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Asteraceae, the largest family of angiosperms, has attracted widespread attention

for its exceptional medicinal, horticultural, and ornamental value. However,

researches on Asteraceae plants face challenges due to their intricate genetic

background. With the continuous advancement of sequencing technology, a

vast number of genomes and genetic resources from Asteraceae species have

been accumulated. This has spurred a demand for comprehensive genomic

analysis within this diverse plant group. To meet this need, we developed the

Asteraceae Genomics Database (AGD; http://cbcb.cdutcm.edu.cn/AGD/). The

AGD serves as a centralized and systematic resource, empowering researchers in

various fields such as gene annotation, gene family analysis, evolutionary biology,

and genetic breeding. AGD not only encompasses high-quality genomic

sequences, and organelle genome data, but also provides a wide range of

analytical tools, including BLAST, JBrowse, SSR Finder, HmmSearch, Heatmap,

Primer3, PlantiSMASH, and CRISPRCasFinder. These tools enable users to

conveniently query, analyze, and compare genomic information across various

Asteraceae species. The establishment of AGD holds great significance in

advancing Asteraceae genomics, promoting genetic breeding, and

safeguarding biodiversity by providing researchers with a comprehensive and

user-friendly genomics resource platform.
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1 Introduction

Asteraceae, recognized as the largest family of angiosperms, is

globally distributed and remarkably diverse. It encompasses over 1,600

genera and approximately 25,000 species (Shen et al., 2023), including

notable members such as Chrysanthemum morifolium, Artemisia

caruifolia, Helianthus annuus, and Carthamus tinctorius (Zhang and

Elomaa, 2024). Chrysanthemum, a prominent perennial herbaceous

plant within this family, holds a revered position among China’s top

ten traditional flowers and is globally considered one of the four most

preeminent cut flowers. Its geometrically regular inflorescences are

visually appealing, contributing to the ornamental value of Asteraceae

(Elomaa, 2019). In addition, the Asteraceae family holds important

medical applications, significantly contributing to human health

(Rolnik and Olas, 2021). Previous research has demonstrated that

sesquiterpene lactones, naturally abundant in this family, possess

anticancer potential (Li et al., 2020). Furthermore, Asteraceae can be

employed as an in vitro antiplatelet agent and is utilized in diverse

aspects of daily life, including cosmetics and food processing (Rolnik

et al., 2022).

With the remarkable advancements in genome sequencing

technology, substantial progress has been made in the genome

research of various species, with much attention focused on

Asteraceae in recent times. Particularly, Helianthus annuus

(Badouin et al., 2017), C. morifolium (Song et al., 2023a), C.

nankingense (Song et al., 2018), Mikania micrantha (Liu et al.,

2020), Artemisia annua (Shen et al., 2018), and Artemisia argyi have

all been extensively studied (Shen et al., 2018). Despite the

numerous genomic studies conducted on various Asteraceae

species, the genome sequences are distributed in different

databases, lacking an integrated analysis platform and

comprehensive databases that consolidate the vast amount of

available information. Existing databases related to Asteraceae,

including the Asteraceae genome size database (GSAD) (Garnatje

et al., 2011), Asteraceae sequences database (Ventimiglia et al.,

2023), burdock multi-omics database (Song et al., 2023b), and

HeliantHOME (Bercovich et al., 2022). These databases do not

systematically capture all the findings related to the Asteraceae

genome. Such as GSAD only provides the function of querying the

genome sizes of most Asteraceae species. Moreover, navigating

through multiple platforms to obtain the required species data

can be challenging and inconvenient. Therefore, developing a

unique and comprehensive database, to provide researchers with

a comprehensive platform for multi-omics research is crucial to

consolidate and simplify access to Asteraceae genomic information.

In this work, we established the Asteraceae Genome Database

(AGD), a comprehensive repository that integrates existing genome

assembly and annotation data of representative Asteraceae species.

We also regularly update the AGD to include new genomic data and

research findings, ensure that AGD reflects the latest scientific

advancements, and provide researchers with the most current

information. We anticipate AGD evolving into a preeminent

platform for the in-depth analyses of genomic data related to

Asteraceae plants, streamlining access and interpretation of

crucial information.
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2 Database construction

2.1 Data retrieval

The complete omics data for Asteraceae were retrieved from

various databases, including NCBI (National Center for

Biotechnology Information, https://www.ncbi.nlm.nih.gov/), 1 K-

MPGD (1 K Medicinal Plant Genome Database, http://

www.herbgenome.com/) (Su et al., 2022), GPGD (Global

Pharmacopoeia Genome Database, http://www.gpgenome.com)

(Liao et al., 2022a), CNCB (China National Center for

Bioinformation, https://www.cncb.ac.cn/?lang=en) (CNCB-NGDC

Members and Partners, 2023), GWH (Genome Warehouse, https://

ngdc.cncb.ac.cn/gwh) (Chen et al., 2021), Published Plant Genomes

(https://www.plabipd.de/plant_genomes_pa.ep), and GERDH

(Gene Expression Regulation Database of Horticultural plants,

https://dphdatabase.com) (Cheng et al., 2023). We utilized the

common and scientific nomenclature for species identification,

for example, ‘Sunflowers’ and ‘Helianthus annuus L’, respectively,

to facilitate a comprehensive retrieval of omics data. We expanded

our keyword set to include the genus name and associated

taxonomic designations to ensure a comprehensive search

strategy. Table 1 provides an overview of the extant genomic data

available for the Asteraceae family. The AGD encompasses a diverse

array of genomic data, including organelle and nuclear genomes.

We employed the gffread tool (https://github.com/gpertea/gffread)

to extract protein-coding, protein, and transcript sequences. These

sequences were subsequently curated and integrated into our

database. Figure 1 presents the analysis pipeline employed by AGD.
2.2 Supplements to plant and
genome information

Taxonomic resources and phenotypic images were obtained

from iplant (https://www.iplant.cn/), Wikipedia (https://

encyclopedia.thefreedictionary.com/), and Flora of China (http://

flora.huh.harvard.edu/china/mss/intindex.htm). We documented

the key details of each genomic publication, including the title,

publication date, journal, and the unique PubMed identifier. We

conducted a careful manual review of the associated academic

articles for each genome to obtain information such as the

genome size, assembly level, and the number of predicted genes.

Moreover, we extracted the details of the pertinent annotation files.
2.3 Database implementation

The database is supported by Django (https://www.

djangoproject.com/), uWSGI (https://uwsgi-docs-zh.readthedocs.

io/zh-cn/latest/), and Nginx (https://nginx.org/en/). MySQL

(https://www.mysql.com/) is used for the data management and

organization of AGD. To provide a smooth and friendly user

interface, bootstrap (v.4, https://v4.bootcss.com/), fontawesome

(v.free-6.4.0, https://fontawesome.com/), and layUI, (https://
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TABLE 1 Species and genome data in Asteraceae.

Species Accession number Assembly Level Genome size References

Arctium lappa JAKOEK000000000 Chromosome 1.73 Gb (Fan et al., 2022)

Carthamus tinctorius GWHBJIR00000000 Chromosome 1.17 Gb (Chen et al., 2023a)

Cynara cardunculus SUB874020 Chromosome 1,084 Mb (Scaglione et al., 2016)

Saussurea involucrata SAMN36288184 Chromosome 2452 Mb (Sun et al., 2023)

Silybum marianum JAWIMA000000000 Chromosome 694.4 Mb (Kim et al., 2024)

Ambrosia artemisiifolia PRJNA967341 Chromosome 1.13 Gb (Laforest et al., 2024)

Ambrosia trifida PRJNA967341 Chromosome 2.02 Gb (Laforest et al., 2024)

Artemisia argyi PRJCA010808 Chromosome 3.89 Gb (Chen et al., 2023b)

Helianthus annuus MNCJ02000000 Chromosome 3.6 Gb (Badouin et al., 2017)

Mikania micrantha SZYD00000000 Chromosome 1.8 Gb (Liu et al., 2020)

Lactuca sativa PRJCA007442 Chromosome 2.6 Gb (Shen et al., 2023)

Artemisia annua – Chromosome 1.11 Gb (Liao et al., 2022b)

Erigeron breviscapus PRJNA525743 Chromosome 1.4 Gb (He et al., 2021)

Bidens hawaiensis SAMN18676211 Chromosome 6.67 Gb (Bellinger et al., 2022)

Artemisia tridentata SAMN24662005 Chromosome 4.2Gb (Melton et al., 2022)

Chrysanthemum indicum – Chromosome 3.11Gb (Deng et al., 2024)

Chrysanthemum
lavandulifolium

JAHFWF000000000 Chromosome 2.60 Gb (Wen et al., 2022)

Chrysanthemum makinoi JP131333 Chromosome 3.1 Gb (Van Lieshout et al., 2022)

Chrysanthemum nankingense – Chromosome 3.07 Gb (Song et al., 2018)

Chrysanthemum seticuspe GCA_019973895.1 Chromosome 3.05 Gb (Nakano et al., 2021)

Chrysanthemum morifolium PRJNA796762
PRJNA895586

Chromosome 8.15 Gb (Song et al., 2023a)

Conyza canadensis SUB535309 Chromosome 335 Mb (Peng et al., 2014)

Dittrichia graveolens PRJNA919087-8 Chromosome 835 Mb (McEvoy et al., 2023)

Glebionis coronaria JANFOE000000000 Chromosome 6.8 Gb (Wang et al., 2022)

Helianthus tuberosus PRJNA918503 Chromosome 21Gb (Wang et al., 2024)

Helichrysum umbraculigerum PRJEB52026 Chromosome 1.3 Gb (Berman et al., 2023)

Pluchea indica PRJCA004930 Chromosome 495.4 Mb (He et al., 2022)

Pulicaria dysenterica PRJEB50479 Chromosome 833.2Mb (Christenhusz et al., 2023)

Scalesia atractyloides PRJEB52418 Chromosome 3.2Gb (Cerca et al., 2022)

Smallanthus sonchifolius JAKNSE000000000 Chromosome 2.72 Gb (Fan et al., 2022)

Stevia rebaudiana PRJNA684944 Chromosome 1416 Mb (Xu et al., 2021)

Tagetes erecta – Chromosome 707.21Mb (Xin et al., 2023)

Tanacetum cinerariifolium PRJDB8358 Chromosome 7.1Gb (Yamashiro et al., 2019)

Tanacetum coccineum PSUB016075 Chromosome 9.4 Gb (Yamashiro et al., 2022)

Cichorium endivia JAKOPN000000000 Chromosome 0.89Gb (Zhang et al., 2022)

Cichorium intybus JAKNSD000000000 Chromosome 1.28Gb (Fan et al., 2022)

Lactuca saligna PRJEB56287 Chromosome 2.27 Gb (Shen et al., 2023)

Lactuca virosa PRJEB50301 Chromosome 3.7 Gb (Xiong et al., 2023)

(Continued)
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layui.dev/docs/2/form/select.html#normal) were employed to

improve the interface visual. The statistical results are displayed

using bootstrap-table (https://getbootstrap.com/docs/4.0/content/

tables/) and ECharts (https://echarts.apache.org/zh/index.html).
2.4 Analysis tools

Eight bioinformatics tools have been integrated into AGD,

namely, BLAST (Camacho et al., 2009), JBrowse (Skinner et al.,

2009), SSR Finder (Castelo et al., 2002), Heatmap (Verhaak et al.,

2006), Primer3 (Rozen and Skaletsky, 2000), PlantiSMASH (Kautsar

et al., 2017), CRISPRCasFIDER (Couvin et al., 2018), and

HmmSearch (Rehmsmeier and Vingron, 2001). The BLAST service

was constructed using the SequenceServer application, which serves

as a robust front-end for BLAST. The AGD capabilities are enhanced

by embedding JBrowse 2, a new version of the genome visualization

tool (Diesh et al., 2023). The SSR web interface was developed to

identify SSRs in user-submitted sequences, taking inspiration from

the MISA page (https://webblast.ipk-gatersleben.de/misa/index.php?

action=1). Protein domains are identified using the HmmSearch

program within the HMMER (v.3.3.2) software suite. The Heatmap

tool can provide the heat map determined from the expression

profile data. Moreover, a PCR primer design tool is embedded into

the system, allowing users to adopt the capabilities of Primer.
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PlantiSMASH is integrated to detect known secondary metabolic

gene clusters present within chromosome-level genomes. The

identification of CRISPR arrays and Cas proteins is facilitated by

the tools provided within the AGD platform.
3 Results

3.1 Structure of AGD

AGD comprises three main parts, including modules, data, and

tools (Figure 2). It incorporates six primary modules: Home, Browse,

Search, Tools, Visualization, and Contact&Help, each serving distinct

functions to facilitate user interaction and data exploration. We have

collected genomic data from 40 Asteraceae species, of which seven

genomic information that can be queried and downloaded, have been

uploaded to the AGD. We are committed to continually improving

and expanding the AGD. Furthermore, AGD includes organellar

genomic data from 15 Asteraceae species, which adds valuable genetic

information to the database. The database is further enriched with

large of high-quality photographs showcasing a diverse array of

Asteraceae plants.

AGD also integrates eight related tools with diverse

functionalities and datasets. BLAST for ortholog recognition across

a spectrum of plant species, SSR Finder for simple sequence repeats
TABLE 1 Continued

Species Accession number Assembly Level Genome size References

Taraxacum mongolicum PRJCA005187 Chromosome 790 Mb (Lin et al., 2022)

Taraxacum kok-saghyz PRJCA005187 Chromosome 1.1 Gb (Lin et al., 2022)
FIGURE 1

Analysis pipeline for data retrieval in AGD.
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detection, and JBrowse for an immersive genome exploration

experience. For protein domain identification, we have integrated

HmmSearch, while primer design is facilitated through our

proprietary tool. Furthermore, AGD now features PlantiSMASH

for secondary metabolite analysis and CRISPRCasFinder for

CRISPR-associated system identification, both of which have been

embedded within the AGD for user convenience (Figure 2).
3.2 Browse

In the Browse module, users can browse through comprehensive

list pages (plant, genome, organellar genomic); utilize interactive filters

to narrow down datasets based on specific attributes, such as species

hierarchy, assembly level, and herbal characteristics; and explore data

subsets that possess the desired attribute. This module can also provide

the detailed information, including herb names, habitats, genome

version/level, data sources, characteristics, and descriptions.
Frontiers in Plant Science 05
3.3 Search

AGD has a separate search page where users can quickly find

data of interest. The search box allows users to select a species or

field and enter keywords. Recorded searches are displayed as a word

cloud, and the results page provides a summary table with clickable

hyperlinks for more details.
3.4 Tools

AGD has embedded several online analysis tools to facilitate the

systematic analysis of Asteraceae plant genomes. For example,

homology searches and the visualization of results can be performed

by SequenceServer in BLAST. Users can input query sequences or

upload a file in FASTA format, and select a database for the search. The

available BLAST options are automatically set based on the query

sequence type and selected database (Figure 3A). JBrowse can display
FIGURE 2

Framework of three parts at AGD.
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the integrated data of three genomes and annotated genomic datasets.

Users can upload their data for visualization and comparison with

AGD datasets. JBrowse enables genome sequence browsing, viewing

gene information, and data comparison (Figure 3B). In addition, the

SSR Finder module identifies SSRs in uploaded sequences and displays

SSRs found in AGD coding sequences (Figure 3C). HmmSearch

analyzes gene families using profile-HMMs (Figure 3D) and

Heatmap generates visual representations of data matrices

(Figure 3E). Primer3 can be adopted to design primers for PCR

experiments (Figure 3F), while PlantiSMASH predicts biosynthetic

gene clusters in plants (Figure 3G) and CRISPRCasFinder identifies

CRISPR-Cas systems in genomes (Figure 3H).
3.5 Visualization

We implement ECharts to display the data contained in AGD.

Users can access this tool through the visualization buttons on the

navigation bar, which serves as the starting point for exploring the

database. The AGD visualization interface offers simple statistics,
Frontiers in Plant Science 06
including the number of plants in the Asteraceae family and the

number of Asteraceae and organellar genomes. Users can also

examine detailed charts for specific taxonomic subsets by

engaging with the corresponding category tabs. The taxonomic

hierarchy of the flora is represented with a Sunburst diagram, which

allows for the expansion of any segment upon user interaction, and

is accompanied by a set of controls below the diagram to facilitate

the retrieval of pertinent records. In the genomic data

representation block, we include a donut chart featuring

smoothed edges to delineate the distribution of genomes across

various size spectra. Users can extract corresponding data entries by

interacting with any segment of the chart.
3.6 Contact and help

We have included a feedback form within the contact module,

tailored for users to conveniently submit their inquiries, concerns,

and suggestions regarding various issues. Our email address is

displayed on the contact page, ensuring swift and straightforward
FIGURE 3

Eight tools at AGD. (A) Blast. (B) JBrowse. (C) SSR Finder. (D) HmmSearch. (E) Heatmap. (F) Primer3. (G) PlantiSMASH. (H) CRISPRCasFinder.
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communication with our team. To strengthen the accessibility of

the user interface, we present detailed step-by-step instructions on

the help page on how to utilize the primary modules.
4 Discussion

From 2000 to 2020, 1,144 genomes of 782 plant species were

sequenced (Xie et al., 2024). Compared to ~10 years ago, high-

quality genome assembly has become relatively easier, and there has

been a tremendous leap in genome assembly. Due to the remarkable

advancements in sequencing technology, a vast array of species has

been sequenced (Yang et al., 2024a), and a total of 2,836 genomes

from 1,410 plant species was available by 2023 (Xie et al., 2024). Of

course, the genome assembly quality has also improved rapidly

(Yang et al., 2024b). These afforded the emergence of several

databases dedicated to housing their genomes, such as the 1 K

medicinal plant genome database (Su et al., 2022), the Rosaceae

genome database (Jung et al., 2019), the cucurbit genomics database

(Zheng et al., 2019), and the Portal of Juglandaceae (Guo et al.,

2020), Traditional Chinese Medicine Plant Genome database

Traditional Chinese Medicine Plant Genome database (TCMPG;

http://cbcb.cdutcm.edu.cn/TCMPG/) (Meng et al., 2022), and so on

(Supplementary Table S1). Asteraceae, the largest family of

flowering plants, is renowned for its medicinal, horticultural, and

ornamental value. However, research on these plants faces several

challenges. The diverse habitats of the Asteraceae family have led to

the widespread dispersion of its resources. Additionally, many

Asteraceae species are polyploids with large and diverse genomes,

posing significant challenges for scientific research due to their

genetic complexity. Meanwhile, the continuous advancement of

sequencing technologies has facilitated the extensive publication of

genomic and genetic resources for various Asteraceae species.

The Global Compositae Database (https://www.compositae.org/

gcd/index.php) boasts an extensive collection of approximately

33,057 recognized species. A large number of databases provide

partial information on Asteraceae data, yet the data available is

quite restricted, such as the GERDH databases, while offering

valuable resources for horticultural crops, are limited in scope as

they only cover a small number of closely related Asteraceae species

(Cheng et al., 2023). According to the published plant genome

website, 40 Asteraceae species have had their genomes sequenced,

each with varying degrees of assembly completeness and distributed

in different databases. Currently, genomes, organelle genomes, and

some genetic resources of Asteraceae are distributed in different

databases, resulting in the need to spend a lot of time collecting this

information before many bioinformatics analyses, lacking a unique

and comprehensive database that integrates a large amount of

available information on Asteraceae genomics and genetic

resources. We recognized that constructing an Asteraceae genome

database provides researchers with a comprehensive and user-

friendly genomics resource platform, which is very important for

advancing Asteraceae genomics and promoting genetic breeding.

Based on this, the Asteraceae Genome Database (AGD)

introduces 15 organelle genomes and 7 genomic information of
Frontiers in Plant Science 07
Asteraceae that can be queried and downloaded, along with related

genetic information, it provides a data update mechanism,

improved user interface design, and advanced data analysis tools

(including BLAST, JBrowse, SSR Finder, HmmSearch, Heatmap,

Primer3, PlantiSMASH, and CRISPRCasFinder). As an integrated

repository for genomic, genotypic, and taxonomic data, it is

committed to promoting research on Asteraceae species.

In this work, we developed AGD to manage this wealth of data

on the Asteraceae species effectively. It integrates genomic data from

multiple species, offering a platform for comparative and functional

genomics analysis. This integration is pivotal as it uncovers

conserved and variable regions within the genomes, shedding light

on gene functions and evolutionary patterns across the family. This

strengthens phylogenetic studies, genetic breeding, and drug

development specifically for Asteraceae plants. Moreover, we

provide robust data analysis and visualization tools, as well as

comprehensive and insightful data support for Asteraceae plant

research, thereby propelling scientific advancements in related fields.
5 Conclusion

The AGD was established as an integrated database resource

dedicated to collecting the genomic-related data of the Asteraceae

family, including genomic datasets, organellar genomes, and

phenotypic information. Equipped with a suite of useful tools,

including BLAST, JBrowse, SSR Finder, HmmSearch, Heatmap,

Primer3, PlantiSMASH, and CRISPRCasFinder, the AGD offers

researchers valuable resources for genomic analysis. The database is

freely accessible online at http://cbcb.cdutcm.edu.cn/AGD/. The

AGD serves as a comprehensive repository of genome, genotype,

and taxonomy data, and stands as a valuable resource for the entire

research community of Asteraceae.
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