaf exhibits unique characteristics (Li et al., 2021; Zhu et al., 2023).

Traditional identification methods are still mainly based on manual

visual hand checking, the method relies on personal experience, has a

strong subjectivity, and low work efficiency (Skelsey et al.,2013; Zhang

et al., 2022). Therefore, the accurate identification of cotton insect

pests is a key component in the prevention and treatment of cotton

pests, as well as reducing the use of pesticides and promoting the

development of green agriculture.

In recent years, with the rapid development of agriculture 4.0,

the use of advanced information systems and Internet technology

can realize a large amount of agricultural data collection, analysis,

processing, and realization of providing assistance to the

agricultural decision support system (Zhai et al., 2020). In early

studies, (Arnal Barbedo, 2013; Manavalan, 2022; Kong et al., 2022)

used traditional machine learning and image processing methods to

extract pest and disease features for classification and identification.

(Haoyu et al., 2010) used the support vector machine(SVM)

algorithm with four kinds of kernel functions to process the

spectral data and establish the diagnostic model of cucumber

pests and diseases to realize the rapid and accurate diagnosis of

cucumber pests and diseases, with the highest recognition rate of

98.3%. (Chaudhary et al., 2016). proposed an improved Random

Forest Classifier (RFC) method, which combines the forest machine

learning algorithm, attribute evaluator method, and instance

filtering method to achieve the identification of peanut diseases

with a classification accuracy of 97.8%. (Irfan et al., 2019) used

Support Vector Machine (SVM) and C4.5 algorithm for disease and

pest identification of leaves, stems, fruits of chili peppers and the

study showed that the accuracy of the C4.5 based method is higher.

However, such an operation requires certain basic knowledge and

specialized skills in image processing, which makes it difficult to

promote its application in field production.

In recent years, computer vision techniques have been widely

used in agriculture, including machine learning (ML),

convolutional neural networks (CNN), deep learning (DL) and

transfer learning (TL). Deep learning techniques are favored by

many scholars in detecting plant pests and diseases (Rezaei et al.,

2024; Luo et al., 2023; Reddy et al., 2023). (Ramcharan et al., 2017)

utilized cassava disease image dataset and applied transfer learning

to train deep convolutional neural networks to achieve the
Frontiers in Plant Science 02
recognition of three diseases and two insect pests in cassava, and

the overall accuracy of the best model was tested to be 93%.

However, image data with a single background encountered

problems in practical applications in agriculture, so (Yanfen Li

et al., 2020) proposed a fine-tuned GoogLeNet model for the

complex background presented by farmland scenes to realize the

recognition of 10 common crop pests. Since the occurrence of pests

and diseases is affected by regional, climatic and other factors, there

will be uneven data on pests and diseases, (Abbas et al., 2021) and

other scholars addressed this problem by using Conditional

Generative Inverse Networks (C-GAN) to generate synthetic

images of tomato plant leaves, and realized the classification of 10

types of diseases in tomato through DenseNet121 model, with an

accuracy rate of 97.11%. Deep learning-based detection methods

have greater advantages in terms of detection efficiency, accuracy

and application scenarios (Reder et al., 2021; Syed-Ab-Rahman

et al., 2022). Deep learning-based models can provide technical

support for edge devices, such as unmanned aerial vehicles (UAVs),

to enable wide-area pest detection.

The above research has led to a series of successes in identifying

plant pests and diseases. However, most of the models based on

deep learning are dominated by convolutional neural networks,

which are subject to the limitations of the convolutional network

itself, such as the field of view of the convolutional neural network is

limited by the size of the convolutional kernel, which can lead to the

loss of most of the global information in the image (Guo et al.,

2022). Recently, (Liang et al., 2021; Liu et al., 2021) applied the

Transformer model in the field of natural language processing to the

field of computer vision and achieved good results, and proposed a

new vision converter, Swin Transformer, to provide a new direction

for research in the field of vision. In this study, from the practical

application of agriculture, we propose a cotton insect pest

classification model suitable for the field environment by

combining the image characteristics of cotton insect pests with

the problem of small and unbalanced image data of cotton insect

pests. In this study, three kinds of cotton insect pests (cotton aphids,

cotton mirids, cotton leaf mites) are taken as the research objects,

and the leaf images of cotton insect pests under the complex

background of the field are collected as the dataset, and Swin

Transformer model is chosen as the backbone, and the residual

module and skip connection are introduced to construct the

classification model of cotton insect pests, and to realize the

recognition of cotton insect pests in the field environment.

The main contributions of this paper are summarized

as follows:
1. An enhanced version of the standard Swin Transformer

architecture, the residual Swin Transformer, is proposed,

which is capable of accurately categorizing cotton

pest species.

2. In Swin Transformer, 2 residual modules and skip

connection are added to improve the recognition accuracy

of the model while retaining the excellent design of Swin

Transformer. Meanwhile, we verify the effectiveness of the

residual Swin Transformer through many experiments.
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The subsequent sections are structured as follows: section 2

describes the materials and methods used in this study,

section 3 organizes and summarizes the experimental results,

section 4 analyzes the results, and section 5 provides conclusions.
2 Materials and methods

2.1 Materials

2.1.1 Image data acquisition and
dataset production

This study collected and constructed a dataset on cotton insect

pests for three insect pests, including cotton aphids, cotton leaf mites,

and cotton mirids. The dataset was collected in May-August 2023

during the cotton planting period at the cotton experimental field of

Tarim University in Xinjiang, China, as shown in Figure 1A. The

image capturing work was carried out using a mobile device paired

with 108MP primary camera + 8MP wide angle camera and the

resolution of the acquired image was 2928×2928 pixels. A total of

5581 images were collected under natural environments, 30 cm away

from the leaf surface and perpendicular to the leaf surface. Under the

guidance of cotton plant protection experts, 2705 usable images were

obtained by removing the leaf images of drug-infested wounds, early

senescence and other factors, including 1112 images of cotton leaves

damaged by cotton aphids, 703 images of cotton leaves damaged by

cotton leaf mites, and 890 images of cotton leaves damaged by cotton

mirids. Cotton leaves damaged by cotton aphid will appear curled
Frontiers in Plant Science 03
and white or black aphids will appear on the surface of the leaves, on

the back and on the stems (Steckel et al., 2021). Cotton leaf mites use

stinging mouthparts to suck sap on the back of cotton leaves. When

the number of cotton leaf mites on the back is low, yellow and white

spots appear on the surface of the leaves; as the number of cotton leaf

mites increases, the spots on the surface of the leaves become reddish,

and the area of the spots becomes larger and larger (Ferraz et al.,

2017). Cotton mirids through the assassination type mouthparts into

the cotton plant to suck sap, fresh leaves were damaged at the

beginning of a small black spot, with the growth of the leaf

stretching after a large number of broken, forming a “broken leaf

madness” (Mithal Rind et al., 2021). The samples for each category

are shown in Figure 1B.

The organized dataset is divided into training set, validation set,

and test set in the ratio of 7:2:1 as shown in Table 1. The model

learns from the images of the training set, extracting features of the

data from them, and improves the learning of the model through

parameter updating and optimization. By interacting with the

validation set, the best model and hyperparameter configurations

can be selected to improve the generalization of the model. Finally,

the performance of the model is objectively assessed by evaluating

its performance on a test set and will be used as an indicator of the

final performance of the model.

2.1.2 Image resizing
During this experiment, the original images collected were too

large to be used directly for model training. Therefore, the image is

resized using Bicubic interpolation algorithm (Keys, 1981). The
FIGURE 1

(A) Collecting location information; (B) Images of cotton pests.
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bicubic interpolation determines the value of the target pixel by

calculating the weighted average of the 16 nearest neighbor pixels

around the target pixel, which achieves image smoothing and at the

same time is able to better preserve the details of the image. The

interpolation formula is shown as follows:

f (i+u,j+v)=o
2

a=−1
o
2

b=−1

f (i+a,j+b)W(a−u)W(b−v)    

where f is the pixel value of the pixel point and u;  v are the

distance between the pixel points. where W(x) is the interpolating

kernel function with the expression as follows:

W(X) =

(a+2) xj j3−(a+3) xj j3+1    0 < xj j ≤ 1

a xj j3−5a xj j2+8a xj j − 4a    1 < xj j < 2

0      2 ≤ xj j

8>><
>>:
FIGURE 2

Data preprocessing results.
TABLE 1 Partitioning of cotton image dataset.

Pests Training
Set

Validation
Set

Test Set Total

Cotton
aphids
damage

779 222 111 1112

Cotton
leaf
mites
damage

493 140 70 703

Cotton
mirids
damage

624 177 89 890

Total 1896 539 270 2705
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where a = −0:5 in Equation.

The size of the processed image by bicubic interpolation is

224×224×3 and the processed image is shown in Figure 2.

2.1.3 Image augmentation
In deep learning, training requires large-scale data samples in

order to help the model learn a wider range of features and patterns.

The collection of cotton pest images is limited by the natural

environment and weather conditions, resulting in a limited

number of images. In this study, the number of training samples

is increased by data augmentation. In order to simulate the growth

of leaves in random directions and weather conditions such as sun

exposure and cloudy days in a field environment, the data

augmentation work was carried out in this study by using the

technique of rotating 90°, 180°, mirroring, dimming brightness by
Frontiers in Plant Science 05
0.9, and brightening brightness by 1.5 images. Considering that the

cotton plantation is located in the Tarim Basin, where severe

weather with sandstorms often occurs, Gaussian filter image

technique is added for image processing so as to simulate the

interference of wind and sand. Figure 2 shows the cotton image

after data augmentation. After the data augmentation operation, a

total of 16,230 images of cotton pests were obtained, and the

partitioning of the augmented dataset is shown in Table 2.
2.2 Methods

2.2.1 Swin transformer network
Originally proposed by Google in 2017, the Transformer model

is mainly used for natural language processing tasks such as

machine translation and language modeling (Vaswani et al.,

2023). With the successful application of the Transformer model

in processing natural language tasks, some scholars have begun to

try to apply the model in visual tasks. In 2020, Vision Transformer

(VIT) was proposed as a model mainly for image classification tasks

(Dosovitskiy et al., 2021). However, VIT suffers from information

loss and increased computation, a new Transformer model has been

proposed. Swin Transformer improves on VIT by enabling

computation in non-overlapping windows through a shifting

window scheme, while also allowing cross-window connections

for better scalability and efficiency (Liu et al., 2021).

The Swin Transformer model was chosen as the base model for

this study. As shown in Figure 3A, Swin Transformer consists of the

following parts: the Patch Partition, the Swin Transformer
FIGURE 3

(A) Swin Transformer Structure; (B) Multilayer Perceptron Structure; (C) Improved Swin Transformer structure.
TABLE 2 Partitioning of augmented cotton image dataset.

Pests Training
Set

Validation
Set

Test Set Total

Cotton
aphids
damage 4674 1332 666 6672

Cotton leaf
mites damage 2958 840 420 4218

Cotton
mirids
damage 3744 1062 534 5340

Total 11376 3234 1620 16230
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Backbone Block, the Classification Head. In this study, the Patch

Partition section splits the cotton leaf image into a series of equal-

sized image patches. The position of the split cotton image patches

is encoded by Linear Embedding, and the position information is

embedded into the feature vectors so that the model can perceive

the relative positions of the image patches. The Swin Transformer

backbone block consists of multiple Transformer encoders

containing both Window-MSA and Shifted Window-MSA.

Classification Head Part realizes the classification prediction by

Multilayer Perceptron network (MLP), the structure is shown in

Figure 3B. Aiming at the problem that the leaf features of cotton

insect pests are small and easy to be confused in the complex

background, this study introduces the residual module and skip

connection in the Swin Transformer network, and the improved

whole model structure is shown in Figure 3C.

2.2.2 Residual module
In deep learning, more abstract properties can be extracted as

the number of network layers increases. However simply increasing

the number of network layers leads to the problem of vanishing and

exploding gradients (Zhang et al., 2018; Alaeddine and Jihene,

2023). Because the leaf features of cotton insect pests are

relatively small, few in number, and easily confused with the

background, the pest features are easily lost in the deep network.

In order to solve these problems, this study builds the residual

module, which is combined with Swin Transformer network.

In this study, the residual module is built to enhance the

network representation by combining the input features with the

output features to preserve the input features, as well as to integrate

the classification features of the image. The residual structure is

shown in Figure 4, including convolutional layer, Batch

Normalization, Rectified Linear Unit. Suppose x is the input, s is

the Rectified Linear Unit (ReLU), BN is the Batch Normalization,

and y is the output.

F(x)= BN ½Conv2d(x)�f g
Frontiers in Plant Science 06
y=x+Conv2d F½F(X)�f g
In this study, the residual module is introduced at two locations

respectively, as shown in Figure 3C. The first place is located after

the image input and before the Patch Partition, where the residual

module both preserves the input image features and incorporates

classification features to improve the model’s detection of fine leaf

features. The second is located between the Swin Transformer

blocks and is used in conjunction with the skip connection in 3.3.

2.2.3 Skip connection
Skip connections are commonly used in deep networks to

improve information transfer. In deep networks, information is

passed from layer to layer, layer by layer. In deep networks, a single

sequential delivery method can easily cause gradient vanishing or

gradient explosion. Skip connections can be realized to cross over

certain layers for information transfer, fusing the output of the

previous layer with the input of one of the subsequent layers,

increasing the flow of information (Zhang et al., 2023; Ding et al.,

2024). Considering the problem that the characteristics of insect

pest leaves are small and easy to be lost in the transfer process, this

experiment introduces skip connections in stage 1 - stage 4 of the

backbone network.

The skip connection can realize the fusion of the underlying

features and the higher-level features to retain more high-resolution

details and provide more information for the later image

classification, thus improving the correct rate of classification.

Experimentally, it was found that after adding skip connections,

there may be a semantic gap between the two combined feature sets,

which is problematic to use directly after fusion. Therefore, in this

experiment, the fused data were processed again after fusion. As

shown in Figure 3C, skip connections are introduced between Swin

Transformer blocks, and the data are processed again after fusion by

the residual module proposed in 3.2. Experiments have

demonstrated that reprocessing the fused data through the

residual module after skip connections can improve the whole
FIGURE 4

Structure of residual module.
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performance of the network and increase the accuracy of the model.

The structure of the original Swin Transformer model is shown in

Figure 3A and the structure of the improved Swin Transformer

model is shown in Figure 3C.

2.2.4 Self-attention mechanism
Self-attention is a key part of the Transformer model in visual tasks.

As shown in Figure 5A, the input image is segmented into multiple

patches, and after recombining them into a set of series, the correlation

calculation between each position in the sequence and the other

positions is realized through the self-attention. By mapping the input

sequence into query (WQ), key (Wk), and value (Wv) vectors, the

similarity, weighted summation, and the correlation of different

positions are computed (Vaswani et al., 2023).

The traditional self-attention computes the attention score for

the entire image, which suffers from high computational effort. The

window self-attention used in this paper was proposed by scholars

in 2021, which makes upgrades based on the self-attention and

reduces the amount of computation (Liu et al., 2021). As shown in

Figure 5B, after the image is split into multiple patches, the

neighboring patches are integrated into a single window, and the

attention score between each window is calculated, thus reducing

the amount of computation. The computational complexity of the

self-attention (MSA) and the window self-attention (W-MSA) is

shown as follows:

WMSA=4HWC2+2(HW)2C

WW−MSA=4HWC2+2M2HWC

In order to improve the problem of missing information

interactions that can occur between different windows, the Shifted

Window self-attention (SW-MSA) is introduced to realize cross-

window connection reorganization (Liu et al., 2021). As shown in

Figure 5C, different from the window self-attention, the shift

window self-attention splits the image into 9 pieces of different

sizes, which are recombined, and the result of the combination is

shown in Figure 5D. The combined windows are computed to

obtain localized attention.
Frontiers in Plant Science 07
3 Results

3.1 Installations and evaluation

Deep learning models require a large number of datasets for

training. Therefore, we expanded the cropped 2705 cotton pest

images into 16,230 images by data augmentation and randomly

divided them into training, validation, and testing datasets in the

ratio of 7:2:1. We used adaptive motion estimation (Adam) to

automatically optimize the learning rate during deep learning

model training with a learning rate of 0.001 and a number of

training epochs of 100. To ensure minimal validation loss, we saved

the trained model in each epoch. In this study, when the model has

finished training, it is validated on the same test dataset using

performance metrics such as Precision, Recall, etc. to reveal the

detection accuracy of different models. The computer parameters

used for model training and validation and the environment

configuration for improving the model are shown in Table 3. In

the classification task, four types appear in the prediction results.

True Positive (TP) represents a predicted positive sample that is

actually positive and correctly determines the type of disease. False

positives (FP) represent samples that were predicted to be positive

and were actually negative. True Negative (TN) predicts a negative

sample and is actually a negative sample. False negative (FN)

represents a negative prediction and a positive actual. The
TABLE 3 Computer parameters and improved model environmental
resource allocation.

Configuration Parameter

Operating system Ubuntu 20.04.6 LTS workstation

CPU 11th Gen Intel® Core™ i7-11700K @

3.60GHz × 16

GPU NVIDIA GeForce RTX 3070

Accelerated environment
Development environment

Language
Framework

CUDA 11.4, CUDNN 11.4
PyCharm
Python3.7

Pytorch1.8.0 Torchvision0.9.0
FIGURE 5

Illustration of Attention Mechanisms.
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following common classification metrics are commonly used to

evaluate the model.

Precision rate P: the ratio of the number of samples predicted to

be positive and correct to the total number of samples predicted to

be positive. The formula is shown as follows:

P =
TP

TP + FP

Recall R: The ratio of the number of samples whose predictions

are positive and correct to the total number of samples that are

actually positive. The formula is shown as follows:

R =
TP

TP + FN

Specificity S: The ratio of correctly predicted as a negative

sample to the actual negative sample. It is an indicator that

evaluates the ability to judge negative samples. The specificity was

calculated as follows:

S =
TN

TN + FN

F1-measure: weighted summed mean of precision rate P and

recall rate R. The accuracy and coverage of the model can be

evaluated in a comprehensive manner. Higher F1 scores indicate

that the model strikes a better balance between precision and recall.

The formula is shown as follows:

F1 =
2� P� R
P + R

Accuracy (Acc): The ratio of the number of correctly

categorized samples to the total sample number. Accuracy is one

of the commonly used evaluation measures. The formula is shown

as follows:

Acc =
TP + TN

TP + FP + TN + FN
3.2 Experimental results and analysis

3.2.1 Comparison of data augmentation results
Model training and validation were performed on the original

and augmented datasets. The experimental results show that using

the original model for training and validation on the original and

augmented datasets, the accuracy was improved from 0.946 to

0.951. Using the improved model for training and validation

respectively, the accuracy was improved from 0.961 to 0.974,

which is an improvement of 1.3%. The experimental data proved

the effectiveness of the data augmentation operation. Therefore, the

rest of the experiments were conducted on the augmented dataset.

3.2.2 Performance comparison of
improved modules

The Swin Transformer model is applied to detect cotton insect

pests in complex environments in the field, which may be affected

by complex environments. Therefore, this paper introduces a
Frontiers in Plant Science 08
residual module and skip connection to improve the detection

accuracy of the model. In order to verify the effectiveness of the

improvement scheme proposed in this paper, we take the Swin

Transformer model as the original model and add different

improvement modules respectively, so as to verify the

performance of the improved model. One of the residual module1

is mentioned in 3.2 and is located after the picture input. The skip

connection and residual module 2 are the ones mentioned in 3.3 of

the text and are located between the Swin Transformer blocks and

after the skip connection, respectively. The experimental results are

shown in Table 4, where the accuracy is improved from 0.951 to

0.959 by adding the residual module 1 to the original model. The

accuracy is improved by 1.3% and 1.2% by adding skip connection

and residual module 2, respectively. Finally, the improved model

improves the accuracy from 0.951 to 0.974 compared to the original

model, an improvement of 2.3%. Comparison results can prove that

the residual module and skip connection introduced in this paper

contribute to the model performance.

3.2.3 Analysis of training results
The relationship between the training results and the number of

epochs before and after the model improvement is shown in

Figure 6, which shows that the original model has better

generalization ability. But after training up to 25 epochs, you can

see that the accuracy and loss show a straight line and no longer

change. It is possible that the gradient disappears or the gradient

explodes. The improved model continues the generalization ability

of the original model, solves the problems such as gradient

vanishing, and increases the classification accuracy from 0.951 to

0.974, and reduces the loss from 0.2019 to 0.1089.

3.2.4 Analysis of test results
The model weights with the highest rate of accuracy during

training are saved and the model is tested on the TEST dataset (1620

sheets). In terms of the accuracy of the model, the accuracy rate

reaches 97.4%. Meanwhile, in the process of testing the model, the

prediction time for the model was also evaluated, and the average

time for single prediction was 0.00434s, and the improved model

can judge 230 RGB images in 1s.

The precision, recall, specificity, and F1  score is calculated and

analyzed for each pest by testing. The performance of different pests

before and after model improvement is shown in Table 5. It can be

seen that the improved model has improved and more balanced in

most indicators, among which the performance of recognizing

cotton aphid damage pictures and cotton mirids damage pictures

is not much different, and the accuracy rate is 0.978 and 0.983

respectively. The picture will be slightly inferior in identifying

cotton leaf mite damage, but it also reaches 0.957. Combined with

the collection of cotton pests, we analyzed that due to the

occurrence of cotton leaf mites at the late stage of the cotton

planting period, which is in the August-October period in the

Xinjiang region, the strong light irradiation and overexposure

during the filming, and the lack of characteristics of leaf

infestation, led to the difficulties encountered by the model in the

detection of infestation characteristics.
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3.2.5 Comparison with classical
classification networks

Finally, classical classification models were used to train on the

same dataset separately. The training results of the classical model

and the results of the improved model are shown in Table 6. Among

them, the classical classification models VGG11, VGG11-BN,

Resnet18, and mobilenetv2 achieve high accuracy, which is as

high as 0.969, 0.927, 0.952, and 0.949, respectively. The accuracy

of VIT and Swin Transformer small, Swin Transformer base in the

Transformer series reached 0.911, 0.895 and 0.894 respectively. The

model size of the improved model is not the smallest, but it is

smaller than the Transformer series and the VGG network,

although in the model size increased, the improved model

performs the best with an accuracy of 0.974.

As shown in Figure 7, the predictions of the model are

visualized with the real labels through the confusion matrix.

Figures 8 shows the prediction results of the improved model and

other classical models on the test dataset, which shows that the

number of images classified correctly by the improved Swin

Transformer model is relatively balanced, indicating that there is

no obvious classification preference of the improved model. Among

the results of misjudgments, the number of images of cotton

infested with cotton leaf mites that were judged to be infested

with cotton aphids was higher than the rest of the misjudgments.
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Comparison of the leaf images of the two infestations revealed that

the appearance of brown spots on the leaves of cotton infested with

the cotton leaf mite was more similar to the characteristics of the

black cotton aphid on the leaves, resulting in a misjudgment.

Compared to images with a single background, images with

complex backgrounds increase the difficulty of the model in

acquiring leaf features, resulting in some decrease in the accuracy

rate. Leaf images with complex backgrounds can contain

information such as soil, weeds, and other information, as well as

staggered and obscured leaves. The color of the soil in model

training is similar to the color of the spots, which can cause

learning difficulties; interlocking and partially shaded leaves can

cause the model to miss information about the infestation as it

learns, leading to less-than optimal learning results.

Figure 8 shows the recognition visualization results of the

improved model and each model in the comparison experiment

of 3.2.5. The test results of the three pest images were compared by

Grad-CAM visualization (Selvaraju et al., 2016; Chattopadhyay

et al., 2018), from left to right, the original image and the

visualization results of each model, where Swin transformer is the

original model. It can be observed that the improved model can

capture more detailed information. For example, as shown in the

cotton aphid test results, the improved model focuses on the curly

lines at the edge of the leaves. According to the visualization results,
TABLE 4 Impact of improved modules on model performance.

Swin
Transformer

Residual
module 1

skip
connection

Residual
module 2

Accuracy Parameter/
Ten Thousand

Size/MB

√ 0.951 2752.09 106.11

√ √ 0.959 2752.18 106.12

√ √ √ 0.972 2752.18 106.12

√ √ √ 0.971 4163.09 159.98

√ √ √ √ 0.974 4163.09 159.98
FIGURE 6

Accuracy- epoch and Loss-epoch curve of model before and after improvement.
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FIGURE 7

Confusion matrix.
TABLE 6 Classification results of different algorithms for cotton insect pests.

Model Accuracy Precision Recall Specificity F1 Parameter/
Ten

Thousand

Size/MB

VGG11 0.969 0.977 0.961 0.979 0.967 13286.33 506.84

VGG11-bn 0.927 0.971 0.910 0.959 0.939 13286.88 506.89

Resnet18 0.952 0.957 0.925 0.966 0.936 1168.95 44.66

Mobilenetv2 0.949 0.954 0.962 0.981 0.957 350.48 13.60

VIT 0.911 0.910 0.909 0.922 0.910 8656.76 330.28

Swin
Transformer

small
0.895 0.895 0.893 0.907 0.894 4960.62 189.79

Swin
Transformer base

0.894 0.893 0.892 0.908 0.892 8776.82 335.37

Improved
Swin Transformer

0.974 0.973 0.971 0.987 0.972 4163.09 159.98
F
rontiers in Plant Sc
ience
 10
TABLE 5 Test results of different insect pests.

Pests
Precision Recall Specificity F1

Original Improved Original Improved Original Improved Original Improved

Cotton aphids damage 0.940 0.978 0.934 0.986 0.958 0.984 0.937 0.981

Cotton leaf mites damage 0.882 0.957 0.905 0.943 0.958 0.985 0.893 0.950

Cotton mirids damage 0.987 0.983 0.974 0.983 0.994 0.992 0.980 0.983
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the improved model has better detection effect, more accurate

localization, and the model has strong anti-interference ability in

the complex environment.
4 Discussion

In this study, the residual module and skip connection were

used to improve the Swin Transformer model, and the improved

model could be used for the identification of cotton insect pests in a

field environment. Comparing several convolutional neural

networks before choosing the benchmark model, it was found

that the Swin Transformer model is not limited by the

convolutional kernel and can obtain more global information.

The Swin Transformer model collects image information through

a self-attention mechanism. Effective operation under irregular

inputs is achieved by dynamically computing the weight matrix of

the self-attention mechanism (Zhu et al., 2022; Zhou et al., 2023).

Therefore, Swin Transformer model is chosen as the backbone

network in this study.

The inclusion of the residual module helps to enhance the

network expressiveness and improve the model classification

accuracy. Compared with single background images, cotton pest

images in complex backgrounds contain information such as soil,

weeds, and so on. There are also problems such as plants occluding

each other, which increases the difficulty of obtaining classification

features. Feature extraction and fusion of the input information

through the residual module preserves the input information and

enhances the classification features, thus improving the

classification accuracy (He et al., 2024; Wu et al., 2024). Due to

the cotton pest early leaf characteristics of small, mostly yellow, red

and other small spots on the edge of the leaf, and cotton planting

areas are windy and sandy, it is easy to cause the characteristics of

the disease spots and complex background confusion. It is easy to

lose the insect pest features during the model training process, thus

affecting the classification accuracy of the model. In deep networks,

skip connections can realize the transfer of information across

layers, increase the mobility of information, and solve the

problem that pest features are easy to be lost during the training
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process (Li et al., 2023; V and Kiran, 2022). The results proved that

the accuracy of the improved model increased from 94.62% to

97.38%, and the improved model had no obvious classification

preference for the three cotton insect pests with balanced

classification results.

In recent years, many researchers have used deep learning

techniques to study cotton pests and diseases with extensive,

high-quality results. As shown in Table 7, many researchers used

convolutional neural network as the backbone network, optimized

and improved it to make it more suitable for cotton pest and disease

detection, and finally realized the identification of cotton pests and

diseases. Among them, the model proposed by (Islam et al., 2023)

had the highest accuracy of 98.70%, but the model could only

determine whether cotton was diseased or not, and could not

accurately determine the type of pest or disease. The model

proposed in this study had the highest accuracy of 97.38%

compared to the remaining three models that can determine the

type of diseases and pests.

Deep learning techniques had some success in detecting plant

leaf diseases (Liang et al., 2019; Bhujel et al., 2022; Nandhini and

Ashokkumar, 2021), with some models achieving classification

results almost close to 1 on the Plant Village dataset. However,
TABLE 7 Performance comparison of the proposed model with
previous studies.

Reference Types of Pests
and

Diseases

Model Accuracy

Islam
et al., 2023

Healthy
leaves +Diseased leaves

Xception 98.70%

Zhang
et al., 2022

3 diseases + 2 pests Improved YOLOX 94.60%

Li et al., 2024
4 diseases + 1 pests +

healthy leaves
Improved
YOLOv8s

89.90%

M. et al., 2021
2 diseases + 1 pests +

healthy leaves
CNN 96.40%

Proposed
method

3 pests
Improved

Swin Transformer
97.40%
FIGURE 8

Visual results.
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the photos collected in practical applications contain complex

backgrounds such as soil and weeds, and there is also the

problem of occlusion, which can lead to a decrease in

classification accuracy. Therefore, it is more practical to use

complex background image data for model training (Wang et al.,

2024; Davidson et al., 2024). With the rapid development of UAVs

technology and spectral technology, UAVs have attracted the

attention of many scholars by showing convenience and safety in

the application of large-scale detection of plant pests (Zhang and

Zhang, 2023; Sato et al; Zhang et al., 2024). (Xiao et al., 2021)

achieved accurate and timely detection of Fusarium powdery

mildew in wheat by combining hyperspectral images captured by

utilize unmanned aerial vehicles (UAVs) with ground data and

selecting the optimal window size of the gray-level co-occurrence

matrix (GLCM) to extract texture features. However, the high cost

of hyperspectral equipment makes it difficult to popularize its use

on a large scale. (Ma et al., 2024) realized the detection of cotton

verticillium wilt disease by combining multispectral image data with

ground sampling data using simple linear regression (LR) and

multiple linear regression (MLR) methods. However, compared to

the above models, deep learning-based models are more

advantageous in terms of inter-temporal migration. The improved

Swin Transformer model does not require manual image processing

to achieve accurate identification of cotton insect pests in the field

environment, which reduces the influence of human factors to a

certain extent and improves the applicability of the model. The edge

device could perform pest detection on the captured images by

calling the cotton pest model in the cloud server, and will realizes

the cotton pest distribution map finally. The whole process is shown

in Figure 9, where the cotton image acquisition work is carried out

by means of a UAV, the acquired utilize unmanned aerial vehicles

(UAVs) images are cropped into multiple image segments, which

are uploaded to a cloud server for cotton pest detection, and the

detection results are annotated using equal-sized patches with

different colors, and the detection results are spliced together in

accordance with the cropping order to ultimately generate a pest
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distribution map. Based on the pest distribution map, end users can

generate application prescription maps according to the medication

guide, which provides technical support for precise and variable

medication application and promotes the intelligent development

of agricultural diseases.
5 Conclusions

In order to realize the accurate identification of cotton insect

pests in complex environments, a cotton insect pest detection model

based on improved Swin Transformer was proposed in this study,

and the main conclusions are as follows.

Aiming at the characteristics of small and unbalanced samples

of cotton pest data, the data set was expanded by digital image

processing, and the residual module and skip connection were

introduced, which effectively improved the model accuracy from

94.62% to 97.38%. The results of the study proved that the

improved model can realize the recognition of cotton insect pests

in the field environment.

Through the test of the proposed model, the average single

prediction time is 0.00434s, which can complete the judgment of

230 pictures of cotton pests within 1s. It can provide technical

reference for the utilization of edge devices such as utilize

unmanned aerial vehicles (UAVs).

Based on the results of the current research, the proposed model

has great potential for cotton pest detection. However there are several

issues that need to be considered in the follow-up study. (1) This study

only focuses on the detection of cotton insect pests and ignores the

detection of cotton diseases, so the detection of cotton diseases needs

to be included in the subsequent study. (2) The size of the improved

model is 159.98 MB, which needs to be combined with the

computational power of the edge devices in the subsequent research,

focusing on the lightweight model, to achieve the application of the

equipment in the field, such as the precise application of medicine, to

solve the actual production problems in the field.
FIGURE 9

Pest Distribution Mapping Process.
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