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Soil microbial carbon use efficiency (CUE) refers to the efficiency of

microorganisms in converting absorbed carbon into their own biomass

carbon. Soil microbial CUE is a key parameter to understanding the soil carbon

cycle. Biotic and abiotic factors are widely considered to be important factors

influencing CUE. However, the related underlying mechanisms remain unclear.

This review elaborates on the concept of soil microbial CUE and the various

approaches used for its measurement. We reviewed the effects of various abiotic

factors, such as temperature, soil moisture, pH, nutrient addition, and substrate

type, and biotic factors, such as microbial community structure and diversity, on

CUE. Finally, we discussed the focus areas that future studies need to further

explore. We hope this review can provide a comprehensive understanding of the

factors impacting soil microbial CUE, which is a fundamental step to improving

soil carbon storage capacity.
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1 Introduction

Carbon cycling is one of the key biogeochemical cycling processes in terrestrial

ecosystems (Schimel and Schaeffer, 2012). During this cycle, atmospheric carbon dioxide

(CO2) is absorbed and fixed through several processes, including biological, geological, and

anthropogenic disturbance processes (Zhang W. et al., 2024). Generally, terrestrial

ecosystems are crucial to reducing atmospheric CO2 levels (Davidson and Janssens,

2006). Exploring the mechanisms of carbon cycling is fundamental to countering global

climate change (Sun and Chen, 2024). Moreover, the soil carbon pool is the biggest carbon

pool in terrestrial ecosystems, with carbon levels ~3- and 2-fold higher than those in the

atmosphere and the plants, respectively (Soong et al., 2020). Thus, changes in the soil

carbon pool might profoundly impact global carbon cycling (Lou et al., 2024). Soil

microorganisms play an indispensable role in terrestrial ecosystem carbon cycling (Frey
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et al., 2013), participating in nearly all soil transformations,

connecting soil, biosphere, atmosphere, hydrosphere, and

lithosphere fluxes (Chu et al., 2017).

The carbon use efficiency (CUE) of soil microorganisms is

defined as their ability to convert the absorbed carbon into

biomass (Chen and Yu, 2020), which might directly influence the

ecosystem carbon storage rate and storage capacity (Wieder et al.,

2013; Miltner et al., 2012). Therefore, exploring soil microbial CUE

is important for better understanding ecosystem carbon allocation

patterns, carbon flux changes, and carbon storage status and

accurately predicting the effects of global climate change on

carbon cycling (Xu et al., 2014). Microbial CUE has always been

depicted as a fixed variable in many soil carbon cycling models

(Parton et al., 1987; Hansen et al., 1991; Kätterer and Andrén,

2001). However, several studies have found that biotic and abiotic

factors influence the CUE (Adu and Oades, 1978; Song et al., 2012),

such as soil moisture and water effectiveness (Tiemann and Billings,

2011), temperature (Apple et al., 2006; Wetterstedt and Ågren,

2011), pH (Malik et al., 2018; Silva-Sánchez et al., 2019), and

nutrients (Ågren et al., 2001; Manzoni et al., 2012). However, the

mechanisms underlying the impact of these environmental factors

of soil microbial CUE remain unclear (Malik et al., 2020; Manzoni

et al., 2012). For instance, some studies have shown that the CUE

decreases with increasing temperature (Allison et al., 2010; Devêvre

and Horwáth, 2000) because rising temperature leads to elevated

respiration and subsequent substrate depletion and nutrient

limitation, reducing the CUE (López-Urrutia and Morán, 2007;

Allison et al., 2010). In contrast, some studies have shown that

increasing temperature only mildly impacts the CUE (Hagerty et al.,

2014; Tucker et al., 2013; Dijkstra et al., 2011b; Hagerty et al., 2014).

Furthermore, Spohn et al. (2016b) reported a decrease in CUE with
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increasing nitrogen levels. However, Liu et al. (2018) found that

CUE increased with rising nitrogen levels. Thus, the degrees of

impact of different environmental factors on soil microbial CUE

and the related underlying mechanisms are still not fully

understood (Figure 1) (Jones et al., 2018).
2 Ecological concepts of
microbial CUE

The term “growth yield” refers to the efficiency of an organism

to convert substrate to biomass. This term was coined in the early

20th century as a physiological indicator to assess the efficiency of

bacteria to assimilate substrate (Monod, 1949). In the mid-1990s,

Gifford introduced the term “growth yield” into the field of Ecology

as a way to characterize the potential carbon sequestration capacity

of organisms, but termed it Carbon Use Efficiency (CUE) (Gifford,

1995). Since then, CUE has gradually been classified into plant

CUE, microbial CUE, and ecosystem CUE, referring to plant carbon

assimilation, soil carbon sequestration, and ecosystem carbon use

efficiencies, respectively (Manzoni et al., 2012). Of these, microbial

CUE is the ratio of the amount of organic carbon substrate used by

microorganisms for growth and assimilation to the amount of

substrate carbon used during decomposition and alienation

(Sinsabaugh et al., 2017), reflecting the partitioning of carbon

between the growth and respiration of the microorganisms

(Sinsabaugh et al., 2013).

In ecological research, microbial CUE is usually expressed as

the ratio of microbial growth (μ) to absorption (U), that is, CU

E = m
U (Manzoni et al., 2012). Microbial CUE also reflects the

several processes affecting carbon metabolism at different
FIGURE 1

Main factors affecting soil microbial carbon use efficiency (CUE).
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temporal and spatial scales, such as physiological processes at

individual cell and species levels or kinetic features at the

community and ecosystem levels (Geyer et al., 2016). Thus, it

directly influences the carbon retention time, turnover rate, and

soil carbon storage capacity of the ecosystem (Tucker et al.,

2013). In summary, exploring the responses of soil microbial

CUE to environmental factors can help assess the potential of

carbon storage and accurately predict the impacts of global

changes, anthropogenic disturbances, and the related
Frontiers in Plant Science 03
management measures on carbon sequestration in ecosystems,

making it a hotspot in current ecological research.
3 Determination of soil microbial CUE

Several methods have been used to estimate soil microbial CUE,

such as the calorimetric ratio method, 13C-glucose tracer method,

metabolic flux analysis method, 18O-water labeling method, and
TABLE 1 Comparison of different methods used for determining soil microbial CUE.

Method Equation Feature
Advantages

and disadvantages
References

Calorespirometry Rq

Rco2

= 469 1  −  
rs
4

� �
− 115(rs −   rMB)�

CUE
1 − CUE

� �

1. The marker substrate 18O-H2O
needs to be added.
2. Anaerobic respiration is not
considered.
3. CUE is calculated indirectly
via the ratio of heat rate to
respiration rate.

With much experience
coefficient, the applicability
is poor.

Geyer
et al. (2019)

13C-glucose tracing CUE =
13MBC

13MBC + R

1. An organic tracer of 13C-
glucose is required.
2. It is assumed that glucose
metabolism is equal to microbial
soil organic carbon metabolism.
3. The substrate absorption rate
will decrease with time, leading
to a CUE decrease with time.
4. Substrate addition might cause
the priming effect, which might
cause the measured CUE value to
be larger than the actual value.

It is easy to operate and
economical; however, the type of
tracer used has an impact on the
results, and the measured CUE
value will fluctuate with time.

Geyer
et al. (2019)

Metabolic flux analysis CUE =
6� V1 −o CO2

6� V1

1. A tracer with a 13C-labeled
substrate is required.
2. It is assumed that glucose
metabolism is equal to soil
organic carbon metabolism.
3. Loss of carbon in the form of
CO2 is represented by various
dehydrogenase metabolic
processes.
4. Anaerobic respiration
is considered.

It is easy to operate and
affordable, but the results are
not targeted.

Dijkstra
et al. (2015)

18O-water tracing CUE =
18MBC

18MBC + R

1. No organic tracer is required.
2. It is assumed that water is the
only source of oxygen needed for
growth.
3. It is assumed that the new
cells have the same amount of
DNA as the mature cells.
4. Since no organic tracer is
added, the substrate absorption
rate is stable, and CUE changes
little over time.

CUE can be measured directly,
but this method is mainly
suitable for short-term studies.

Spohn et al.
(2016a); Spohn
et al. (2016b)

Stoichiometric
modeling  CUEC :X =  CUEmax �

SC :X

    SC :X + KX

1. A tracer is not required.
2. Modeling was based on the
differences in the compositions of
carbon, nitrogen, and
phosphorus elements in
microbial biomass and
respiratory substrates.

It is simple but highly
dependent on
model assumptions.

(Sinsabaugh
et al., 2013)
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stoichiometric modeling (Manzoni et al., 2012) (Table 1). In 2004,

Hansen et al. found that calorimetric respirometry uses the ratio of

heat production to respiration to measure the CUE (Hansen et al.,

2004; Spohn et al., 2016a). Calorimetric methods have poor

universal applicability (Chakrawal et al., 2020) primarily because

they require some empirical coefficients for CUE measurement,

such as microbial biomass and oxidation state of substrate carbon.

However, the range of such empirical coefficients is often limited,

leading to a high CUE (Geyer et al., 2019). In 2006, while examining

the differences in the growth yield efficiencies of forest ecosystems,

Brant et al. suggested that 13C-glucose tracing might trace the

uptake and mineralization of 13C-labeled substrates, where

growth is inferred from 13C-incorporation into microbial biomass

(Brant et al., 2006). However, this method leads to high CUE values

because it uses biologically easily available carbon, inaccurately

reflecting the real substrate utilization by microorganisms in the

environment (Chen and Yu, 2020). In 2011, Dijkstra et al. proposed

that metabolic flux analysis could be used to measure CO2

production for individual C atoms using position-specific 13C-

labeled substrates (Dijkstra et al., 2011a; Spohn et al., 2016a).

Metabolic flux analysis is a relatively simple method but has a

low specificity, making it unsuitable for measuring the impacts of

microbial turnover and secretions (Dijkstra et al., 2015). In 2016,

Spohn et al. used a novel substrate-independent method of CUE

assessment based on the incorporation of 18O from labeled water

into the microbial DNA. They measured CUE by combining the

conversion factors of microbial DNA and carbon biomass (Spohn

et al., 2016a) to study the effects of long-term fertilization on

microbial CUE and microbial biomass turnover time. However,

they also showed that this method is suitable for assessing CUE in

short-term culture treatments but could not be used to estimate the

CUE over a long-term period (Spohn et al., 2016a). Furthermore,

Sinsabaugh et al. (2016) suggested that CUE could be calculated via

the activities of several soil enzymes, such as microbial extracellular

enzyme activity and the carbon-to-nitrogen ratio of microbial

biomass. They called this method the “stoichiometric modeling

method” (Sinsabaugh et al., 2016). This method is easy but cannot

reflect the actual microbial metabolic processes, and thus, has

always been a surrogate indicator of CUE (Sinsabaugh et al., 2016).

Taken together, each of these methods has its own set of

benefits, drawbacks, and application range (Geyer et al., 2019),

warranting the need for a fast, convenient, low-cost, and more

accurate CUE assessment method.
4 Environmental factors

4.1 Abiotic factors

4.1.1 Temperature
Temperature is an important environmental factor affecting soil

microbial CUE. Several studies have reported significantly negative

effects of temperature on CUE (Frey et al., 2013; Qiao et al., 2019).

Within a certain temperature range, microbial respiration intensity

increases with the rising temperature, causing elevated substrate

consumption, nutrient limitation and reduced soil microbial CUE
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(Kirschbaum, 2004; Li et al., 2019). However, other studies have

shown that a rise in temperature only mildly impacted soil microbial

CUE (Dijkstra et al., 2011b; Hagerty et al., 2014). In addition, the effects

of temperature on soil microbial CUE might depend on the period of

the experiments. For instance, Frey et al. (2013) found that short-term

temperature increases might produce high levels of microbially derived

carbon, leading to a rise in soil microbial CUE. When the temperature

rises from 10°C to 25°C, the CUE increases by 10–40%. However, long-

term temperature increases might reduce soil carbon, leading to the

negative relationships between temperature increases and soil

microbial CUE (Frey et al., 2013). Therefore, the precise impact of

temperature change on microbial CUE remains unclear.
4.1.2 Soil moisture
Soil moisture plays a very important role in soil productivity by

altering the energy balance between vegetation and the atmosphere

(Deng et al., 2020), another key environmental factor influencing soil

microbial CUE and driving biogeochemical cycling (Tiemann and

Billings, 2011). The effects of soil moisture on soil microbial CUE are

complex and variable. For instance, high moisture might increase

nutrient availability and promote microbial growth, altering soil

microbial CUE (Domeignoz-Horta et al., 2020). Domeignoz-Horta

et al. (2020) found that at high soil moisture levels (60%), microbial

respiration and growth rates increased by 146% and 169%, respectively.

However, the growth rate increased more rapidly than the respiration

rate, resulting in an 8% increase in CUE. Whereas Tiemann and

Billings (2011) showed that CUE decreased in drought conditions.

The duration of the change in the soil moisture can also

significantly affect soil microbial CUE. For instance, long-term water

stress reduces the solubility and absorption of soil substrates, inhibiting

microbial growth (Or et al., 2007), increasing metabolic consumption,

and reducing soil microbial CUE (Tiemann and Billings, 2011). In

contrast, short-term water stress might stimulate a microbial response

to water stress, reducing the impact of drought by increasing osmotic

pressure or short-term dormancy, leading to an increased soil

microbial CUE (Herron et al., 2009). Thus, the influence of soil

moisture on soil microbial CUE still needs to be elucidated.
4.1.3 pH
Acidic, alkaline, and neutral environments have varied impacts on

soil microbial CUE. The soil microbial CUE is higher in alkaline

conditions, which might be attributed to two factors (Zhang et al.,

2020). Firstly, an increase in pH improves the availability of organic

matter and the proportion of resources susceptible to bacterial

utilization, resulting in a higher soil microbial CUE in bacteria-

dominated conditions (Malik et al., 2018). Secondly, soil pH might

regulate the balance between the levels of fungi and bacteria in it (F:B =

0.02–0.7), generating more bacteria and increasing microbial CUE

(0.05–0.5) (Silva-Sánchez et al., 2019). In acidic conditions, soil

microbes need more energy, reducing aluminum stress, and transfer

more carbon to physiological processes such as respiration, leading to

lower soil microbial CUE (Jones et al., 2019). However, the ability of

microbial communities to store carbon might be enhanced when the

soil pH is close to neutral, which is the most advantageous condition

for soil organic carbon sequestration (Jones et al., 2019).
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4.1.4 Nutrient addition
Nutrients can alter soil microbial CUE by impacting microbial

growth and biomass (Liu et al., 2018). Different types of nutrients and

rate of change in their levels might affect the metabolic decomposition

of soil microorganisms (Yang et al., 2024), alteringmicrobial respiration

and growth rates and soil microbial CUE (Adingo et al., 2021).

Nitrogen addition has both direct and indirect effects on soil

microbial CUE (Zhang et al., 2022). The nitrogen concentration and

the duration of addition directly impacts soil microbial CUE (Li

et al., 2021).

For instance, short-term nitrogen additions might reduce the

enzymatic metabolic cost of carbon and nitrogen acquisition by soil

microorganisms, inhibit microbial respiration, and increase soil

microbial CUE (Riggs et al., 2015). However, Riggs and Hobbie

(2016) found that long-term nitrogen additions could lead to the

gradual decomposition of active carbon pools, limiting the activities

of microbial communities and substantially reducing soil microbial

CUE. In addition, low and high nitrogen levels have been shown to

markedly increase and decrease the soil microbial CUE by 45.12%

and 27.84%, respectively (Li et al., 2021).

Furthermore, nitrogen addition also indirectly affects soil

microbial CUE by impacting soil microbial biomass, diversity,

and respiration (Lu et al., 2011; Cline and Zak, 2015; Liu et al.,

2018). For instance, nitrogen application has been shown to

significantly reduce soil microbial biomass and microbial diversity

in forest and grassland ecosystems (Lu et al., 2011; Xu et al., 2024).

Moreover, nitrogen application can inhibit the secretions of

lignocellulosic hydrolases by saprophytic bacteria, inhibiting the

ability of saprophytic microbial communities to access carbon

sources (such as cellulose and hemicellulose) (Cline and Zak,

2015) and affecting soil microbial CUE. Furthermore, nitrogen

addition increases the availability of soil nutrients. Hence, plants

need to adjust their resource acquisition strategies, reducing the

proportion of carbon allocation to the below-ground part, especially

to the inter-root, causing a decrease in microbial activity, reducing

excitation effects, inhibiting microbial respiration (Liu et al., 2018),

and elevating soil microbial CUE. Finally, nitrogen addition might

affect soil pH, leading to soil acidification, increasing the levels of

activated aluminum ions, inhibiting microbial biomass and its

decomposition (Riggs et al., 2015; Spohn et al., 2016b), and

leading to a lower soil microbial CUE.

Several studies have shown that phosphorus addition could

increase soil microbial CUE (Cleveland et al., 2002; Elser et al., 2007;

Widdig et al., 2020). Phosphorus fertilization can alleviate microbial

phosphorus and nitrogen limitation, increasing soil microbial CUE

and reducing soil carbon loss. For example, Wang et al. (2022)

confirmed that phosphorus addition increasing would alleviate

microbial P and N restriction, then increased soil microbial CUE.

Phosphorus addition also increases the effective phosphorus levels

in the soil, leading to significantly higher microbial respiration rates

and biomass, increasing the CUE (Cleveland et al., 2002).

Furthermore, the duration of phosphorus addition also affects soil

microbial CUE. For instance, Bååth and Anderson (2003) reported

an imbalance in the stoichiometric ratio of carbon, nitrogen, and

phosphorus due to long-term P addition (Khan et al., 2016),
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reducing soil microbial CUE. Cui et al. (2020) found that

microorganisms need to produce more carbon synthase to

increase phosphorus acquisition, leading to a lower CUE and

reducing carbon storage in order to maintain the balanced

carbon, nitrogen, and phosphorus composition required for

microbial biomass homeostasis during soil phosphorus limitations.

Nitrogen and phosphorus co-addition only mildly affects soil

microbial CUE (Widdig et al., 2020). This finding might be

attributed to the stability of the molecular composition of soil organic

carbon and the relatively minor impacts of nitrogen and phosphorus

additions on the carbon composition (VandenEnden et al., 2021).

Moreover, the soil characteristics, such as soil texture, also influence the

soil microbial CUE (Keiblinger et al., 2010; Widdig et al., 2020).

Potassium is the most abundant inorganic cation in plant cells,

playing a critical role in various plant functions, which might also

affect ecosystem carbon cycling (Chen et al., 2024). However, the

impacts of potassium on soil microbial CUE have been studied less

than the effects of nitrogen and phosphorus. Several studies found

that potassium only mildly impacts the soil microbial CUE. For

instance, Spohn et al. (2016b) found that potassium levels did not

impact soil microbial CUE because it is not a critical element for

microorganisms. Thus, changes in potassium levels do not impact

microbial carbon cycling. Onipchenko et al. (2012) also showed that

potassium fertilization had insignificant effects on soil microbial

CUE. In conclusion, the mechanisms underlying the impact of

nutrient addition on soil microbial CUE are complex. The effects

of the type and amount of the nutrients added and the duration of

nutrient addition on soil microbial CUE still need to be elucidated

(VandenEnden et al., 2021).

4.1.5 Substrate type
Soil microbial CUE is also affected by the complexity of the

substrate type (Bosatta and Ågren, 1999). Simple substrates or low

molecular weight compounds are easily transported inside the cell

and have less activation energy (Öquist et al., 2017). In contrast,

larger or more complex molecules might undergo multiple

oxidation steps to form before they are utilized (Öquist et al.,

2017), potentially reducing CUE (Bosatta and Ågren, 1999;

Blagodatskaya and Kuzyakov, 2008). For instance, between

glucose (Jones et al., 2018) and phenol (Liu et al., 2018), using the

former as a substrate leads to a higher soil microbial CUE. However,

the effects of substrate type on soil microbial CUE and the

underlying mechanisms are still unclear and require further study.
4.2 Biotic factors: microbial community
structure and diversity

Both microbial community structure and diversity can affect

soil microbial CUE. Interspecific variability in microbial organic

matter decomposition and uptake rates (Waldrop and Firestone,

2004; Ziegler and Billings, 2011) might have varied effects on CUE

(Maynard et al., 2017b, a). For instance, Adu and Oades (1978)

showed that fungi exhibit a higher microbial CUE than bacteria.

This finding might be attributed to the indirect impact of the
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biological interactions among fungi on the function of the

community by influencing the community composition or

increasing the rates of catabolism (Song et al., 2012; Hiscox et al.,

2015). Liu et al. (2018) also found that soil microbial CUE was

significantly increased with an increasing proportion of fungi in the

microbial community. However, Soares and Rousk (2019) reported

that soils with lower fungal-bacterial ratios (F:B) had higher

microbial CUE. Therefore, the effects of microbial community

structure on soil microbial CUE are still unclear.

Few studies have investigated the effects of microbial diversity

on soil microbial CUE. For example, Domeignoz-Horta et al. (2020)

used the gradient dilution method and showed positive

relationships between microbial diversity and CUE. They also

found that microbial diversity more significantly impacted the

growth of soil biota than respiration (Domeignoz-Horta et al.,

2020). However, the relationships between microbial diversity and

CUE and the underlying mechanisms need to be further explored.
4.3 Combined effects

Furthermore, the combined effects of multiple environmental

factors on soil microbial CUE can help in better comprehension of

carbon sequestration in natural ecosystems than the effects of

individual factors. It is still unclear whether biotic or abiotic factors

impact soil microbial CUEmore significantly. Some studies have found

that abiotic factors, such as temperature (Hagerty et al., 2014), pH

(Silva-Sánchez et al., 2019; Zhang et al., 2020), and soil moisture

(Tiemann and Billings, 2011), might impact soil microbial CUE more

prominently, whereas biotic factors only play a secondary role. For

instance, Jones et al. (2019) reported pH to be a fundamental factor

affecting soil microbial CUE in acidic conditions, altering CUE by

regulating the proportion of fungi and bacteria. In contrast, Soares and

Rousk (2019) suggested that the microbial community structure more

prominently affects soil microbial CUE, whereas abiotic factors might

indirectly affect soil microbial CUE by regulating microbial diversity

(Fengling et al., 2018; Zhang L. et al., 2024). Thus, biotic (such as

fungal-bacterial ratios) and abiotic factors (such as water and

temperature) might simultaneously regulate the diversity and

structure of soil microorganisms. Hence, exploring their combined

effects might help better assess soil microbial CUE. The results of

previous studies showed that the combined effects of environmental

factors on soil microbial CUE are still unclear. Hence, the factors that

prominently impact soil microbial CUE still need to be elucidated.
5 Future prospects

5.1 Addition of multiple nutrients

The growth of soil microorganisms is influenced by the

combined effects of multiple nutrients, indicating that the

addition of only a single nutrient might not effectively elucidate

how the nutrients affect microbial growth. Moreover, the effects of

the type and amount of the added nutrients and the duration of

nutrient addition on soil microbial CUE are still unclear. Thus,
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future studies should focus on exploring the combined effects of

multiple nutrients on soil microbial CUE, especially over the

long term.
5.2 Microbial diversity

The soil microbial diversity contributes to maintaining the stability

and sustainability of soil ecosystems and preventing the deterioration of

the soil environment (Wertz et al., 2007). Different microbial

populations exhibit varying growth and respiration rates, indicating

that soil microbial diversity exhibits varying effects on soil microbial

CUE. However, there is a lack of knowledge about the effects of soil

microbial diversity on soil microbial CUE. Thus, the relationship

between soil microbial diversity, including microbial structure and

quantity, and soil microbial CUE needs to be further explored.
5.3 Biotic and abiotic factors

The activities of soil microorganisms are simultaneously

affected by biotic and abiotic factors (McIntire and Fajardo,

2014). However, most studies only focus on the effects of

individual biotic or abiotic factors on soil microbial CUE. The

combined effects of biotic and abiotic factors on soil microbial CUE

are still poorly understood. Exploring the combined effects of biotic

and abiotic factors on soil microbial CUE might help in a more

accurate prediction of the changes in soil microbial CUE with

changing climate. Thus, future studies should focus on the

combined effects of biotic and abiotic factors on soil microbial CUE.
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