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1School of Environment, Liaoning University, Shenyang, China, 2CAS Key Laboratory of Forest Ecology
and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
Habitat quality (HQ) has been progressively degrading worldwide in recent

decades due to rapid climate change and intensive human activities. These

changes not only threaten biodiversity and ecosystem functions, but also

impact socio-economic development. Therefore, a few studies have focused

on the dynamics of HQ and its natural and anthropogenic drivers. However,

many contributions have failed to reveal how these factors interact to impact HQ,

especially in ecologically fragile areas. We estimated HQ in the Songnen Plain of

Northeast China, an ecologically fragile area, from 2000 to 2020 using the

InVEST model and explored the response of HQ to the interactions of natural

factors (topography, climate, NDVI) and anthropogenic factors (nighttime light

index, population density) influencing HQ using Structural Equation Modelling

(SEM). The results showed that 1) HQ decreased constantly from 2000 to 2018,

and then increased slightly from 2018 to 2020. 2) In terms of spatial distribution,

HQ appeared to be highly heterogeneous with a pattern of ‘high HQ in the east –

low HQ in the center – high HQ in the west’ at each time point. The high-HQ

areas were significantly clustered in the eastern parts with dense forests, while

the low-HQ areas in the central parts were dominated by a large number of man-

made patches of agriculture and towns or cities. 3) The spatial patterns of HQ are

mainly affected by the interactions of factors including the natural environment

and human disturbance. Natural factors had a greater impact on HQ than human

disturbance, and human disturbance factors had significant negative impact

among all these factors at 4 time points. Furthermore, the intensity of the

impact of various influencing factors on habitat quality, as well as the positive

or negative effects of these drivers on habitat quality, changed over time. The

most important influencing factor was temperature in 2000 and topography in

2010, 2018, and 2020. This study can provide important suggestions for future

ecological protection and restoration in similar ecologically fragile areas.
KEYWORDS
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1 Introduction

Habitat quality (HQ) refers to the ability of ecosystems to

provide suitable living conditions for species to survive and

reproduce (Bai et al., 2019; Wu et al., 2022; Zhao et al., 2022c),

which reflects the level of biodiversity, services and health of

ecosystems (Zhu et al., 2020; Li et al., 2022). However, multiple

disturbances such as climate change, high population growth and

rapid economic development have increasingly degraded the

natural environment worldwide, leading to a decline in

biodiversity and subsequent degradation of habitat quality

(Yohannes et al., 2021; Ti et al., 2023). Therefore, it is essential

and urgent to make appropriate decisions to improve habitat

quality and ultimately promote sustainable development. To

achieve this goal, it is crucial to assess the spatial and temporal

changes in HQ, identify the driving factors behind the changes, and

detect the interactions among these factors in these degraded areas

at the regional scale (Wang et al., 2011; Miguel et al., 2018).

Existing studies assessing HQ and investigating its drivers have

mostly focused on mountainous areas (Huang et al., 2023), urban

agglomerations (Wang et al., 2023a), river basins (Sun et al., 2019),

and nature reserves (Sallustio et al., 2017), but have ignored

ecologically fragile areas which are vulnerable to degradation but

difficult to restore, and are largely located in transitional ecotones

between two different types of ecosystems (Nguyen and Liou, 2019).

Compared to on-fragile areas, these areas are exposed to more

pressures from natural and anthropogenic disturbances due to their

characteristics of high landscape heterogeneity, large edge-

influenced habitats, high sensitivity and low resistance to

disturbance (Liu et al., 2021b; Wang et al., 2021b; Shi et al.,

2023b). Generally, HQ problems have become increasingly severe

in these areas (Zhang et al., 2017; Lv et al., 2019; Wang et al., 2021a).

For example, in Alappuzha District, an ecologically fragile area in

southern India, a series of environmental problems such as

geomorphological degradation, sea level rise, population growth,

and anthropogenic damage have been commonly observed (Prasad

and Ramesh, 2018). Besides, fragile areas cover more than half of

the world’s total land area, playing an important role in ecological

security. Thus, these large areas of low habitat quality urgently

require restoration of production and function. Therefore, it is of

great importance to assess HQ and investigate the driving factors in

order to provide a scientific basis for improving HQ in these

fragile areas.

Previous HQ assessment methods can be roughly divided into

two categories. One was to use data from field surveys and establish

an evaluation framework with selected indicators and evaluation

standards to assess HQ. This method can directly reflect the

ecological conditions of specific sites, but it is time-consuming,

labor-intensive, and often fails to consider the spatial interactions

among selected ecological features (Goertz, 1964; Ouyang et al.,

2001; Xiao et al., 2022). Another one has been to use ecological

models to quantitatively assess HQ, such as the MaxEnt (Qi et al.,

2011), SoIVES (Wang et al., 2016), HSI (Wang et al., 2009a),

InVEST model (Wang et al., 2024a) etc. InVEST model futures

the ability to systematically assess ecological and environmental

conditions by integrating the impact of threat sources on habitats,
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allowing it to be applied at multiple scales in various locations all

over the world to help solve current and future environmental

problems (Pu et al., 2024). Also, it has been proved to be a

promising model for HQ assessment in fragile areas.

It is a complex ecological process that spatial HQ patterns and

their dynamics have been affected by a combination of natural

factors and human activities (Jin et al., 2022). Many studies have

shown that natural geographic factors such as soil or topography

significantly affected HQ patterns. For example, areas with poor

soils tended to have lower HQ (Sun et al., 2019; Jin et al., 2022).

Meanwhile, human activities such as population growth, urban

expansion and land use change have also been found to significantly

affect HQ change, and in some cases become the dominant driver

(Bai et al., 2019; Wu et al., 2022; Zhao et al., 2022c). Moreover, these

factors of natural disturbance and human activities interact with

each other to determine HQ (Li et al., 2019). For example, terrain

can not only alter the distribution of temperature and precipitation

(Zhao et al., 2023), but also shape human activities to occur mostly

at low altitudes (Xu et al., 2020). However, the relative contributions

and interactions of different natural and human activity factors to

patterns of habitat quality remain unclear, especially in ecologically

fragile areas.

The commonly-used methods, such as multiple regression

analysis (Yan et al., 2018), correlation analysis (Zhao et al.,

2022b) and Geogdetector (Luo et al., 2024), are capable of

analyzing the relative contribution of multiple influencing factors

to habitat quality, but fail to qualify the interactions among

influencing factors. In contrast, Structural Equation Model (SEM)

is designed to deal with multiple causal relationships among all

variables including explanatory and response variables, and also

examine the direct or indirect impacts of explanatory variables on

response variables (Grace et al., 2010). As a result, SEM has been

widely used to be address multifactor-driven social problems.

Recently, it has also been found to be an effective way to quantify

interactions among multiple biotic and abiotic factors driving

ecological processes (Grace et al., 2016). Therefore, it is essential

that SEM be used to explore the combined effects of influencing

factors on habitat quality, which will contribute to a better

understand of the mechanisms underlying HQ dynamics and

ultimately provide valuable information for making policies to

improve habitat quality in fragile areas.

The Songnen Plain, located in the temperate semi-humid and

semi-arid transitional zone in northeastern China, is an ecologically

fragile and intact geographical unit (Wang et al., 2022a). It is a

crucial area for China’s grain and livestock production, playing an

important role in ensuring national food security and resource

supply. Additionally, as an important stopover for migratory birds

in Northeast Asia, it is vital for maintaining biodiversity and

ecological security within and beyond the region (Yu et al., 2023).

In recent decades, the Songnen Plain has faced environmental

challenges such as wetland loss, soil salinization, and grassland

degradation (Wang et al., 2011). Therefore, it is of great practical

importance to systematically study the spatiotemporal changes in

habitat quality and identify the driving factors in this region. We

performed both the InVEST model and the structural equation

model in the Songnen Plain, to (1) assess HQ and analyze the
frontiersin.org
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temporal and spatial dynamics in 2000, 2005, 2010, 2015, 2018, and

2020; (2) reveal the impacts of natural and anthropogenic factors

and their interactions on the spatial and temporal dynamics of HQ.
2 Materials and methods

2.1 Study area

The Songnen Plain (E121°38’–128°33’, N 42°49’–49°12’)

(Figure 1), one of the three major areas with saline-alkaline soils

in the world, is situated at the convergence of three transition zones:

the Northeast Plain and the Mongolian Plateau, the Semi-Humid

Zone and the Semi-Arid Zone, and the Modern Agricultural Zone

and the Traditional Animal Husbandry Zone, indicating its fragility

in ecological environment (Zhu et al., 2020; Wang et al., 2024b).

The study area is characterized by a relatively flat terrain with an

average altitude of 180–200 meters. It has a monsoon-influenced

temperate continental semi-humid and semi-arid climate with a

long cold winter and a short hot summer, and an average annual

temperature ranging from 1.6 to 5.0°C. The annual precipitation,

ranging from 400 to 600 mm, is concentrated in the summer and

decreases from southeast to northwest, while evaporation increases

in this direction. This area is abundant in water resources, with the

Songhua River, Nen River, Taoer River, Chagan Lake, Dabusu Lake,
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etc flowing through it. Most parts of this area are covered by black

soil and chernozem which are highly suitable for growing crops,

making it an important agricultural region in Northeast China.

Since the reform and opening up, the Songnen Plain has

experienced rapid economic and social development. As of 2018,

the total population of the Songnen Plain reached up to

approximately 30.5052 million people, with a total GDP of

2,387.826 billion Yuan (Yang and Song, 2021).
2.2 Data sources

Land use data: we selected land use data for the years 2000,

2005, 2010, 2015, 2018 and 2020, with a spatial resolution of 30m.

We chose this 20-year time scale because it is sufficient to capture

the dynamics of the broader-scale system, but land use there

changed rapidly and substantially from 2015 to 2020 (Tang et al.,

2019). This data set was provided by the Data Center for Resources

and Environmental Sciences, Chinese Academy of Sciences

(RESDC) (http://www.resdc.cn).

Topographic data: The digital elevation model (DEM) data were

derived from the ASTER GDEM 30m digital elevation data product

provided by the Geospatial Data Cloud (https://www.gscloud.cn/).

We used ArcGIS software to extract two topographic factors of

elevation and slope.
FIGURE 1

Schematic location of the study area.
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Climate data: The High-resolution meteorological raster dataset

including “1-km monthly mean temperature dataset for China

(1901–2022) (Peng, 2020a)” and “1-km monthly precipitation

dataset for China (1901–2022) (Peng, 2020b)” were utilized.

These datasets were provided by the National Tibetan Plateau

Data Center (http://data.tpdc.ac.cn/) and published by Peng et al

(Peng et al., 2017a, b, 2019; Ding and Peng, 2020). Then the average

temperature data and annual precipitation data for 2000, 2010, 2018

and 2020 with a spatial resolution of 1km were obtained through

preprocessing such as image metric statistics.

Population density data: Population density data for 2000, 2010,

2018 and 2020 were obtained from the World Population Density

Map dataset published by WorldPop (https://hub.worldpop.org/)

which is the most accurate and reliable long-term series of data

available with a spatial resolution of l km.

Nighttime Light: Nighttime light data with a spatial resolution

of 1km for 2000, 2010, 2018 and 2020 were obtained from the

HARVARD Dataverse (Wu et al., 2021).

Normalized Difference Vegetative Index (NDVI): We utilized

NDVI data from the MOD13Q1 product, with a spatial resolution

of 250m. We used the Maximum Value Composition to obtain

NDVI maximum images for the years 2000, 2010, 2018, and 2020.

Finally, we used resampling techniques to resample all data to a

uniform spatial resolution of 1 km.
2.3 Methods

2.3.1 Changes in land use
We employed the land use data of Songnen Plain in 2000, 2005,

2010, 2015, 2018 and 2020 to reveal the area changes of each land

use type, and then used the land use transfer matrix to

quantitatively represent the conversions between various land use

types for each decade from 2000 to 2020 (Yang et al., 2023b). The

calculation formula for the land use transition matrix is as follows:

Tij =

T11 T12 … T1n

T21 T22 … T2n

… … … …

Tn1 Tn2 … Tnn

0
BBBBB@

1
CCCCCA (1)

Where Tij represents the area that has transitioned from land

use type i to land use type j. n is the number of land use types.

2.3.2 Evaluation of habitat quality
We used the HQmodule in InVEST to simulate HQ in the years

2000, 2005, 2010, 2015, 2018, and 2020. The InVEST model was

developed by Stanford University in collaboration with the World

Wide Fund for Nature and other organizations. This model is a

modeling system for assessing ecological and economic services of

ecosystems to support decision-making for ecosystem management

(Wang et al., 2016; Alexander et al., 2018). Based on land use data,

the ‘HQ’ module of the InVEST model combines the maximum

impact distance, the relative weight of threat factors on habitats, the

habitat suitability of each land use type and its sensitivity to threat
Frontiers in Plant Science 04
factors to assess habitat quality at a regional scale. The calculation

formula for habitat quality is as follows:

Qxj = Hj 1 −
Dz
xj

Dz
xj + kz

 !
(2)

Where Qxj represents the habitat quality of grid x within habitat

type j; Hj is the habitat suitability of habitat type j; z is a

normalization constant; k is the half-saturation constant. Dxj

represents the habitat degradation of grid x within habitat type j,

and its calculation formula is as follows:

Dxj =o
R

r=1
o
Yr

y=1

wr

oR
r=1wr

 !
ryirxybxSjr (3)

Where y refers to all grids on the threat grid map for x; Yr refers

to a specific set of grids on the threat grid map where the threat

factor is r; x represents the weight of the threat factor; bx indicates
the accessibility level of grid x, with values closer to 1 signifying

higher accessibility; Sjr is the sensitivity of land cover type j to threat

factor r, with values closer to 1 indicating higher sensitivity. The

stress exerted by threat factor r in grid y on the habitat in grid x is

represented as irxy .

When the distance decay effect of threat factor r on grid x is

represented as a linear function, the formula is as follows:

irxy = 1 −
dxy
drmax

(4)

When the distance decay effect of threat factor r on grid x is

represented as an exponential function, the formula is as follows:

irxy = exp −
2:99

drmaxxy
dxy

� �
(5)

Where irxy represents the impact of grid y, where the threat

source is r, on grid x; dxy is the distance between grid x and grid y;

drmax is the maximum range of influence of the threat factor.

First, taking account of knowledge from previous research

(Zhao et al., 2022a; Wang et al., 2022b), model guidelines and

expert guidance, we determined the model parameters, selected

industrial and mining land, arable land, urban land, rural

settlements, saline-alkali land and bare land as threat factors

(Table 1), and identified the maximum impacting distance and

relative weight of these 6 threat factors. Then, we identified the

habitat suitability and sensitivity of land use types to threat factors

(Table 2). Second, we ran the HQ module with the above input

parameters, producing the simulated maps with HQ value ranging

[0,1]. The HQ value closer to 1 represents higher HQ while the HQ

value closer to 0 represents lower HQ (Liang et al., 2020; Shi et al.,

2023a). Finally, the HQ map was classified into five classes: lowest

class [HQ value ∈ (0,0.2)], lower class [HQ value ∈ (0.2,0.4)],

medium class [HQ value ∈ (0.4,0.6)], higher class [HQ value ∈
(0.6,0.8)], highest class [HQ value ∈ (0.8,1)].

Spatial autocorrelation including global autocorrelation and

local autocorrelation is used to measure the degree of spatial

autocorrelation of geographic object attributes such as HQ value

(Choudhary et al., 2020; Huang et al., 2023; Chen et al., 2023a). In
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this study, the global autocorrelation Moran’s I ranging from -1 to 1

was used to determine the spatial aggregation of HQ value. Moran’s

I less than 0, greater than 0, or equal to 0 indicates negative

autocorrelation, positive autocorrelation, or no autocorrelation in
Frontiers in Plant Science 05
the spatial distribution, respectively (Sharafatmandrad and

Khosravi Mashizi, 2023).

Hotspot analysis is often used to determine, whether,for a

geographic feature, there are statistically hotspot areas where

grids with high values are significantly clustered or coldspot areas

where grids with low values are significantly clustered (Li et al.,

2021) (Lane et al., 2018). We used the Getis-Ord Gi* index to

identify hot/cold spot areas of HQ.
2.3.3 Impacts of influencing factors on
habitat quality

We used structural equation modelling (SEM) to simulate the

relationships between HQ and the influencing factors. As a

powerful statistical method for multivariate analysis, SEM is

distinctive by the combination of causal and measurement

models, the consideration of interactions among multiple

influencing variables, and the assessment of the impact of

potential variables (He et al., 2020). It can be tested by fitness to
TABLE 2 Habitat suitability of land use types and sensitivity to threat factors in the Songnen Plain.

Land use type Habitat
suitability

Threat factor

Arable land Urban land Rural
settlements

Industrial
and

mining area

Saline-
alkali land

Bare
ground

paddy fields 0.60 0.30 0.50 0.35 0.40 0.50 0.10

dry farmland 0.40 0.60 0.50 0.35 0.40 0.20 0.20

woodland 0.99 0.50 0.85 0.65 0.60 0.60 0.20

shrubland 0.99 0.30 0.70 0.60 0.50 0.60 0.10

sparse woodland 0.99 0.60 0.85 0.65 0.60 0.50 0.30

other woodlands 0.99 0.60 0.85 0.65 0.60 0.20 0.30

high
coverage grassland

0.75 0.40 0.60 0.40 0.50 0.25 0.20

medium
coverage grass

0.70 0.50 0.70 0.50 0.55 0.30 0.30

low
coverage grassland

0.60 0.50 0.80 0.60 0.55 0.30 0.30

river 0.99 0.50 0.90 0.70 0.80 0.25 0.15

lake 0.90 0.50 0.90 0.75 0.80 0.20 0.15

reservoirs 0.90 0.60 0.90 0.75 0.80 0.20 0.15

mudflat 0.70 0.70 0.60 0.60 0.30 0.20 0.30

urban area 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rural settlements 0.00 0.00 0.00 0.00 0.00 0.00 0.00

other
construction land

0.10 0.00 0.00 0.00 0.00 0.00 0.00

sandy land 0.00 0.00 0.00 0.00 0.00 0.00 0.00

saline-alkali land 0.50 0.20 0.20 0.15 0.15 0.15 0.10

wetlands 0.65 0.70 0.50 0.20 0.20 0.30 0.30

bare land 0.05 0.00 0.00 0.00 0.00 0.00 0.00

bare rock texture 0.05 0.00 0.00 0.00 0.00 0.00 0.00
TABLE 1 Attributes of each threat factor in Songnen Plain.

Threat factor Threat
distance/km

Weights Type
of declining

Industrial and
mining land

8.00 0.70 Exponential

Arable land 3.50 0.60 Linear

Urban land 5.00 0.90 Exponential

Rural settlements 4.00 0.60 Exponential

Saline-alkali land 2.50 0.30 Linear

Bare ground 2.50 0.30 Exponential
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improve its reliability and stability (Ye et al., 2022; Wang et al.,

2023b). In the SEM simulation, a conceptual model was first

constructed, considering both observed variables and latent

variables. The observed variables can be directly observed or

measured, while latent variables cannot be directly observed. We

tested and optimized the constructed concept model according to

the fitness, and then obtained an optimized concept model map

explaining the relationships among all explanatory and response

variables (Jöreskog, 1970). The formula for the Structural Equation

Model (SEM) is as follows:

Y = Ly  h + e (6)

Where Y represents the observed variable; h represents the

latent variable; Ly is the factor loading matrix; and e epsilone
represents the measurement error.

h = Bh + Gx + z (7)

Where B is the path coefficient matrix between endogenous

latent variables; G is the path coefficient matrix from exogenous

latent variables to endogenous latent variables; and z represents the
structural error.

HQ is usually influenced by natural and anthropogenic factors

(Fritz et al., 2018). Taking into account the natural ecological

environment and the demands of socio-economic development of

the Songnen Plain (Jasperson et al., 2018), according to previous

studies, data availability, and consideration of the regional

characteristics of the Songnen Plain (Rahimi et al., 2020), we

selected a total of five natural elements and two social factors as
Frontiers in Plant Science 06
factors influencing HQ, including elevation, slope, annual

precipitation, average annual temperature, Normalized Difference

Vegetative Index(NDVI), population density and nighttime

lighting, and established a conceptual model of the spatial-

temporal distribution factors influencing HQ (Figure 2). NDVI is

widely used as a measure of vegetation health, and nighttime light

intensity is a common indicator of the intensity of human activity.

Topography, human disturbance and climatic conditions were the

latent variables, and each kind of latent variable consisted of two

observational variables. Topography included elevation and slope,

human disturbance included night-time lighting and population

density, and climatic conditions included annual precipitation and

annual mean temperature.

First, we tested eight variables (seven explanatory variables and

one response variable) for normality. To satisfy the normality

assumption, we performed Johnson transformations on the

variables that did not meet the normality criteria and then

standardized the variables. Second, to identify the best fitting

model, four indicators were selected to analyze the effectiveness of

model fitting, including Comparative Fit Index (CFI), Goodness of

Fit Index (GFI), Root Mean Square Error of Approximation

(RMSEA), and Standardized Residual Mean Root (SRMR).

Generally, If the model fitness meets the requirements of CFI >

0.90, GFI > 0.90, RMSEA < 0.06 and SRMR < 0.05 (Team, 2013), the

model results were expected to be presented in a path diagram with

paths marked by a corresponding standardized Regression

Coefficient (r) indicating the strength of the causal effect between

the variables at the two ends of that path. The path with a larger
FIGURE 2

Conceptual model of influencing factors of HQ in the Songnen Plain, 2000–2020. Rounded rectangles are latent variables; rectangles are observed
variables; Directional paths (one-way arrows) indicate causal relationships between two variables.
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coefficient means a stronger effect. If a variable points directly to the

HQ, the effect of that variable was direct, while, if a variable does not

point directly to the HQ, the effect of that variable was indirect. The

product of the coefficients of all paths from that variable to the

response variable indicated the magnitude of that effect. The

magnitude of direct and indirect impacts of the variables was the

total impact.
3 Result

3.1 Changes in land use

In the six periods of 2000, 2005, 2010, 2015, 2018, and 2020,

land use type with the largest area percentage in the Songnen Plain
Frontiers in Plant Science 07
TABLE 3 Percentage area (%) of land use types in Songnen Plain,
2000–2020.

Land use
type

2000 2005 2010 2015 2018 2020

paddy fields 6.43 6.23 5.98 6.37 8.59 6.95

dry farmland 52.67 53.27 53.92 53.67 53.09 52.56

woodland 12.14 12.11 11.95 11.93 11.88 12.30

grassland 7.96 7.95 8.26 8.19 6.57 7.42

waters 4.90 4.72 3.92 3.91 3.30 3.19

building land 4.33 4.38 4.68 4.77 5.18 4.90

swamp 6.13 5.89 5.69 5.62 6.22 7.42

other 5.43 5.44 5.60 5.54 5.17 5.26
fronti
FIGURE 3

Spatial distribution of land use in the Songnen Plain, 2000–2020.
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was arable land, followed by woodland (Table 3). Arable land was

mainly concentrated in the central and western parts, while

woodland was in the mountainous and hilly areas in the eastern

part (Figure 3). During 2000–2018 (Table 3), the arable land

dominating the Songnen Plain gradually increased in size from

59.10% to 61.68%. In particular, paddy land increased from 6.43%

in 2000 to 8.59% in 2018, and dry farmland increased from 52.67%

in 2000 to 53.09% in 2018. The percentage of forested land

decreased from 12.14% to 11.88%. Grasslands, swamps and

waters had also decreased gradually. During the period 2018–

2020, the area of arable land decreased by 1.78%, the area

of woodland increased from 11.88% to 12.3%, and the area of

grassland and swamps also increases to 7.42%. The area of building

land was reduced to 4.9%. The transformation matrix (Figure 4)

showed that during the period 2000–2020, the most obvious change

in paddy land was the conversion to dry farmland with a conversion

rate of 17%, followed by the conversion to building land, with a

conversion rate of 2%. The largest change was from woodland to

dry farmland, with a conversion rate of 5%. Grasslands and swamps

were also converted mainly to dry farmland, with conversion rates

of 9% and 3%. Overall, land-use change in 2000–2020 was

characterized by a continuous conversion of woodland, grassland

and swamp to arable land.
3.2 Changes in habitat quality

3.2.1 Changes in habitat quality pattern
The results of the InVESTmodel showed that the overall level of

HQ was lower in all six periods (Figure 5). Meanwhile, the spatial

patterns of HQ were highly heterogeneous, as indicated by the trend
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of ‘high HQ in the east – low HQ in the center – high HQ in the

west’. Areas of high HQ were concentrated along the eastern edge

and scattered in small patches in the center. These highest-value

areas mainly fall in ecological lands with high vegetation cover, rich

biodiversity and less human activities, such as woodlands and

swamps. The lower HQ areas were mainly located in the central

farmland areas with intensive agricultural activity. The lowest HQ

areas were concentrated in these middle areas which are densely

populated and highly industrialized, leading to more fragile

ecological environments.

The average values of HQ index of Songnen Plain in 2000, 2005,

2008, 2010, 2015, 2018 and 2020 were 0.534, 0.532, 0.532, 0.528,

0.527, 0.52 and 0.530, respectively. HQ showed a strong continuous

downward trend due to the obvious expansion of arable land and

building land during 2000–2018 and appeared to improve

after 2018.

Table 4 showed that more than 50% of the area in the Songnen

Plain had lower HQ in all six periods. The percentage of the lowest-

grade HQ area gradually increased from 4.50% to 5.36% and the

lower-grade HQ area increased from 52.67% to 53.92% during

2000–2018. The percentage of the highest-grade HQ area decreased,

with the percentage of the highest-grade area decreasing from

16.22% to 15.00% and the percentage of the higher-grade area

decreasing from 14.67% to 14.59%. The expansion of lowest and

lower HQ areas and the contraction of the high and higher HQ

areas indicated a decrease in HQ and gradual ecological

degradation. During 2018–2020, HQ improved, with the

percentage of the highest-grade area increasing to 15.32% and the

percentage of the higher-grade area increasing to 14.72%. This

positive trend in HQ illustrated that the ecological environment of

the Songnen Plain has improved significantly in recent years.
FIGURE 4

Transition matrix of land use in the Songnen Plain, 2000–2020.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1444163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1444163
3.2.2 Changes in hotspot pattern of habitat quality
The Moran’s I of HQ in the Songnen Plain in 2000, 2010, and

2020 were all greater than 0, indicating a certain degree of spatial

clustering distribution of HQ. The values of Moran’s I in 2000,

2010, and 2020 were 0.516, 0.507. and 0.508, respectively, showing a

slight decrease followed by an increase in spatial clustering of HQ.
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Table 5 showed a decreasing trend in hotspot areas and an

increasing trend in coldspot areas in the Songnen Plain from

2000 to 2020. The hotspot analyses of Getis-Ord G* (Figure 6)

revealed that the spatial distribution of high and low HQ values

remained relatively consistent from 2000 to 2020. The hotspots

areas were largely located in the eastern part of the Songnen Plain,

which was characterized by high elevation, dense vegetation cover,

and good HQ. Hotspots were also found in the vicinity of Songhua

River, Nenjiang River and other rivers, where there was less human

disturbance occurred. Coldspot areas were mainly distributed in the

central area of Songnen Plain. Building land and arable land were

the main land use types in the central area which were greatly

affected by human activities.
3.2.3 Degradation of habitat quality
The distribution of habitat quality changes is shown in Figure 7.

From 2000 to 2010, the percentage of degraded HQ areas in the

Songnen Plain was as high as 53.93% (Table 6), and these areas were
FIGURE 5

Distribution of HQ grade in the Songnen Plain, 2000–2020.
TABLE 4 The percentage of HQ grade area in the Songnen Plain, 2000–
2020 (%).

year
grade

2000 2005 2008 2010 2015 2018 2020

Lowest 4.50 4.55 4.59 4.86 4.95 5.36 5.09

lower 52.67 53.27 53.09 53.92 53.67 53.09 52.55

medium 11.94 11.75 11.88 11.71 12.04 13.90 12.32

higher 14.67 14.50 14.57 14.36 14.33 14.59 14.72

highest 16.22 15.93 15.88 15.16 15.00 13.06 15.32
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widely distributed. During this period, particularly from 2005 to

2010, the implementation of the Northeast Revitalization Strategy led

to rapid economic development. Consequently, HQ degraded due to

frequent industrial and agricultural activities. From 2010 to 2018, the

degraded areas still dominated with 44.40% but showed a slight

decrease compared to the period from 2000 to 2010. The area with

unchanged HQ increased accounted for 33.83% (Table 6), indicating

the implementation of policies considering both economic

development and environmental protection. In 2018–2020, the

areas with improved HQ were widely distributed, reaching up to

41.01% of Songnen plain. The percentage of degraded areas decreased

to 23.08%, demonstrating that ecological environment protection and

restoration practices progressively enhanced the habitat quality.
3.3 Impacts of influencing factors on
habitat quality

The SEM model of HQ influencing factors in the Songnen

Plain met the required goodness-of-fit indicators (Table 7),

2000 (CFI=0.99, GFI=0.996,RMSEA=0.038,SRMR=0.012), 2010
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(CFI=0 .965 , GFI=0 .993 ,RMSEA=0.031 ,SRMR=0.031) ,

2018 (CFI=0.952, GFI=0.997,RMSEA= 0.044,SRMR=0.028), and

2020 (CFI=0.941, GFI=0.992,RMSEA=0.021,SRMR=0.018),

indicating that fitness met the requirements.

SEM of HQ influencing factors (Figure 8) showed that in 2000

(Figure 8A), climate, topography, NDVI, and human disturbance

combined to influence HQ. Climate had a strong direct positive

influence on HQ with a coefficient of 0.21(r=0.21). Specifically,

temperature had a negative effect on HQ, while precipitation had a

positive effect, indicating that lower temperature, or higher

precipitation produced higher HQ. NDVI had a small positive

effect on HQ with a coefficient of 0.09. Topography also had an

important effect on HQ in three pathways: 1) directly affecting HQ

with an impact coefficient of 0.03, 2) indirectly affecting HQ

through NDVI with an impact coefficient of 0.069, and 3)

indirectly positively affecting HQ through limiting human

disturbances with an impact coefficient of 0.002. The total effect

of topography on HQ was 0.1. Human disturbance had a negative

impact on HQ with an overall impact coefficient of −0.13. This

included a direct effect (r=−0.12) and an indirect effect by

influencing NDVI (r=−0.01).

In 2010 SEM (Figure 8B), there was no pathway between

climate factors and HQ, indicating that climate did not have a

significant effect on HQ. Topography was the most important

driver of HQ, with a total effect coefficient of 0.32. This included

a positive direct effect (r = 0.18), as well as indirect effects through

influencing NDVI (r = 0.13) and indirect effects through

influencing human disturbance (r = 0.01). The total impacts of

human disturbance on HQ were negative, including negative direct

impacts (r=−0.13) and negative indirect impacts through NDVI

(r=0.03). The total impact coefficient was -0.16, larger than 0.03

compared to 2000 (r=−0.13).

The 2018 SEM showed (Figure 8C) that topographic factors, as

the strongest factor, had a strong overall positive effect (r=0.32),

including a positive direct effect (r=0.38), a positive indirect effect
TABLE 5 Percentage area of hot/cold spots of HQ in the Songnen Plain,
2000–2020 (%).

HQ coldspots 2000 2010 2020

Coldspot – 99% Confidence 6.88 6.88 7.21

Coldspot – 95% Confidence 20.10 17.35 18.58

Coldspot – 90% Confidence 6.53 8.06 6.33

Not Significant 44.73 46.63 46.71

Hotspot – 90% Confidence 2.69 2.71 2.81

Hotspot – 95% Confidence 4.21 4.06 4.14

Hotspot – 99% Confidence 14.87 14.32 14.23
FIGURE 6

Hot/cold spot analysis of HQ in the Songnen Plain, 2000–2020.
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through NDVI and human disturbance (r=0.07), and a negative

indirect effect through climate (r=−0.13). The positive effect of

topography on NDVI (r=0.44) indicated that areas with higher

elevations and greater slopes had higher NDVI and tended to have

higher HQ. Topography had a negative effect on human

disturbance (r=−0.13), suggesting that areas with low elevation,

low slope, and low topographic relief consisted of large urban area

and more human activity. Human disturbance had the strongest

negative effect on HQ, with a total impact coefficient of −0.23,

including a strong negative direct effect on HQ (r=−0.20) and a

negative indirect effect through NDVI (r=−0.03). Climate impacts

on HQ were negative with a total impact coefficient of −0.15,

including negative direct impacts with an impact coefficient of

−0.17, and positive indirect impacts through NDVI (r=0.02).

The 2020 SEM showed (Figure 8D) that topography continued

to be the strongest influence on HQ, with a total effect coefficient of

0.36. Topography had a very strong positive direct effect on HQ,

with an effect coefficient of 0.36. Topography also had a positive

indirect effect on HQ through its influence on NDVI and human

disturbance (r=0.07), and a negative indirect effect on HQ through

its influence on air temperature (r=−0.07). Human disturbance

appeared to have the strongest negative influence on HQ, with an

overall impact coefficient of −0.18, consisting of a strong negative

direct effect on HQ (r=−0.16) and a weak negative indirect effect

through NDVI (r=−0.02). Climate had a negative impact on HQ
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with a total impact coefficient of −0.12. This included a direct

impact coefficient of −0.1 and an indirect impact coefficient of

−0.02. Temperature had a positive impact on HQ, while

precipitation had a negative impact. NDVI effected HQ with the

coefficient of 0.14.
4 Discussion

4.1 Changes in habitat quality

The HQ of the Songnen Plain from 2000 to 2020 was low, which

indicated the fragility of the ecological environment. Our results are

exactly supported by Chen et al (Chen et al., 2020) and Yang who

found that HQ was lower in the Songnen Plain during this period

(Yang et al., 2021). Our study also found that the distribution of HQ

in the Songnen Plain was spatially heterogeneous, showing a ‘high-

low-higher’ pattern from east to west. In the eastern part of the

region, large-area woodland, rich biodiversity, and minimal human

disturbance resulted in relatively high HQ. In the flooded central

and western regions, original land use types such as swamps and

grasslands have been exploited by human activities to meet the

demands of social development, resulting in low HQ. Our results

indicated that the average value of HQ in the Songnen Plain

generally decreased from 2000 to 2018 but increased from 2018

to 2020, which is similar to the trend in other studies. For example,

Dai et al. found that HQ decreased due to landscape fragmentation

in Northeast China from 1990 to 2010 (Dai et al., 2018). Chen et al.

found that the HQ of Heilongjiang and Jilin provinces was lower in

2020 than in 2010 (Chen et al., 2023a).

Our study found that the area of lowest-grade and lower-grade

HQ in the Songnen Plain continued to expand, while the area of

highest-grade and higher-grade HQ decreased between 2000 and

2018, which is consistent with other existing findings (Chi et al.,

2023; Li et al., 2023a). During this period, the Songnen Plain, as an
FIGURE 7

Distribution of HQ change in the Songnen Plain, 2000–2020.
TABLE 6 Percentage of area (%) of change in HQ in the Songnen Plain,
2000–2020.

Changing
trends
of HQ

2000–2010 2010–2018 2018–2020

Improved 32.14 21.76 41.01

Unchanged 53.93 44.40 23.08

Degrade 13.93 33.83 35.92
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important commercial grain base in China, was largely reclaimed

from ecologically functional land use including grasslands and

wetlands, to farmland to meet the growing demand for food.

Although the implementation of ecological projects such as

‘Grain for Green’ maintained the HQ to some extent, these

reclamation practices aimed at short-term economic benefits led

to the degradation of the HQ in less economically developed areas

(Wang et al., 2015; Jin et al., 2022).
Frontiers in Plant Science 12
Our study showed that during 2018–2020, the area of high-

grade HQ increased to 15.32% and the area of higher-grade HQ

increased to 14.72%, illustrating an upward trend in HQ. This was

partly due to the restoration of damaged ecosystems as a result of

the enforcement of environmental protection and restoration

policies (Jasperson et al., 2018; Mao et al., 2021). That is, the

national government has implemented several ecological

conservation policies, such as the Natural Forest Conservation

Project, the Grain to Green Project, and the Land Salinity/

Sodicity Amelioration Project since 2000, and also proposed the

goal of “accelerating the progress of ecological civilization” in 2015,

which ultimately reversed the trend of habitat quality degradation

around 2018 (Zedler, 2003). Through scientific and rational

management, and the implementation of ecological protection

policies, damaged ecosystems have been restored, leading to a

significant improvement in habitat quality. Similarly, previous

studies have shown that ecological protection projects and

ecological restoration projects, such as the establishment of

efficient ecological economic zones and ecological counties, have
TABLE 7 Fitness test for structural equation fitting.

Fitting
index

Adaptation
standards

2000 2010 2018 2020

CFI >0.90 0.991 0.965 0.952 0.941

GFI >0.90 0.996 0.993 0.997 0.992

RMSEA <0.06 0.038 0.031 0.044 0.021

SRMR <0.05 0.012 0.031 0.028 0.018
FIGURE 8

Structural equation model for the comprehensive effect of influencing factors on HQ. Green lines indicate positive impacts; red lines indicate
negative impacts; solid lines indicate paths that passed the significance test (p<0.05); dashed lines indicate paths that are not significant; line widths
indicate impact size
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restored ecosystems to some extent and slowed down the decline of

habitat quality (Sun et al., 2022; Zheng et al., 2022).
4.2 Impacts of influencing factors on
habitat quality

The 2000 SEM showed that climate had the greatest influence on

HQ, with temperature having a negative effect and precipitation

having a positive effect. Since 1980, the annual temperature in the

Songnen Plain had increased at a rate of more than 0.44°C per decade

(Wang et al., 2011), which was found to cause the loss of swamp and

grassland areas and subsequently the decrease in HQ (Wang et al.,

2009b). In addition, Yang et al. found that Northeast China

experienced eight months of severe drought from 2000 to 2001

(Yang et al., 2023a). During the drought period, a small amount of

precipitation could promote HQ (Liu et al., 2023), illustrating the

significant influence of precipitation, which supported our findings.

Precipitation affects vegetation growth and distribution by

influencing soil moisture and vegetation sensitivity to temperature,

which in turn impacts habitat quality (Du et al., 2019). The effects of

temperature and precipitation on HQ varied across years. There was

a negative effect of temperature and a positive effect of precipitation in

2000, while, the directions of these effects were completely reversed in

2018 and 2020. Zheng and Li showed that the Songnen Plain

experienced a wet period from 2018 to 2020 with a maximus

number of extreme rainfall events in 2019 (Zheng and Li, 2022).

Excessive precipitation in this wet year exacerbated soil erosion,

negatively impacting HQ (Liu et al., 2022). In addition, our results

indicated that precipitation and temperature affect HQ with varying

intensities. That is, intensity of the positive impact of precipitation

was higher than that of the negative impact of temperature in 2000,

the intensity of the positive impact of temperature outweighed that of

the negative impact of precipitation in 2018, and the intensity of the

negative impact of precipitation was higher than the intensity of the

negative impact of temperature in 2020. However, some studies

demonstrated that precipitation had a greater influence on HQ

than temperature (Fritz et al., 2018). This different conclusion from

ours could be attributed to the different ecological spatiotemporal

characteristics between the study areas.

Our study found that topography significantly influences HQ in

the SEM during four years: 2000, 2010, 2018, and 2020, which is

supported by some previous research indicating that HQ varies across

topographies (Feng and Lei, 2023; Li et al., 2023a, b). HQ was higher

in mountainous regions where forests were well-preserved, while HQ

was lower in both hilly areas with intense agricultural activities and in

plains with high population (Feng and Lei, 2023; Li et al., 2023a, b). In

addition, we found that topography indirectly impacts HQ. Previous

studies had shown that topography affect HQ by influencing climate,

NDVI, and human activities to varying extents (Chen et al., 2023b;

Shi et al., 2023b). For instance, Yang et al. reported that elevation and

slope direction influence temperature and precipitation, finally

determining forest distribution in the Qilian Mountains of

northwestern China (Yang et al., 2018). Liu et al. demonstrated

that elevation affects NDVI averages, and impacted vegetation

distribution (Liu et al., 2021a). Chen et al. showed that lower- and
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mid-elevation areas were more vulnerable to human disturbance

(Chen et al., 2023b). All of these studies highlighted the significant

impact of topography on HQ (Xiao et al., 2022).

Our results showed that human activities involving nighttime

light and population had the strongest negative impact on regional

HQ. Nighttime light intensity and population density were found to

reflect urban expansion and industrial agricultural activities. Other

studies had found that human disturbance significantly affects HQ,

e.g. Bai et al. found that human disturbance exacerbated the

degradation of HQ in Changchun City (Bai et al., 2019), and

Zhao et al. found a significant positive correlation between the

intensity of human activities and HQ (Zhao et al., 2022c). Our study

also showed that human disturbance had a negative effect on NDVI.

Zhou et al. studied the historical dynamics of vegetation in China

and found that human activities affected NDVI (Zhou et al., 2020).

Additionally, our study demonstrated that the use of nighttime light

data was a feasible solution to assess the effect of human activities on

HQ, which was supported by Zhao et al (Zhao et al., 2022c).

Our results suggest that the overall effect of natural environmental

factors on HQ in the Songnen Plain exceeds the total effect of human

disturbance, but the effect of human disturbance on habitat quality is

greater than that of natural environmental factors in some small areas

due to the heterogeneity in landscape characters, and the intensity of

the effect of each driver varies over time. Other studies conducted at

different temporal and spatial scales have reached similar conclusions

in other ecologically fragile areas, e.g., Mengist found that

anthropogenic disturbances had affected HQ in a forested biosphere

reserve in southwest Ethiopia (Mengist et al., 2021). In another fragile

area, Ebinur Lake Basin (Xinjiang Province, China), land use changes

reduced by human disturbance were found to affect HQ (Wei et al.,

2022). Meanwhile, similar findings have been found in non-fragile. For

example, Chen et a concluded that natural environmental factors

determine the spatial pattern of HQ in the central region of the

Yangtze River Delta (Chen et al., 2023c), and Wu et al. found that

HQ was mainly influenced by natural factors in the Guangdong-Hong

Kong-Macao Greater Bay Area from 2000 to 2020 (Wu et al., 2024).
4.3 Management implications

In this study, we obtained qualified evidence that the habitat

quality in the fragile Songnen Plain is subject to multiple impacts

from natural and anthropogenic factors, which has implications for

ecological management in this study area and other similar fragile

ecological zones. First, the eastern part of the Songnen Plain covered

by a large area of forest with high habitat quality should be protected

by management practices such as afforestation and fire prevention

to maintain the habitat stability quality. Second, ecological projects

such as Saline-alkali Land Restoration and Grain for Green need to

be continuously implemented to improve the low habitat quality in

the central and western parts of the Songnen Plain. Third, SEM

results showed that precipitation and temperature have significant

effects on habitat quality. To mitigate the negative threats to habitat

quality from extreme weather events such as drought and flood,

long-term monitoring of climate change, utilization of existing

water infrastructure, and improved water management are needed
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(Sun et al., 2021). Fourth, the negative effects of human activities on

habitat quality should not be ignored. In urban and rural

development and construction, the landscape pattern can be

optimized from an ecological protection perspective (Pu et al.,

2024) to improve landscape functions. In sum, all those practices

will help to balance economic growth and ecological land demand

to improve the habitat quality of the entire region.
5 Conclusions

HQ in the Songnen Plain was low from 2000 to 2020, with

significant heterogeneity in spatial distribution. HQ continued to

decline from 2000 to 2018, and then recovered slightly from 2018 to

2020. The overall impact of natural factors on HQ in the Songnen

Plain was stronger than that of human disturbance, and the

intensity of the effects of the natural environment and human

disturbance on HQ varied over time. Complex interactions between

the natural environment and human disturbance were also

important in influencing HQ. Our methodology and results have

imporatn implications for ecological conservation in the Songnen

Plain and provide insights for studying HO in other regions. Our

study highlighted that HQ could be improved by regulating

development and management practices, and offered strong

evidence for demonstrating relationships between influencing

factors and HQ in ecologically fragile areas.
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