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Stachydrine, also known as proline betaine, is a prominent constituent of

traditional Chinese herb Leonurus japonicus, renowned for its significant

pharmacological effects. Widely distributed in plants like Leonurus and Citrus

aurantium, as well as various bacteria, stachydrine serves pivotal physiological

functions across animal, plant, and bacterial kingdoms. This review aims to

summarizes diverse roles and mechanisms of stachydrine in addressing

cardiovascular and cerebrovascular diseases, neuroprotection, anticancer

activity, uterine regulation, anti-inflammatory response, obesity management,

and respiratory ailments. Notably, stachydrine exhibits cardioprotective effects

via multiple pathways encompassing anti-inflammatory, antioxidant, anti-

apoptotic, and modulation of calcium handling functions. Furthermore, its

anti-cancer properties inhibit proliferation and migration of numerous cancer

cell types. With a bi-directional regulatory effect on uterine function, stachydrine

holds promise for obstetrics and gynecology-related disorders. In plants,

stachydrine serves as a secondary metabolite, contributing to osmotic pressure

regulation, nitrogen fixation, pest resistance, and stress response. Similarly, in

bacteria, it plays a crucial osmoprotective role, facilitating adaptation to high

osmotic pressure environments. This review also addresses ongoing research on

the anabolic metabolism of stachydrine. While the biosynthetic pathway remains

incompletely understood, the metabolic pathway is well-established. A deeper

understanding of stachydrine biosynthesis holds significance for elucidating its

mechanism of action, advancing the study of plant secondary metabolism,

enhancing drug quality control, and fostering new drug development endeavors.
KEYWORDS

stachydrine, Leonurus japonicus, pharmacological effects, cardioprotective,
osmoprotective, biosynthesis pathway
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1 Introduction

Stachydrine, also recognized as proline betaine and N, N-

dimethyl-L-proline, represents an alkaloid characterized by the

molecular structure of (2S)-1,1-dimethylpyrrolidine-2-carboxylic

acid (shown in Figure 1). First isolated by Steenbock in 1918,

stachydrine is noted for its biological activities and pharmaceutical

potential (Connor et al., 1973). It is a key component of the

traditional Chinese medicinal herb Leonurus, commonly known

as motherwort, which is renowned for its pharmacological

effectiveness (Kuchta et al., 2013).

Leonurus, belonging to the Labiatae family, is rich in alkaloids,

among which stachydrine constitutes a significant proportion,

ranging from 0.59% to 1.72% (Dai et al., 2016a). Revered in

ancient medical texts such as “Shennong’s Classic of a Hundred

Herbs,” Leonurus, classified as ‘superior’ and non-toxic, is

extensively used across China, Korea, and Japan, primarily for

managing gynecological disorders. Furthermore, it has been

employed for centuries in European countries to address

neurological and functional heart conditions (Li et al., 2024).

According to the Chinese Pharmacopoeia, Leonurus manifests
Frontiers in Plant Science 02
various therapeutic effects, including blood circulation activation,

menstruation regulation, diuretic and anti-inflammatory

properties, and heat-clearing detoxification (The Pharmacopoeia

Committee, 2020). Its widespread use is evidenced by the annual

sales of Leonurus-related products in China, which amount to

approximately one billion RMB. Chemical analysis has identified

over 140 components from Leonurus, predominantly alkaloids,

flavonoids, and terpenoids, supplemented by substantial

potassium and vitamin content (Shang et al., 2014). Alkaloids,

such as leonurine, stachydrine, betaine, and trigonelline, have

been recognized as the principal bioactive compounds within

Leonurus (Zhang et al., 2018; Li et al., 2022a).

Leonurus is not the only plant that produces stachydrine; it is

also found in Capparis spinosa (Maresca et al., 2016), Castanea

sativa (Servillo et al., 2016), Citrus reticulata (Heinzmann et al.,

2010),Medicago sativa (Connor et al., 1973), Sabia schumanniana

(Gong et al., 2012), Maclura tricuspidata (State Administration of

Medicine Chinese herbal medicine information center station,

1986), Verbena officinalis (Cheng et al., 2010), Arisaema

heterophyllum (Yu and Yu, 2007), Combretum alfredii (Wu

et al., 2007), and Stachys arvensis (Cheng et al., 2020).
FIGURE 1

The natural occurrence of stachydrine. Stachydrine is found in the following plants: Leonurus, Capparis spinosa, Castanea sativa, Citrus reticulata,
Medicago sativa, Sabia schumanniana, Maclura tricuspidata, Verbena officinalis, Arisaema heterophyllum, Combretum alfredii, and Stachys arvensis.
In addition to these plants, stachydrine may also be found in other plants in the same genus as these plants. It is also found in the Elysia chlorotica
and Sinorhizobium meliloti and Rhodobacter sphaeroides.
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Additionally, bacteria such as Sinorhizobium meliloti (Phillips

et al., 1998) in alfalfa and Rhodobacter sphaeroides (Kumar

et al., 2014) also produce stachydrine (Figure 1). Among these,

Medicago sativa and Leonurus are the most extensively studied,

containing approximately 0.1% and 1% dry weight (DW) of

stachydrine, respectively (Connor et al., 1973; Kuchta et al.,

2014). Citrus reticulata contains about 0.3% (DW), with lower

levels reported in other plants (Sun et al., 2023).

In addition to being synthesized in plants, stachydrine may also

be produced in animals. One study noted that a mollusk, the Elysia

chlorotica, produces its own stachydrine, which regulates the size of

its cells through stachydrine (Pierce et al., 1984) (Figure 1). It is also

found in the human gut and kidneys and plays an important role in

regulating osmotic pressure, which is likely derived from human

food intake (Chambers and Kunin, 1987a).
2 Therapeutic roles of stachydrine
in humans

2.1 Cardiovascular and neurological effects

Cardiovascular and cerebrovascular diseases, collectively

termed cardiovascular diseases, are the leading causes of death

globally according to the World Health Organization.

Cardiovascular diseases encompass various pathophysiological

states such as atherosclerosis, acute myocardial infarction, chronic

heart failure, and vasospasm, while cerebrovascular diseases include

conditions like ischemic stroke, craniocerebral trauma, and

neurodegenerative disorders such as Alzheimer’s disease,

Parkinson’s disease, and depression. The crucial roles of the heart

and brain in overal l health make their impairments

significantly detrimental.

Current pharmacological treatments predominantly rely on

chemically synthesized small molecule drugs, including nitrates,

statins, beta-blockers, clopidogrel, aspirin, and ACE inhibitors/

angiotensin receptor blockers (ARBs). Although these treatments

are effective, they often come with considerable side effects and

costs. It is crucial to explore safer and more efficient therapeutic

alternatives and comprehensive treatment protocols to improve

therapeutic outcomes and patient prognosis.

Recent research shows that stachydrine, a plant-derived natural

product, is highly effective in treating cardiovascular and

cerebrovascular diseases.

2.1.1 Cardiac cell regulation
It mitigates the enlargement of cardiac cells induced by various

stimuli, such as norepinephrine and angiotensin II. Specifically,

stachydrine impedes the calcium-modulated phosphatase/NFAT

signaling cascade, thereby attenuating the aberrant cardiac

hypertrophy elicited by adrenergic receptor activation. By

disrupting the influence of these factors on cardiac cell signaling

pathways, stachydrine effectively curtails pathological myocardial

growth (Guo et al., 2012; Cao et al., 2017; Zheng et al., 2020).

Furthermore, stachydrine confers cytoprotective effects by
Frontiers in Plant Science 03
thwarting cardiomyocyte apoptosis triggered by hypoxia and

regulating iron metabolism to mitigate iron-induced cell death

(Liu et al., 2009; Liang et al., 2023). This protective mechanism is

instrumental in combating conditions like myocardial ischemia and

heart failure.

Stachydrine exerts regulatory control over calcium homeostasis

within cardiac cells, thereby augmenting the efficiency of calcium

transients while mitigating calcium leakage from cardiomyocytes.

This regulatory action is essential for ensuring proper cardiac

function during both the contraction and relaxation phases of the

cardiac cycle (Li et al., 2022b).

Stachydrine augments the activity of key antioxidant enzymes,

notably superoxide dismutase (SOD) and glutathione peroxidase

(GSH-Px), while concurrently attenuating oxidative stress, lipid

peroxidation, and the accumulation of reactive oxygen species

(ROS). Through these mechanisms, stachydrine effectively

counters the cellular damage induced by ischemia, reperfusion

injury, or other oxidative insults. Consequently, stachydrine

serves as a protective agent safeguarding the integrity of both the

cardiovascular and cerebrovascular systems (Xie et al., 2018; Li

et al., 2021; Lu et al., 2023).

2.1.2 Inhibition and amelioration of
myocardial fibrosis

Stachydrine effectively inhibits the production and activity of key

mediators involved in myocardial fibrosis, notably Angiotensin II

(AngII) and Transforming Growth Factor b1 (TGFb1). It achieves
this by downregulating the expression of angiotensinogen (AGT) and

angiotensin-converting enzyme (ACE) within cardiac tissues. These

actions are crucial for halting the progression of cardiac fibrosis.

TGFb1, in particular, plays a central role in the pathogenesis of

cardiac fibrosis. Stachydrine prevents the transformation of cardiac

fibroblasts intomyofibroblasts, a critical step in fibrosis, by interfering

with this pathway. Importantly, stachydrine also modulates the TGF-

b/Smad signaling axis, which is instrumental in activating fibroblasts

and synthesizing collagen in the heart. By blocking the

phosphorylation of Smad proteins, stachydrine reduces the

expression of pro-fibrotic genes, thus diminishing the fibrotic

response. Additionally, stachydrine directly inhibits cardiac

fibroblast proliferation and activation triggered by AngII. This leads

to a decrease in collagen production and other extracellular matrix

components, thereby significantly alleviating myocardial fibrosis

(Chen et al., 2017; Liu et al., 2019).
2.1.3 Inhibit inflammatory response
Stachydrine displays potent anti-inflammatory properties by

decreasing the release of key inflammatory mediators, including

interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a). It also
counteracts the NF-kB (nuclear factor kB) signaling pathway, a

critical transcription factor that orchestrates intracellular

inflammation. Stachydrine effectively blocks the phosphorylation

and nuclear translocation of the NF-kB p65 subunit, thus reducing

the production of inflammatory molecules. Additionally, it

modulates the JAK/STAT (Janus kinase/signal transducer and

activator of transcription) signaling pathway, which regulates
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cellular responses to cytokines and growth factors. Importantly, it

inhibits the production of phosphorylated STAT3 (p-STAT3) and

JAK2 (p-JAK2), reducing the transcriptional activity of

inflammatory genes. This regulation of inflammation is crucial in

managing cardiovascular diseases, as inflammation plays a central

role in the development of atherosclerosis and other related

complications. The comprehensive anti-inflammatory effects of

stachydrine make it a promising candidate for treating

inflammation-associated cardiovascular disorders (Zhao et al.,

2017; Wu et al., 2020; Yu et al., 2023).

2.1.4 Improvement of homocysteine-induced
endothelial dysfunction

Hyperhomocysteinemia (HHcy) is recognized as an

independent risk factor for cardiovascular disease. Stachydrine

has shown effectiveness in alleviating the detrimental effects of

homocysteine (Hcy) on endothelial vasodilation across various

arterial segments, such as the thoracic aorta, mesenteric arteries,

and renal arteries in rat models. It enhances the production of

tetrahydrobiopterin (BH4), a crucial cofactor for endothelial nitric

oxide synthase (eNOS), by upregulating the expression of GTP

cyclohydrolase 1 (GTPCH1) and dihydrofolate reductase (DHFR)

within endothelial cells. This increase in eNOS activity highlights

the essential role of BH4 in maintaining endothelial function. These

findings emphasize stachydrine’s potential as a therapeutic agent for

mitigating endothelial dysfunction caused by Hcy, providing

vasoprotective benefits. Furthermore, the study reveals a novel

molecular mechanism by which stachydrine exerts its

vasoprotective effects, offering insights into its promising

applications for managing cardiovascular diseases (Xie et al., 2018).

2.1.5 Promotes nitric oxide production and
modulates n-glycosylation

Stachydrine boosts the production of nitric oxide (NO) by

activating the AMPK and Akt signaling pathways, which in turn

enhances the phosphorylation and activity of endothelial nitric

oxide synthase (eNOS). Nitric oxide is a critical vasodilator that

aids in the relaxation of blood vessels, thereby supporting healthy

vascular function and preventing endothelial dysfunction (Xie et al.,

2018; Xie et al., 2019).

Stachydrine modulates the N-glycosylation of the b1-adrenergic
receptor (b1AR) by inhibiting a-1,6-fucosylation. This action

preserves the normal functionality of b1AR and supports the

excitation-contraction coupling process in the heart, crucial for

maintaining cardiac rhythm and function (Hu et al., 2021).

2.1.6 Inhibits of platelet activation
and thrombosis

Stachydrine effectively reduces the risk of thrombosis by

mitigating platelet activation, aggregation, and secretion.

Additionally, it attenuates the interactions between platelets and

neutrophils, decreasing the likelihood of inflammatory and

thrombotic complications. These mechanisms enable stachydrine

to improve cardiac function, reduce cardiac load, counteract cardiac

remodeling, and, to a certain extent, reverse cardiac dysfunction.
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Consequently, stachydrine emerges as a promising cardioprotective

agent with significant potential in the treatment of cardiovascular

diseases (Mansurov, 1972; Sun et al., 2022).

2.1.7 Neuroprotective actions
Stachydrine has demonstrated significant efficacy in reducing

cell death, neurological impairment, and brain tissue damage in

mouse models of traumatic brain injury (TBI). It notably decreases

apoptosis, infarct volume, and brain water content in various

experimental TBI models (Yu et al., 2018). Additionally,

stachydrine promotes cellular growth, inhibits cell death, and

alleviates inflammation, thus protecting neurons and ameliorating

cognitive deficits in rat models of TBI (Yu et al., 2018). It also

modulates key biomarkers of oxidative and inflammatory

r e sponse s , inc lud ing superox ide d i smuta s e (SOD) ,

malondialdehyde (MDA), interleukin-1b (IL-1b), and tumor

necrosis factor-a (TNF-a). Furthermore, stachydrine reduces

cerebral infarction size in rats subjected to middle cerebral artery

occlusion and shields neurons from TBI-induced damage. These

protective actions are mediated through the suppression of the

PI3K/m-TOR/Akt and TLR4/NF-kB pathways, crucial regulators of

cell survival, proliferation, and apoptosis. Through these

mechanisms, stachydrine significantly enhances neurological

function (Li et al., 2020).
2.2 Anticancer properties

Extensive research has consistently highlighted stachydrine’s

potent antagonistic effects on various types of cancer, including

astrocytoma (Liu et al., 2018), prostate cancer (Rathee et al., 2012),

breast cancer (Bao et al., 2022), colon cancer (Zhao, 2018), gastric

cancer (Ma et al., 2017), esophageal squamous cell carcinoma

(Isozaki et al., 2014), chronic myeloid leukemia (CML) (Gu et al.,

2022), hepatocellular carcinoma (HCC) (Chen and Yan, 2021), and

others. Stachydrine’s anticancer activities primarily involve the

inhibition of cell proliferation, induction of apoptosis, and

blocking of cell migration and invasion. These effects are achieved

through the modulation of multiple molecular pathways, providing

a robust mechanistic foundation for its therapeutic potential against

a wide array of cancers.

Stachydrine effectively inhibits several receptor tyrosine kinases,

including BCR-ABL, which is crucial in the treatment of chronic

myeloid leukemia (CML). By blocking these kinases, stachydrine

disrupts proliferation and survival signaling in cancer cells, thereby

curbing their growth and viability (Gu et al., 2022).

Stachydrine impacts multiple signaling pathways that are

pivotal in cancer progression, such as PI3K/Akt, ERK/MAPK, and

NF-kB. These pathways are integral to cell proliferation, survival,

migration, and inflammatory responses. Stachydrine’s anticancer

effects are mediated through the inhibition of key molecules within

these pathways, including Akt, ERK, and IkBa, leading to reduced

cancer cell activity (Liu et al., 2018).

Stachydrine promotes cancer cell apoptosis by activating

pathways involved in programmed cell death, particularly the
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mitochondrial pathway. It lowers the mitochondrial membrane

potential and activates key apoptotic proteins such as Bax and

caspase-3, while simultaneously reducing the expression of the anti-

apoptotic protein Bcl-2. This dual action both triggers apoptosis

and inhibits survival signals within cancer cells (Bao et al., 2022;

Zeng et al., 2023).

Stachydrine impedes the migration and invasive capabilities of

tumor cells by inhibiting signaling pathways such as CXCR4/ERK

and CXCR4/Akt. This inhibition is crucial for preventing the

metastasis and spread of cancer, effectively blocking critical

pathways involved in tumor cell dissemination (Liu et al., 2018).

Stachydrine modulates cell cycle progression, causing cancer

cells to arrest in the G0/G1 phase, which hampers their

proliferation. It has shown particular efficacy against

corticoblastic astrocytoma (PA), inducing apoptosis and arresting

cell cycle progression in human PA cells. These effects are mediated

through the inhibition of CXCR4/Akt and CXCR4/ERK pathways

and their downstream effectors, including CXCR4/Akt/MMP-9/2

and CXCR4/ERK/MMP-9/2, leading to decreased cell viability and

reduced colony formation in PA cells (Liu et al., 2018; Zhai

et al., 2024).

Stachydrine protects against oxidative stress by enhancing the

activity of antioxidant enzymes such as superoxide dismutase

(SOD). It also lowers serum lactate dehydrogenase levels,

indicative of reduced oxidative damage. In studies on mice with

gastric cancer induced by 1-methyl-3-nitro-1-nitrosoguanidine,

stachydrine inhibited histone deacetylase (HDAC) activity in

gastrointestinal tissues, significantly decreasing oxidative stress

markers and cytokine levels. These findings suggest that

stachydrine can mitigate oxidative damage in gastric cancer by

inhibiting HDAC activity (Ma et al., 2017).

Despite its potent anticancer properties, stachydrine faces

challenges in clinical implementation, particularly concerning

bioavailability and pharmacokinetic properties. Researchers are

actively working to enhance its therapeutic efficacy and safety

profile through the synthesis of derivatives and the optimization

of delivery techniques. These efforts aim to maximize stachydrine’s

effectiveness in cancer treatment by improving its stability,

absorption, and targeted delivery.
2.3 Effects of stachydrine on uterus

Leonurus has been traditionally used in the treatment of various

obstetric and gynecological conditions. To evaluate its safety and

efficacy, a study was conducted using a Leonurus injection, which

contains 1 mL of solution with 18–22 mg of stachydrine

hydrochloride, aimed at preventing post-abortion bleeding (Xia

et al., 2020). The results confirmed its effectiveness in reducing post-

abortion hemorrhage and promoting uterine retraction, thereby

decreasing bleeding post-abortion. The injection also demonstrated

a favorable safety profile, with no adverse reactions such as nausea,

vomiting, diarrhea, or local reactions at the injection site, and no

detrimental effects on liver and kidney functions were observed.
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Stachydrine, a key compound found in Leonurus, exhibits a dual

regulatory effect on uterine activity. In healthy guinea pigs, it

enhances uterine contractions by increasing contraction intensity

and decreasing contraction frequency (Dai et al., 2016b).

Furthermore, it counteracts uterine contractions induced by

oxytocin (Zheng and Wang, 2017). Stachydrine also inhibits

abnormal proliferation of uterine smooth muscle cells (MSMC)

induced by LPS stimulation, through the modulation of calcium-

regulating proteins (Zeng, 2007). Its significant role in managing

postpartum hemorrhage and aiding uterine recovery is highlighted

by its ability to enhance uterine contraction and promote

angiogenesis (He et al., 2018).

Despite the biological properties similar to those of Leonurus,

research and application of stachydrine in obstetrics and gynecology

remain relatively limited. Therefore, comprehensive future studies are

essential to fully explore its potential applications and elucidate the

underlying mechanisms in obstetric and gynecological contexts.
2.4 Anti-inflammatory effects
of stachydrine

Research has identified stachydrine as an effective anti-arthritic

and analgesic component in Capparis spinosa, demonstrating

suitability for treating arthritis induced by Complete Freund’s

Adjuvant (CFA) in rats (Feng et al., 2011). These findings

support the anti-inflammatory properties of stachydrine. To

further explore these properties, researchers have developed

several inflammation models, especially those induced by

Lipopolysaccharide (LPS). LPS, a major component of the cell

wall of Gram-negative bacteria, triggers endothelial cells to

overexpress inflammatory cytokines, initiating inflammation

cascades that can lead to sepsis and multi-organ dysfunction

(Dauphinee and Karsan, 2006).

Studies have shown that high doses of stachydrine can

counteract endotoxin effects and inflammation, as evidenced by

reduced hepatic and intestinal damage indices in mice with LPS-

induced inflammation, without altering serum levels of LPS, TNF-

a, and IL-1b. Additionally, stachydrine has been effective in

inhibiting LPS-induced inflammatory bone loss by suppressing

osteoclastogenesis both in vitro and in vivo. This effect is

mediated by the inhibition of the NF-kB and AKT signaling

pathways, activated by the receptor activator of NF-kB ligand

(RANKL), highlighting its potential in treating conditions like

osteoporosis (Meng et al., 2019).

Further, the anti-inflammatory activity of stachydrine was

observed in various experimental models, including ear swelling

in mice induced by xylene, granuloma formation from cotton ball

implantation, and pleurisy in rats induced by carrageenan. These

effects were linked to improvements in cell membrane permeability,

suppression of inflammatory cytokine levels, and reduction in lipid

peroxidation (Fang and Can, 2012).

Figure 2 illustrates the above pharmacological mechanisms

of stachydrine.
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2.5 Other effects of stachydrine in humans

Stachydrine has shown promising therapeutic effects against

obesity and insulin resistance. Korean researchers have identified

properties in a commonly consumed rice wine that contribute to

weight reduction and attributed these effects to stachydrine. It

promotes lipid breakdown and prevents lipid accumulation in

3T3-L1 adipocytes, reduces weight gain, and improves glucose

tolerance and insulin sensitivity in mouse models. Notably,

stachydrine significantly decreases adipsin mRNA levels in both

liver and adipose tissue, while increasing adipsin levels in the

bloodstream of mice compared to those on a high-fat diet alone.

It also restores balance in endoplasmic reticulum function and

modulates adipsin expression, highlighting its potential as a

therapeutic agent against obesity and insulin resistance (Lee

et al., 2022).

Stachydrine also exhibits osmoprotective effects on human

kidneys and the surrounding microbiota. Although the precise

mechanism of stachydrine formation in the human body remains

unclear, its extraction from human urine and subsequent studies

indicates its role in providing osmoprotection. This protective effect

is crucial for renal health and maintaining microbial balance

(Chambers and Kunin, 1987a).

Additionally, stachydrine offers notable respiratory benefits,

particularly in reducing cough frequency. This has been

demonstrated in a guinea pig cough model induced by citric acid,

where stachydrine targets sensory nerve endings in the respiratory

tract, reducing the sensitivity of the cough reflex and exerting an
Frontiers in Plant Science 06
antitussive effect. Furthermore, when combined with synephrine,

which activates the b2-adrenergic receptor (b2-AR) causing

relaxation of bronchial smooth muscle, stachydrine enhances the

bronchodilatory effect of synephrine, thus improving its efficacy in

reducing airway spasms and supporting its use in asthma treatment

(Shi et al., 2009).
2.6 Potential activity of
stachydrine analogues

Stachydrine not only has numerous pharmacological effects but

also holds promise through its derivatives, which may offer superior

biological activities. Modifying stachydrine by adding different

functional groups can amplify its medicinal properties, increase

its lipophilicity, and significantly improve its bioavailability (Zeng

et al., 2023). These advancements heighten the anticipation for

future applications of stachydrine and its analogues.
3 Functions of stachydrine in plants
and bacteria

3.1 Functions of stachydrine in plants

Stachydrine, a prevalent secondary metabolite in plants, plays a

significant role in various physiological processes. It regulates

osmotic pressure, aiding plants like alfalfa in swiftly accumulating
FIGURE 2

Pharmacological mechanisms of stachydrine. This figure outlines the pharmacological mechanisms of stachydrine, primarily affecting the
cardiovascular system, cancer, inflammation, uterus, and nervous system. The direction of the arrows indicates the upregulation or downregulation
of substances or signaling pathways.
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stachydrine to counteract external salt stress. This accumulation

enhances the resilience of plant against salt stress (Trinchant et al.,

2004). Experiments with Arabidopsis thaliana have shown that

adding appropriate amounts of stachydrine to growth media

under salt stress significantly improves plant growth.

Stachydrine activates the NodD2 protein, a key regulatory

element in rhizobium-plant symbiosis. This activation facilitates

the expression of nodulation genes essential for rhizome formation

and nitrogen fixation, bolstering the plant’s ability to absorb and

utilize nitrogen efficiently (Phillips et al., 1992; Phillips et al., 1998).

Stachydrine also enhances plant resistance to specific pests. It

has been shown to impede the growth and survival of larvae from

pests such as the dance moth, providing a protective benefit against

these invaders (Jiang et al., 2021).

Furthermore, stachydrine plays a role in the plant’s response to

abiotic stresses, such as drought and salt stress. Its involvement

helps plants adapt to adverse environmental conditions, thereby

enhancing their overall resilience (Phillips et al., 1992; Randall et al.,

1996; Hamilton and Heckathorn, 2001; Zhang et al., 2018; Jiang

et al., 2021).

Stachydrine may influence the synthesis of important secondary

metabolites, such as flavonoids, which are crucial for plant defense.

It also acts as a regulator of plant growth, promoting development

by modulating both primary and secondary metabolic pathways

(Hamilton and Heckathorn, 2001; Wu et al., 2024).

Overall, stachydrine is instrumental in regulating various

physiological and ecological processes within plants, contributing

significantly to their growth, development, defense mechanisms,

and stress responses.
3.2 Role of stachydrine in bacteria

Stachydrine exerts an osmoprotective effect not only in plants

and animals but also in bacteria. Research has shown that

stachydrine can significantly improve the growth of Escherichia

coli under salt stress conditions when added to its culture medium,

illustrating its protective role against osmotic stress (Hanson et al.,

1994). Bacillus subtilis utilizes a dedicated transporter protein for

stachydrine uptake, employing it as an osmoprotectant (Horn et al.,

2006). Growth studies of Bacillus subtilis further underscore the

osmoprotective effects of stachydrine, which also extend to strains

of Staphylococcus aureus, Staphylococcus epidermidis, and

Staphylococcus saprophyticus (Amin et al., 1995). Notably, in the

human gut—which is characterized by high osmotic pressure—

stachydrine helps maintain a thriving gut flora due to its

osmoprotective action on these bacteria (Chambers and

Kunin, 1987a).

Stachydrine functions as an effective osmoprotective compound

in bacteria, supported by specific transport systems such as BetS,

Prb, and others, which actively mediate the uptake or release of

stachydrine. These systems often involve ATP-binding cassette

(ABC) transporter proteins or Na+/stachydrine cotransporter

proteins that respond to changes in osmolality to regulate

intracellular osmoregulator levels. Acting as a compatible solute,
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stachydrine accumulates in the cytoplasm at high concentrations

without disrupting cellular processes, aiding in maintaining cellular

water balance and alleviating osmotic pressure induced by stress

(Boscari et al., 2006; Horn et al., 2006).

Furthermore, the unique molecular structure of stachydrine

allows it to interact with proteins and cellular membranes,

potentially stabilizing protein structures through hydrophobic or

electrostatic interactions. It may also act as a molecular chaperone,

assisting in proper protein folding and preventing denaturation and

aggregation under conditions of high salt or drought, thus

preserving intracellular protein functionality during stress.

Changes in osmotic pressure can influence the expression of

genes involved in osmoregulator production and transportation

in bacteria. The presence of stachydrine can modulate the activity of

specific genes, either stimulating or suppressing their expression,

thereby regulating osmoregulator synthesis and intracellular

accumulation (Chambers and Kunin, 1987b; Hanson et al., 1994;

Amin et al., 1995; Alloing et al., 2006; Bashir et al., 2014).

Through these mechanisms, stachydrine acts as a molecular

shield for bacteria against osmotic stress, safeguarding the structural

and functional integrity of cellular components.

Figure 3 illustrates the functions of stachydrine in humans,

plants, and bacteria as described above.
4 Progress in the anabolism
of stachydrine

4.1 Possible synthetic pathways
for stachydrine

Research into the production process of stachydrine has

revealed insights, yet the precise biological mechanism of its

synthesis remains elusive. Initially, studies suggested that

ornithine in alfalfa could serve as a precursor to stachydrine.

Experiments with isotope-labeled ornithine demonstrated its

conversion into glutamic acid and then into proline, leading to

stachydrine synthesis (Morgan and Marion, 1956). Additionally,

methylation, particularly from the methyl group sourced from

methionine, plays a crucial role in incorporating into

stachydrine’s molecular structure. It has been observed that

mature alfalfa plants at 12 weeks old produce stachydrine, unlike

those aged 2–3 week (Leete et al., 1955; Wiehler and Marion, 1958;

Robertson and Marion, 1960; Essery et al., 1962).

Chemically known as (2S)-1,1-dimethylpyrrolidine-2-

carboxylic acid or N, N-dimethyl-L-proline, stachydrine is

believed to be synthesized through a process involving the

addition of two methyl groups to the N of proline (Figure 4).

Various substrates, including iodomethane and dimethyl sulphate,

have been used to react with L-proline to synthesize stachydrine,

aiming to introduce two methyl groups to the N of proline (He and

Wang, 2005a; He and Wang, 2005b). Experiments with proline

containing a radioactive isotope in alfalfa plants led to the detection

of radioactive N-methyl proline and stachydrine, suggesting the

catalytic activity of N-methyltransferase (NMT) in this synthesis.
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FIGURE 3

General overview of the biological activities of stachydrine. This figure illustrates the functions of stachydrine in the heart, brain, uterus, lungs, and
kidneys, as well as its roles in cancer resistance and obesity; it also details the functions of stachydrine in plants and bacteria.
FIGURE 4

The biosynthetic and metabolic pathway of stachydrine. The biosynthetic pathway of stachydrine has been studied in Medicago sativa, where proline
is catalyzed by NMT1 and NMT2 (which may be the same enzyme or different enzymes) through 1–2 step reactions to produce stachydrine. The
degradation process of stachydrine has been studied in Rhodobacter sphaeroides, where stachydrine is hydrolyzed back to proline through a two-
step reaction catalyzed by NDT1 and NDT2, respectively.
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Despite advancements, studies into the biosynthesis of stachydrine

are limited. Currently, stachydrine is produced either by extraction

from plants or by chemical synthesis. Unraveling its biosynthetic

pathway could significantly advance phytopharmacology, aiding in

understanding stachydrine’s mechanism of action and interactions,

potentially enhancing drug quality control, and facilitating the

development of new pharmaceuticals through synthetic biology and

genetic engineering.
4.2 Metabolic pathway of stachydrine

The metabolic pathways of stachydrine are largely understood,

although its biosynthesis pathway remains unelucidated (Figure 4).

Stachydrine is excreted by germinating seeds and plant roots into

bacterial environments. Bacteria closely associated with plants have

evolved mechanisms to utilize betaine for two primary purposes: as

a protective shield against high osmotic pressure and as a source of

carbon and nitrogen in the absence of osmotic stress. Recent

research has identified the metabolic pathway of betaine in two

strains of bacteria: Paracoccus denitrificans and Rhodobacter

sphaeroides. Initially, stachydrine is enzymatically converted into

N-methyl s tachydr ine by the act ion of the firs t N-

desmethyltransferase enzyme (NDT1). Subsequently, proline is

synthes ized through the ac t iv i ty o f the second N -

desmethyltransferase enzyme (NDT2). Finally, proline undergoes

further metabolism into glutamic acid (Kumar et al., 2014)

(Figure 4). Notably, the metabolic pathway of stachydrine is

essentially the reverse of the proposed synthetic pathway

of stachydrine.
5 Outlook

Stachydrine, a versatile bioactive molecule, has garnered

significant interest due to its promising medicinal properties.

Ongoing research is dedicated to elucidating its precise

mechanisms of action, refining its applications, and exploring its

potential in pharmaceutical development. A key focus of these

efforts is understanding the biosynthesis pathway of stachydrine.

Despite the apparent simplicity of converting proline to

stachydrine, research on this synthesis pathway in alfalfa has been

challenging since the 1950s, primarily due to the lack of relevant

enzyme identification. This challenge may be attributed to the

limited availability of genomic data and the nascent stage of

molecular biology techniques at that time. Alternatively, the

complexity of the reaction in organisms may require more

advanced genomic and multifaceted biochemical experiments

for confirmation.

The initial exploration of the biosynthesis route of stachydrine

is now being modeled using bioinformatics tools and systems

biology approaches. This theoretical analysis helps predict

unidentified intermediates and key enzymes, providing a

foundation for experimental design. Radioisotope or stable

isotope labeling techniques are also employed to trace the
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understanding of each step in the synthesis process.

Understanding the biochemical pathway of stachydrine paves the

way for using genetic engineering to manipulate or enhance the genes

involved in its biosynthesis in plants, potentially increasing stachydrine

production. Synthetic biology opens possibilities for creating microbial

cell factories that express plant-derived enzymes, enabling the production

of stachydrine or its precursors. Metabolic engineering strategies aim to

optimize metabolic pathways in plants or microorganisms to improve

stachydrine biosynthesis, reduce by-product formation, and enhance the

yield and purity of desired molecules.

Furthermore, the exploration of stachydrine and its derivatives

through high-throughput screening and natural product mining may

uncover novel analogues from other plants or microorganisms. These

analogues might exhibit improved pharmacological activities or

decreased toxicity compared to stachydrine itself. Additionally,

integrating biosynthetic pathways from diverse organisms could lead

to the generation of novel stachydrine derivatives using combinatorial

biosynthesis techniques, thus expanding the spectrum of chemical

variations and potential therapeutic applications.

In summary, a deeper understanding of the biosynthetic process

of stachydrine promises to significantly advance its utilization in

medicine, health, and agriculture, opening new avenues for research

and development in these fields.
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