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Introduction: Optimizing the dynamics of daylily (Hemerocallis citrina Baroni)

growth under various planting patterns is critical for enhancing production

efficiency. This study presents a comprehensive model to simulate daylily

growth and optimize planting patterns to maximize bud yield while minimizing

land resource utilization.

Methods: The model incorporates source-sink relationship specific to daylilies

into physiological process modeling, considering environmental factors such as

micro-light and temperature climate, and CO2 concentration. Spatial factors,

including planting pattern, row spacing, plant spacing, and plant density were

examined for their impact on light interception, photosynthesis, and resource

efficiency. Employing partial least square path modeling (PLS-PM), we analyzed

the interrelations and causal relationships between planting configurations and

physiological traits of daylily canopy leaves and buds. Through in situ simulations

of 36 planting scenarios, we identified an optimal configuration (Scenario ID5)

with a density of 83,000 plants·ha−1, row spacing of 0.8 m, and equidistant

planting with a plant spacing of 0.15 m.

Results and discussion: Our research findings indicate that increased Wide

+Narrow row spacing can enhance yield to a certain extent. Although planting

patterns influence daylily yield, their overall impact is relatively minor, and there is
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no clear pattern regarding the impact of plant spacing on individual plant yield.

This modeling approach provides valuable insights into daylily plant growth

dynamics and planting patterns optimization, offering practical guidance for

both farmers and policymakers to enhance daylily productivity while minimizing

land use.
KEYWORDS

daylily (Hemerocallis citrina Baroni), functional-structural plant model (FSPM), planting
patterns, crop growth simulation, source-sink relationship, yield simulation, land
use efficiency
1 Introduction

Daylily (Hemerocallis citrina Baroni), also known as the golden

needle vegetable or forget-one’s-sadness plant, is a perennial

herbaceous plant of the lily family, cultivated throughout

northern and southern China (Lim, 2015). The edible daylily

buds are rich in proteins, carbohydrates, fats, vitamins, and

various amino acids. They are highly valuable as nutritionally rich

food and also have notable medicinal uses for treating various

diseases (Li et al., 2017; Tian et al., 2017). In Datong, Shanxi

Province in the north of China, a significant region for daylily

production, local farmers refer to these flowers as the “wealth

flower” due to their economic importance. As a specialty

vegetable with substantial economic benefits, increasing the yield

of daylilies is crucial. Despite the economic significance of daylilies,

there has been a lack of advanced research focused on optimizing

their growth through precise simulation models.

Different planting configurations directly influence the light

micro-climate within the plant canopy, leading to interplant

shading. Suboptimal configurations hinder the canopy leaves’

access to optimal light supply and local micro-temperature

climate conditions, both of which are directly related to

photosynthesis and growth (Slattery and Ort, 2021). Suboptimal

conditions lead to unnecessary light competition between plants,

typically resulting in increased vegetative growth at the expense of

flower and fruit yield (He et al., 2020). In rice cultivation, it has been

demonstrated that increasing the distance between individual

seedlings can improve yield under certain water conditions

(Mishra and Salokhe, 2010). A decrease in yield can also occur

gradually with increasing density in corn cultivation (Murphy et al.,

1996). For daylily plant architecture, the light distribution within

the canopy primarily depends on internal plant characteristics such

as the number of tillers, plant height, plant width, number of main

stem leaves, leaf length, leaf width (widest part diameter), scape

length (length from the base of each scape to the lower end of the

inflorescence), number of buds (total number of buds on each scape

during the entire flowering period), and bud length, all of which are
02
highly spatiotemporally variable. Changes in planting configuration

and leaf growth can alter the spatial position of the leaves, leading to

changes in light interception and photosynthetic rate, which in turn

affect the carbon assimilation of daylily plants and ultimately the

yield of daylilies (buds). Despite these complexities, existing models

lack precision in simulating canopy changes related to plant

configuration, often failing to accurately capture dynamic light

and temperature interactions (Rötter et al., 2015).

Functional–structural plant modeling (FSPM) provides a well-

established approach to simulate three-dimensional growth models,

improving our understanding of morphological, physiological, and

biological processes driving crop development, growth, and yield

formation (Vos et al., 2010). It also simulates the interaction

between crops and their environment under various conditions,

including the effects of biotic and abiotic stresses (Soualiou et al.,

2021). The primary advantage of FSPM lies in its detailed

simulation of plant morphogenesis, three-dimensional structure,

and architectural development, leading to higher accuracy of

simulation and prediction. Many current FSP models employ

static models for simulation, where key physiological processes

are derived from traditional crop models. This approach neglects

the dynamic development of plant growth and changing

architecture. As a result, although these static FSP models can

somewhat simulate the complex light distribution within the

canopy structure, they struggle to accurately capture dynamic

growth behaviors, leading to less reliable yield predictions (Zhu

et al., 2015; Zhang et al., 2020a).

In addition to morphogenesis and plant morphology modeling,

FSPM is widely used to integrate plant physiological processes on

spatial and temporal scales. Notably, it has been used to explore the

mechanism of assimilating carbohydrates through photosynthesis

(Zhu et al., 2013) and to address the dynamic allocation of

photosynthetic products between plant organs (Sonnewald and

Fernie, 2018; Lacointe and Minchin, 2019). The simulated effects

of CO2 fertilization and changes in canopy structure on soybean’s

gross primary productivity (GPP) have been studied (Song et al.,

2020). Regarding the dynamic simulation of the allocation of
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photosynthetic products, a three-dimensional growth model of rice

was established by integrating source–sink relationships and

quantitative trait locus (QTL) information (Xu et al., 2009).

Carbon allocation models applicable to static tree structures,

namely, the multi-scale carbon allocation model (MuSCA) and

the autonomous units carbon allocation model (AUCAM), have

also been developed (Auzmendi and Hanan, 2020; Reyes et al.,

2020). The allocation of carbon from source to sink organs is driven

by sink strength, and studies of poplar and potato varieties have

highlighted the significance of source–sink coordination in

determining biomass productivity (Balasubramanian et al., 2023;

Liu et al., 2023). As such, FSPM models based on source–sink

relationships have been proven to accurately and exhaustively

simulate the dynamic growth of plants in other crops. However,

the application of FSPM methods to daylilies has not yet been seen.

In summary, current research indicates that there has been no

explicit involvement in simulation research related to daylilies so

far; also, combining the robust micro-environment simulation

capabilities of FSPM with the powerful carbon allocation

calculations of source–sink relationship models can greatly

enhance simulation accuracy, thereby allowing for a more precise

analysis of the effects of different planting patterns on daylily plants.

Daylilies, as a species of Hemerocallis, have unique biological

characteristics, including strong adaptability to light and drought

tolerance (Xie et al., 2022) and a lower photosynthetic rate

compared to field crops such as wheat and rice (Geng et al.,

2023), which are significantly different from other economic

crops. Therefore, it is crucial to investigate the physiological

growth processes and bud yield of different planting patterns for

daylilies to enhance land-use efficiency. This study aims to i)

investigate the effects of different planting configurations on solar

radiation interception and photosynthesis at the plant and organ

levels in daylilies, ii) examine how changes in planting configuration

affect the bud yields of daylilies under various planting densities,

and iii) propose an optimal planting pattern that enhances solar

radiation interception and photosynthesis while maximizing bud

productivity in the context of plant competition.
2 Materials and methods

2.1 Data collection and processing

The field experiment was conducted from March to August

2022 in the Tangjiapu Organic Daylily Standardized Planting Base,

Yunzhou District, Datong, Shanxi Province. The base is located at

coordinates 40°08′N, 113°54′E, characterized by a temperate

continental semiarid monsoon climate with an average annual

temperature of 6.4°C and annual precipitation of 439.9 mm. The

soil type at the site is volcanic soil, known for its high zinc and

selenium content. The tested variety, “Datong” variety

(Hemerocallis citrina Baroni), is a popular and widely utilized

cultivar known for its distinctive yellow flowers. This variety is

favored for its high yield and local adaptability, making it a valuable
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choice for agricultural production. Its reliability and productivity

have established it as a commonly used selection among growers.

The experiment, conducted on a total area of 4 ha, employed initial

row spacing of 1.2 m and plant spacing of 0.2 m, resulting in a

planting density of 72,000 plants per hectare. The tested, yellow-

flowered daylilies were 3 years old with approximately six shoots

per clump.

To ensure the practical applicability and effectiveness of the

optimized planting patterns for enhancing daylily production and

resource efficiency, the simulation results were validated

through field trials. Eight representative daylily plants were

randomly selected in the experimental field for individual plant

measurements. Morphological data of the plants were collected

every 3 days throughout the entire growing season of 5 months,

leading to 48 measurements. The daily average solar radiation

intensity was 248.7 W·m−2, with an average sunshine duration of

5.9 h, an average temperature of 19.1°C, an average cloud cover of

0.4, and an average wind speed of 2.4 m/s. Based on the growth

characteristics of the plants, the entire growth period was divided

into three stages: spring seedling growth stage (early April to mid-

May), scape emergence and bud stage (late May to mid-June), and

flowering and harvesting stage (late June to mid-August). Leaf

markers were applied to each leaf using instruments such as

vernier calipers, tape measures, and analytical balances to

measure shoot number, plant height, plant width, number of

main stem leaves, leaf length, leaf width (maximum transverse

diameter at the widest part), flower scape length (from the base of

each flower scape to the lower end of the inflorescence), number of

buds (total number of buds on each flower scape throughout the

entire flowering period), bud length, and fresh and dry weight of the

buds. The emergence points of the leaves, scapes, and buds at

different leaf positions of the daylilies were recorded, and the

growth status of the abovementioned organs was monitored every

3 days. Additionally, field-measured biomass data are collected

concurrently with morphological measurements to obtain

comprehensive growth data. By comparing the simulated

outcomes with the actual field data, we can verify the model’s

reliability and make necessary adjustments to optimize planting

patterns further.
2.2 Virtual model construction

2.2.1 Modeling environment
The presented functional–structural plant model (FSPM) was

implemented using the interactive modeling platform GroIMP

(Kniemeyer, 2008), an open-source software freely available from

GitLab (https://gitlab.com/grogra/groimp). GroIMP integrates a

Java-based modeling language called extended L-system language

or XL for short (Kniemeyer, 2008), specially designed to support all

needs of functional–structural plant modeling (Vos et al., 2007),

including full-spectral light modeling (Henke and Buck-Sorlin,

2017), or an integrated solver for ordinary differential equation

(Hemmerling, 2012; Hemmerling et al., 2013).
frontiersin.org
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2.2.2 FSP model description
The constructed FSPM consists of various dedicated submodules

including 1) the overall control model (e.g., plant and scene initiation,

summarize and output modules), 2) the direct and diffuse sun and

sky radiation model, 3) the morphology model, 4) the photosynthesis

model, and 5) the source–sink model. In this model, all other

submodules are integrated as external extension models within the

main overall control model. Based on field experimental data, this

study established quantitative relationships among leaf growth

morphology, photosynthesis, source–sink relationships, and yield,

thus constructing a simulation model for growth. Figure 1 provides

an overview of the FSPM model structure and the relations between

the included model components (modules).

Using meteorological data as model input, leaf photosynthesis

serves as the main source term and assimilates products as

increments to the sink model for organ growth consumption. As

virtual plants grow dynamically, changes in leaf light interception

lead to dynamic adjustments in leaf temperature, thereby

influencing the rate at which leaves fix environmental CO2, i.e.,

affecting photosynthetic rates within the canopy. These changes

further impact variations in source–sink relationships within the

biomass of plant organs. During model initialization, global

parameters and variables are loaded, and the sky radiation model

along with the initial parameters of plant populations is imported

into the scene.
Frontiers in Plant Science 04
The specific iteration process involves a main loop, successively

executing individual growth steps until the intended growth period of

day 90 to 242 is simulated. The temporal resolution of the simulation

is set to 1 day. During each simulation step, five subprocesses are

executed: updating the sky radiation model, calculating the single leaf

photosynthesis module, running the source–sink model, applying

rules, and updating the output morphology simulation model.

Finally, statistical outputs such as organ biomass are generated.

2.2.3 Sun and sky radiation module
The implemented sun and sky radiation model utilized in this

study follows the description given in Buck-Sorlin et al. (2011),

specifically adopting their approach for the arrangement of light

sources, the simulation of diffuse sky radiation, and the

configuration of the direct sunlight parameters. It consists of 72

direct light sources, arranged in a hemisphere, to simulate a more

realistic light environment by representing the diffuse sky (which

represents scattered light from the atmosphere), and one direct light

source simulating the direct sunlight (the unscattered solar rays that

directly reach the Earth’s surface). The integrated ray tracer is based

on a reverse Monte Carlo path tracer (Hemmerling et al., 2008).

This model facilitates the computation of the intercepted light

radiation within the scene by simulating both direct radiation

sources (such as the sun) and diffuse, scattered radiation sources

(such as the sky). For realistic and reproducible results, 200 million
FIGURE 1

Schematic diagram of the modular setup, hierarchical structure, and main inputs and outputs of the daylily FSPM.
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rays are simulated during each (light) simulation step. This specific

number was chosen based on sensitivity tests, which showed that

using approximately 200 million rays provides a good balance

between computational time and the quality of light distribution.

The detailed modeling approach follows the methodology outlined

by Zhang et al. (2020b). To more accurately simulate light radiation

under cloudy conditions, in addition to the clear sky scenario

described above, a cloud cover-based solar radiation model

(CSRM) is incorporated to simulate daily average solar radiation

under overcast weather conditions (Ahamed et al., 2022), as shown

in Equation 1.

H
Ho

= −0:08 + 0:21(Tmax − Tmin)
0:5 − 0:012�N (1)

Where Tmax represents the daily maximum temperature in

degrees Celsius, Tmin represents the daily minimum temperature

in degrees Celsius, Ho  represents the daily average extraterrestrial

radiation in W·m−2, and �N denotes the average cloud cover

observed by the local meteorological station during the day.

The validation data for the sky radiation model are verified

using hourly meteorological data from the Yuzhou District

Meteorological Station in Datong City, Shanxi Province (Yamaltu

Big Data Information (Ningbo) Co., Ltd.). The model’s evaluation

metrics include a correlation coefficient (r) of 0.93, an R² of 0.87,

and a root mean squared error (RMSE) of 28.52 W/m², which

accounts for approximately 9.3% of the measured total

radiation. These results indicate a strong agreement between the

model’s output and the observed physical measurements

(Supplementary Figure S1). For a detailed verification process,

please refer to Zhang et al. (2024).

2.2.4 The construction of daylily morphology
simulation module

The actual morphological plant model of a single daylily plant

consists of defined plant organs, i.e., internodes, leaves, flower stem

(scape), and bud organs. Leaves are constructed as modules

containing attributes, e.g., to store the intercepted radiation,

current dry weight, and organ age. They are visualized in the 3D

scene as a sequence of parallelograms of varying directions and sizes

following the measured data of the real-world experiment. Upon

the formation of each leaf, it is assigned a rank label, which is used

to track its developmental stage and position on the plant (Figure 2),

and its absorbed radiation amount (W·m−2) is determined using the

sun and sky radiation model, subsequently converted into

photosynthetic photon flux density (mmol PPFD·m−2·s−1) with a

conversion factor of 2.275. This factor is chosen for its accuracy in

reflecting the relationship between radiative energy and

photosynthetically active radiation, consistent with values

reported in similar studies (Henke et al., 2016).

The growth and expansion rates of each organ of the plant are

described using the b growth function (Yin et al., 2003).

This function delineates the dynamics of organ expansion and

biomass accumulation: as simulation time progresses, the

function is applied to all virtual organs, thereby facilitating the
Frontiers in Plant Science 05
overall growth of the virtual plant. For instance, the size of the

leaves is simulated using the b growth function, with biomass

increment calculated through leaf photosynthesis serving as the

final leaf length and growth time. Subsequently, the increment in

leaf area is computed using the specific leaf area (SLA) as a constant

(SLA = 0.0023 m² leaf·g−¹ leaf), which was calculated from the field

measurements. The use of the SLA method for this calculation is

based on the approach described by Yin and van Laar (2005), as

shown in Equation 2.

area  =  SLA �  biomass (2)

In this context, “area” refers to leaf area, while “biomass”

represents the increase in leaf dry matter. In summary, given the

input climate data, the model can simulate the dynamic changes in

the canopy or individual plant morphological growth and biomass

(dry matter) accumulation, as well as the final yield of daylily buds.
2.2.5 Source–sink module
As the sink organs grow and develop, they drive the conversion

of assimilates into harvestable dry matter, namely, the yield of

daylily buds. The FSPM source–sink relationship model in this

study is established based on the rice relationship model developed

by Xu et al. (2009), where the sink activity rules are determined by

the growth and development rules of each organ (b growth

function) (Yin et al., 2003), and the real-time potential sink

strength Sstrpot can be expressed by Equation 3.

Sstrpot =
dw
dt

= cm(
te − t
te − tm

)(
t
tm

)
tm

te−tm (3)

Here, cm represents the maximum growth rate during the linear

growth phase at time point t = tm, where c represents the growth

rate, and t is the time variable. The variable te denotes the moment

when organ growth ceases (i.e., growth rate becomes zero) upon

reaching maximum size or mass (w). The overall carbon demand

(Sdemtot ) is the weighted sum over time of the potential growth rates of

all virtual organ structures according to the source–sink

relationship rules, as illustrated in Equation 4.

Sdemtot =o SstrpotDt (4)

The actual growth rate, denoted as grreal , is obtained by

multiplying the current shared assimilate pool size, denoted as ap,

by the potential-real growth rate   Sstrreal . This ensures that grreal does

not exceed Sstrpot , as depicted in Equation 5.

ɡrreal = Sstrrealap =
Sstrpot
Sdemtot

ap(ɡrreal ≤ Sstrpot) (5)

Once organs grow at their actual growth rates, the central

carbon pool is correspondingly replenished. Lastly, growth

respiration is considered in terms of a conversion factor (g

glucose·g−1 dry matter), which is directly proportional to the

growth rate. This factor, derived from Goudriaan and van Laar

(1994), reflects the energy cost associated with biosynthesis.

Similarly, maintenance respiration is also calculated based on a
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fixed proportion of structural biomass (0.014 g glucose·g−1 dry

matter) and accounts for the energy required to sustain existing

tissue, based on the same reference (Goudriaan and van Laar, 1994).

These specific rates were chosen due to their established accuracy in

representing the metabolic costs of growth and maintenance in

plant models, and both terms were subtracted from the central pool

at each simulation step. For ease of calculation, root assimilate

consumption is then computed at a fixed proportion (0.15 × central

carbon pool). The computation for each time step subtracts the

above items from the central carbon pool. The fresh weight of each

organ is calculated by multiplying the dry weight by different

empirically determined constants.

2.2.6 Photosynthesis module
This study implemented computational modeling of assimilates

in leaf sources using an extended Kim and Lieth module (Kim and
Frontiers in Plant Science 06
Lieth, 2003), which is a general module used to estimate short-term

steady-state CO2, water vapor, and heat fluxes in C3 plant leaves,

explicitly coupling the major physiological processes of

photosynthesis [Farquhar, von Caemmerer, and Berry (FvCB)

model (Farquhar et al., 1980)], including biochemical assimilation

processes, stomatal conductance [Ball, Woodrow, and Berry (BWB)

model (Ball et al., 1987)], and leaf energy balance. Specific

parameters for daylily species were extracted from literature data

to parameterize the photosynthesis model (Geng et al., 2023).

Initially, the photosynthesis model was calibrated independently;

for model parameter values, please refer to Supplementary Tables

S1, S2 for details.

The validation experiment of the daylily photosynthesis model

utilized the CIRAS-3 photosynthesis instrument (CIRAS-3, PP

Systems, USA) to measure the daylily leaf blades. The instrument

was equipped with a 1.75-cm2 general-purpose leaf chamber
FIGURE 2

Schematic of the definition of daylily phytomers. Daylily phytomers including the opposite leaves on the plant (red and blue boxes), scape (yellow
box), and flower bud attached to the scape (pink box).
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featuring red, green, blue, and white light-emitting diodes (LEDs)

(PLC3) and an external CO2 cylinder to simulate the light,

temperature, air, and humidity conditions required by the leaf

blades. Measurements were conducted between 8:30 a.m. and

11:30 a.m. The detailed measurement protocol and verification

were the same as in Zhang et al. (2024).
2.3 The experimental setup for
virtual simulation

This study simulated a total of 36 most commonly used planting

configurations (Table 1) under three planting patterns [double row

big ridge (DRBR), equidistant row (ER), narrow–wide row (NWR)],

six wide row + narrow row patterns (W+N pattern, 0.8–1.8 m), four

plant spacings (0.15–0.3 m), and 10 initial planting densities (63,000–

100,000 plants·ha−1) for daylilies in their third year of growth,

whereas the third year is the critical yield formation period, with

an average of six shoots per plant, and the flowering scape emergence

rate of daylilies was set at 50%. The selection of these planting

configurations was based on principles aimed at increasing land-use

efficiency, facilitating mechanized planting, and adhering to modular

design standards. Figure 3 illustrates the most common planting

density configurations used in local production (72,000 plants·ha−1)

for DRBR rows, ER rows, and NWR rows, corresponding to scenario

IDs 13, 14, and 15 in Table 1, respectively. The simulation period was

set from 1 April 2022 (day 91 of the year) to 30 August 2022 (day 242

of the year), with a time step of 1 day. The external climate conditions

for all scenarios, including solar radiation, temperature, humidity,

and CO2 concentration, were simulated using measured data input

into the sun and sky radiation module created beforehand. This

module employs simulated light rays to trace the transmission,

reflection, and refraction of each ray encountering daylily plants,

calculating and recording the light interception of each leaf in the

canopy. Subsequently, other modules were invoked to further

calculate leaf temperature, photosynthetic rate (photosynthesis

module), real-time source–sink relationships (source–sink

relationship module), and the growth status and fresh weight of the

leaves, scapes, and buds (daylily morphology simulation module).
2.4 Statistical analysis of simulated data

This study used the partial least squares path modeling (PLS-

PM) approach to analyze simulated datasets (all datasets were

compiled into one single CSV file). PLS-PM is a variance-based

structural equation modeling technique that allows for the analysis

of complex cause–effect relationships in systems with multiple

dependent and independent variables. This method is particularly

suited for exploratory research and for building predictive models

when theoretical knowledge is complicated. PLS-PM consists of two

models: the measurement model, which defines the relationships

between simulated data (such as W+N row distance, density, plant

distance) and latent variables (e.g., row distance, leaf radiation, or
Frontiers in Plant Science 07
leaf photosynthesis), and the structural model, which specifies the

relationships between latent variables. In the realm of agricultural

research, PLS-PM has been employed to analyze and predict the

impacts of different agronomic practices on crop performance.

Studies have utilized PLS-PM to investigate the effects of

irrigation techniques on crop yield, the influence of soil

amendments on plant growth, and the correlations between

canopy structure and photosynthetic efficiency (Xiao et al., 2022;

de Morais et al., 2023). By utilizing PLS-PM, this study aims to

provide a detailed understanding of how different planting

configurations influence the physiological traits of daylily plants,

ultimately aiding in the optimization of cultivation practices.
3 Results

3.1 Simulation and validation of the growth
status of various organs of daylily plants at
different growth stages and bud yield

Figure 3 presents the visual representation of plant populations

at three growth stages in the daylily FSPM. The model calculates the

light interception of each leaf, subsequently utilizing the assimilates

produced by leaf photosynthesis as source terms in the storage

organ model to supply the growth requirements of various organs

such as the leaves, scapes, buds, and roots.

This study monitored the growth of each daylily leaf, scape, and

bud in the order of appearance, calculating the tm (time of

maximum linear growth rate) and te (time of growth cessation

when the organ reaches its maximum size or mass) using the b
growth function of each leaf, scape, and bud. Subsequently, the

simulations were conducted based on the final length of the leaves.

The monitoring data of the aboveground organs’ growth status in

daylily plants were used to calibrate the source–sink relationship

model. Since the daylily leaves are narrow and arranged in opposite,

with leaf organs appearing in sequence, the time interval between

leaf groups is longer than within the opposite pair, resulting in the

appearance of paired growth states as shown in Figure 4. The

simulation of inflorescence growth is similar to that of daylily

leaves. The inflorescence begins elongating at the early budding

stage (day 137) and grows to its maximum length (1.19 m) by the

mid-flowering harvest stage (day 215). The model simulated an

average number of 40 buds on the inflorescence, with the average

length of the flower increasing from the early flowering harvest

stage to the mid-late harvest stage (average length of the buds: 0.128

m, total fresh weight per plant: 171.42 g).

The results, as shown in Table 2, indicate that the coefficients of

determination (R2) between the measured and simulated

morphological data of daylily organs range from 0.896 to 0.984,

with RMSE values ranging from 0.01 to 0.18 m. The R2 for the

average fresh weight of buds is 0.88, with an RMSE of 0.50 g.

Additionally, the overall sample F-values range from 82.24 to

1,168.53, all with significance values less than the significance

level of 0.05, indicating a satisfactory degree of model fit.
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TABLE 1 Detailed configurations of the daylily canopy modeling scenarios.

ID
Planting
pattern

Wide
row (m)

Narrow
row (m)

Wide row + narrow
row (m)

Plant spacing (m)
Initial planting
density (plants·ha−1)

1 DRBR 1.6 0.2

1.8 0.15 74,0002 ER 0.9 0.9

3 NWR 1.2 0.6

4 DRBR 1.4 0.2

1.6 0.15 83,0005 ER 0.8 0.8

6 NWR 1.1 0.5

7 DRBR 1.2 0.2

1.4 0.15 95,0008 ER 0.7 0.7

9 NWR 1 0.4

10 DRBR 1.4 0.2

1.6 0.2 63,00011 ER 0.8 0.8

12 NWR 1.1 0.5

13 DRBR 1.2 0.2

1.4 0.2 72,00014 ER 0.7 0.7

15 NWR 1 0.4

16 DRBR 1 0.2

1.2 0.2 83,00017 ER 0.6 0.6

18 NWR 0.8 0.4

19 DRBR 0.8 0.2

1 0.2 100,00020 ER 0.5 0.5

21 NWR 0.6 0.4

22 DRBR 1 0.2

1.2 0.25 67,00023 ER 0.6 0.6

24 NWR 0.8 0.4

25 DRBR 0.8 0.2

1 0.25 80,00026 ER 0.5 0.5

27 NWR 0.7 0.3

28 DRBR 0.6 0.2

0.8 0.25 100,00029 ER 0.4 0.4

30 NWR 0.5 0.3

31 DRBR 0.8 0.2

1 0.3 67,00032 ER 0.5 0.5

33 NWR 0.7 0.3

34 DRBR 0.6 0.2

0.8 0.3 83,00035 ER 0.4 0.4

36 NWR 0.5 0.3
F
rontie
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DRBR, double row with big ridge; ER, equidistant row; NWR, narrow–wide row.
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3.2 Daylily canopy configuration analysis

Based on the simulated output of the model, a representative

indicator reflecting the merits of daylily planting configurations is the

fresh weight of daylily buds. As depicted in Figure 5A, within the

three planting patterns, the yield per individual daylily plant in

the DRBR planting pattern exhibits the greatest fluctuation with

changes in plant spacing, with the highest individual plant yield

occurring in the DRBR planting pattern. The ER planting pattern

demonstrates the highest mean yield per individual daylily plant

(121.5 g·plant−1), while the data dispersion of the NWR planting

pattern is the lowest among the three planting patterns. Figure 5B

illustrates the variation in individual daylily plant yield with

increasing planting density. It is observed that when the planting

density remains at 72,000 plants·ha−1, the individual daylily plant

yield consistently maintains higher values (with an average of 166.0

g·plant−1) compared to other planting densities. Figure 5C depicts the
Frontiers in Plant Science 09
variation in individual daylily plant yield with increasing W+N row

values. It is evident from the graph that as the row spacing increases,

the individual daylily plant yield shows an upward trend, with the

scenario of W+N row = 1.6 m performing the best. Figure 5D

illustrates the variation in individual daylily plant yield with

increasing plant spacing. It is observed that the highest mean peak

occurs at a plant spacing of 0.2 m (with an average of 118.4 g·plant−1),

although the yield data for the 0.2-m plant spacing scenario exhibit

considerable fluctuations, followed by the 0.15-m spacing scenario.

In practical cultivation, besides the individual bud weight of

daylilies, the average length of daylily buds is another crucial

indicator affecting daylily sales volume. Generally, daylilies with

an average bud length of 12 cm are considered to be of high quality.

Figure 6A illustrates the average bud length of daylilies under all

simulated scenarios. It can be observed from the figure that the

average lengths of daylily buds in scenarios with simulation IDs 5,

10, 11, 13, and 14 exceed 12 cm, indicating good quality. Figure 6B
FIGURE 3

Screenshots of three simulated planting patterns for daylily plants during three growth stages [the seedling growth period (A), the flower scape
emergence period (B), and the flowering period (C)], namely, the double row big ridge (DRBR), equidistant row (ER), and narrow–wide row (NWR).
Corresponding to scenario ID = 13, with a planting density of 72,000 plants·ha−1, a wide row spacing of 1.2 m, a narrow row spacing of 0.2 m, and a
plant spacing of 0.2 m.
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presents the final total yield of daylilies under all simulated

scenarios. The simulation scenarios with yields per hectare greater

than or equal to 35 tons are IDs 5, 6, 7, 13, and 14, totaling five

scenarios. Combining the results of both simulations, scenarios 5,

13, and 14 meet the requirements for both daylily bud length and

total yield. Among them, scenario 13 is the most commonly used

planting scenario in production, while scenario 5 is identified as the

optimal scenario based on the simulation results.

The three optimal scenarios were selected for comparison.

Figure 7 illustrates the comparison of daily leaf photosynthetic

radiation and photosynthetic rate among the three scenarios. As

depicted in Figure 7A, scenarios 5 and 14 exhibit superior

performance to scenario 13 during the transition from the seedling

growth stage to the flower scape emergence stage (days 130–150),

with average values of light interception ID5 = 39.41 mmol·m−2·s−1,

ID13 = 34.53 mmol·m−2·s−1, and ID14 = 38.58 mmol·m−2·s−1.

Likewise, Figure 7B shows a similar trend, with particularly notable

photosynthetic performance during days 140 to 150. During the

flowering stage, approximately days 210 to 220, the order of

performance is ID5 > ID13 > ID14 (ID5 = 46.18 mmol·m−2·s−1,

ID13 = 41.98 mmol·m−2·s−1, and ID14 = 36.38 mmol·m−2·s−1), as

observed in Figure 7B, with respective rates of ID5 = 1.58

mmol·m−2·s−1, ID13 = 1.56 mmol·m−2·s−1, and ID14 = 1.41

mmol·m−2·s−1. These results indicate that ID5 maintains relatively

higher levels of leaf light interception and photosynthetic rate during

the two critical periods of yield formation.
TABLE 2 Comparison between measured and simulated values of
morphological and yield indices of growth processes for various organs
in daylily.

Category R2 RMSE F-value Significance

Leaf rank1 0.98 0.03 304.05 1.14 × 10−5

Leaf rank2 0.94 0.06 82.24 2.73 × 10−4

Leaf rank3 0.98 0.06 344.19 3.28 × 10−7

Leaf rank4 0.94 0.08 106.81 1.72 × 10−5

Leaf rank5 0.92 0.14 109.31 1.06 × 10−6

Leaf rank6 0.94 0.11 166.14 5.56 × 10−8

Leaf rank7 0.92 0.18 158.66 5.01 × 10−9

Leaf rank8 0.90 0.14 138.52 2.72 × 10−9

Leaf rank9 0.92 0.15 209.28 1.04 × 10−11

Leaf rank10 0.92 0.14 241.89 1.23 × 10−12

Leaf rank11 0.95 0.15 453.90 5.51 × 10−18

Leaf rank12 0.90 0.16 261.31 9.91 × 10−16

Leaf rank13 0.92 0.14 406.90 1.70 × 10−20

Flower scape length 0.97 0.09 1,168.53 6.49 × 10−28

Average bud length 0.91 0.01 212.88 4.01 × 10−12

Average bud weight 0.88 0.50 147.55 1.10 × 10−10
FIGURE 4

The growth status of each organ throughout the entire plant growth cycle simulated by the daylily FSPM. Note: For better readability of the chart,
the length curves are not further drawn shortly after the maximum length is reached.
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Figure 8 presents the comparison of daily photosynthetic rates

among the three scenarios on day 142. From the graph, it is evident that

under scenario ID5, the number of leaves with a daily photosynthesis

rate approaching 3 mmol·m−2·s−1 is significantly higher compared to

scenarios ID13 and ID14. Moreover, peak photosynthetic rates mainly
Frontiers in Plant Science 11
occur in the upper part of the canopy. Scenario ID13, possibly due to its

configuration of large ridges with double rows, exhibits more

pronounced shading among plants on the ridges compared to ID5.

Consequently, the photosynthetic rate in the upper part of the canopy

is not notably high. Both ID14 and ID5 are treated with equal row
FIGURE 6

The final average length of daylily buds under various simulated scenario conditions (A). The total yield of daylily buds under different simulated
scenario conditions (B).
FIGURE 5

The variations in daylily yield in response to changes in three planting patterns (A), increased planting density (B), the introduction of wide row
+narrow row (W+N row) (C), and adjustments in plant spacing (D) are examined.
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spacing, with ID14 having a smaller interrow spacing of 0.1 m and a

larger plant spacing of 0.05 m compared to ID5. As shown in Figure 8,

the reduction in interrow spacing in ID14 leads to a greater negative

impact on photosynthetic rates compared to the increase in plant

spacing by 0.05 m. In the case of ID13, the photosynthetic rates in the

lower part of the canopy are relatively low, generally below or equal to

1.2 mmol·m−2·s−1.
3.3 Partial least squares path
modeling analysis

To enhance the generalizability of the findings, the PLS-PM

method was employed to analyze the interrelationships and causal

links between the vegetation configuration characteristics

(including planting pattern, row distance, plant spacing, and

density) and the physiological features of canopy leaves and buds

(including leaf radiation, leaf temperature, leaf photosynthesis, bud

length, and dry mass) for all simulated scenarios. The model results

indicate that Cronbach’s alpha values are all greater than 0.7,

composite reliability values are all greater than 0.7, and the

average variance extracted (AVE) is greater than 0.5, confirming

the reliability of the model results (Table 3).

The analysis reveals that increasing row distance has a relatively

pronounced positive effect on canopy light interception (0.460,

Figure 9), while it has a negative impact on canopy leaf

temperature (−0.364). Moreover, it has a positive effect on canopy

leaf photosynthesis (0.496) and bud growth (0.488) (Table 4).

Changing the planting pattern (from DRBR to ER to NWR) has a

positive effect on canopy light interception (0.083) and forms a

weakly positive effect on bud yield (0.088). Increasing plant spacing

in all simulated scenarios leads to a reduction in canopy leaf light

interception and leaf temperature (−0.018), with insignificant effects

on bud yield (−0.019). Increasing plant density can have a noticeable

negative impact on canopy leaf light interception, leaf temperature,

and leaf photosynthesis (−0.330, −0.213, and −0.357, respectively),

and it can result in a decrease in individual bud yield (−0.351).
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4 Discussion

4.1 Daylily growth model based on
source–sink relationships

In the presented growthmodel, external climatic variations directly

influence the daily growth status of the virtual daylily plants. Altering

input parameters such as cloud cover, temperature, relative humidity,

and CO2 concentration, as well as planting configurations and density,

directly impacts the growth status of virtual leaves and flower scapes

and even influences the yield of buds during flowering and harvesting

periods (i.e., the average length of bud organs). In contrast to other

studies on three-dimensional plant population morphology (e.g.,

Chang et al., 2023), this research not only achieves three-dimensional

visualization of daylily organs, individuals, and populations but also

establishes light and physiological models and source–sink relationship

models tailored for species in the Hemerocallis family. This enables

precise simulation of daylily yield, rendering the study more

comprehensive and detailed than previous research.

Simulations of photosynthetic characteristics in the leaves

demonstrate higher rates in early spring due to the gradual emergence

and growth of new leaves, with unobstructed sunlight between smaller

seedlings. However, considering actual climatic conditions and

various planting configurations, actual net photosynthetic rates tend to

be lower than ideal conditions, with simulated net assimilation rates

ranging mostly between 0.5 and 2.5 mmol CO2·m
−2·s−1, aligning closely

with the findings of Geng et al. (2023).

While the presented model offers valuable insights into the

growth dynamics and yield optimization of daylily plants, it is

crucial to recognize its limitations and underlying assumptions. The

model’s validation was conducted using field data from a specific

region (Datong, Shanxi Province, China), potentially restricting its

generalizability to other areas with differing climatic conditions

(e.g., different soil types and fertility, water availability, and

irrigation practices). To enhance the model’s robustness and

applicability, future studies should aim to validate it across a

diverse range of geographic locations. Additionally, our model
FIGURE 7

Comparison of daily average solar radiation (A) and photosynthetic rate (B) in three scenarios (ID = 5, 13, 14).
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TABLE 3 Construct reliability and validity.

Cronbach’s
alpha

Composite reliability
(rho_a)

Composite reliability
(rho_c)

Average variance
extracted (AVE)

Bud 1.000 1.000 1.000 1.000

Leaf radiation 0.934 0.958 0.944 0.580

Leaf temperature 0.728 0.706 0.762 0.509

Row distance 0.780 0.720 0.797 0.587

Leaf photosynthesis 0.936 0.952 0.946 0.584
F
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FIGURE 8

Comparison of daily average photosynthetic rates for different simulated scenarios on the 142nd day: (A) ID = 5, (B) ID = 13, and (C) ID = 14.
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relies on several assumptions concerning physiological processes

and growth parameters. For instance, the SLA and growth

respiration rates are presumed constant, which may not be

accurate under varying environmental conditions. Future research

should concentrate on refining these parameters based on empirical

data. Furthermore, the simulation results are subject to

uncertainties due to the stochastic nature of climatic inputs and

the simplifications inherent in the model. For example, the sun and

sky radiation module assumes uniform cloud cover, which may not

accurately represent actual weather patterns.
4.2 Relations between canopy
configuration and bud production

In practical agricultural production, the limited land available to

farmers necessitates a scientific approach to achieving high yields

and quality in daylily cultivation. Balancing density and yield

optimally becomes a pressing concern. Thus, we established the

commonly used planting density of 72,000 plants·ha−1 in Datong, a

major Chinese daylily production area, as the baseline, ranging

from 63,000 to 100,000 plants·ha−1. Various planting patterns and
Frontiers in Plant Science 14
TABLE 4 Specific indirect effects between the latent variables.

Specific indirect effects Specific
indirect
effects

Density -> leaf temperature -> leaf photosynthesis 0.025

Planting pattern -> leaf radiation -> leaf temperature -> leaf
photosynthesis -> bud

−0.007

Leaf radiation -> leaf temperature -> leaf photosynthesis −0.089

Plant spacing -> leaf temperature -> leaf photosynthesis 0.063

Row distance -> leaf radiation -> leaf photosynthesis -> bud 0.488

Planting pattern -> leaf temperature -> leaf photosynthesis 0.003

Row distance -> leaf temperature -> leaf photosynthesis
-> bud

0.041

Row distance -> leaf temperature -> leaf photosynthesis 0.042

Row distance -> leaf radiation -> leaf temperature -> leaf
photosynthesis -> bud

−0.040

Density -> leaf radiation -> leaf temperature -> leaf
photosynthesis -> bud

0.029

(Continued)
FIGURE 9

The physiological simulation data and morphological simulation data for all simulated scenarios were statistically analyzed using the partial least
squares path modeling (PLS-PM) method implemented in SMARTPLS 4.0 software. In the graphical representation, yellow squares represent all
simulated data, blue circles represent latent variables for different vegetation configurations, while other colored circles represent latent variables for
leaf light, temperature, photosynthesis, and bud yield.
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row spacings were simulated to analyze the effects of different

densities. Our findings indicate that while planting patterns

influence daylily bud yield, the impact is relatively modest,

echoing similar conclusions found in other studies. For example,

various planting methods influence wheat crop yield to a restricted

extent, wherein the application of plastic film and wheat straw

mulching exhibits the potential for augmenting wheat yield and

improving water utilization efficiency in arid locales (El-Hendawy

et al., 2022). However, factors such as competition among plants,

soil types, and water management could influence daylily growth

and yield. These potential confounding variables might differ

among planting patterns, affecting the reliability of our results.

Future research should control these variables or reduce their

impact through experimental design and statistical analysis
Frontiers in Plant Science 15
methods. Notably, alterations in row spacing (W+N row) tend to

increase individual plant yield, whereas plant spacing exhibits no

discernible pattern. This observation aligns with our PLS-PM

analysis (Figure 9) and findings in rice cultivation, where wider

spacing of single seedlings has been shown to enhance yield under

specific water regimes (Mishra and Salokhe, 2010). Regarding

planting density, overall individual daylily plant bud yield

gradually decreases with increasing density, mirroring findings in

corn cultivation, where higher densities may not yield net benefits

(Murphy et al., 1996). However, individual plant yield does not

directly correlate with total yield. Thus, this study compares and

selects the optimal basic planting configuration (ID5: density of

83,000 plants·ha−1, row spacing of 0.8 m, equal row, and plant

spacing of 0.15 m) by evaluating the average bud length and total

yield across all scenarios. Detailed comparisons of daily average

radiation and photosynthetic rates throughout the growth cycle

reveal that ID5 consistently outperforms other scenarios (ID13,

ID14) during key periods of bud yield formation. This underscores

why ID5 emerges as the optimal planting pattern. Thus, our result

indicates that, compared to the commonly used initial planting

density of 72,000 plants·ha−1 in practical agriculture (yielding 37

tons·ha−1), the ID5 scenario with a density of 83,000 plants·ha−1

increases the planting density by 11,000 plants·ha−1 and achieves a

yield of 43.1 tons·ha−1, thus enhancing the yield by 6.1 tons·ha−1.

This significantly improves daylily productivity while minimizing

land use.
5 Conclusion

Reasonable planting patterns are crucial guarantees for high and

superior yields of daylilies. Three-dimensional dynamic growth

simulation of daylily plants comprehensively presents and expresses

the entire process from perceiving external environmental stimuli to

germination, growth, and eventual formation of plant morphology

and yield. This study focuses on daylily in northern China, utilizing

measured data on outdoor climatic conditions, plant growth

morphology, and photosynthetic physiology to analyze the

quantitative relationships within the daylily source–sink system.

Employing the b growth function, growth changes of daylily leaves,

scapes, and buds are simulated to construct a dynamic functional–

structural growth simulation model of Hemerocallis plants. This

model facilitates the simulation of daylily bud yields under 36

planting configurations, encompassing three planting patterns, six

row spacing patterns, four plant spacings, and 10 initial planting

densities. An optimal planting scheme has been identified, the results

indicate that scenario ID5, with a density of 83,000 plants·ha−1, a row

spacing of 0.8 m, and equidistant planting, with a plant spacing of

0.15 m, yields the optimal solution. Furthermore, it is observed that

an increase in W+N row spacing to a certain extent accompanies an

increase in yield. While planting patterns do influence daylily yield to

a certain extent, the extent of this influence is limited, and there is no

apparent regularity in the effect of plant spacing on individual plant

yield. The simulation results of this study can similarly be applied to

other Hemerocallis crops.
TABLE 4 Continued

Specific indirect effects Specific
indirect
effects

Density -> leaf temperature -> leaf photosynthesis -> bud 0.024

Plant spacing -> leaf radiation -> leaf temperature -> leaf
photosynthesis -> bud

0.002

Planting pattern -> leaf radiation -> leaf temperature ->
leaf photosynthesis

−0.007

Density -> leaf radiation -> leaf photosynthesis -> bud −0.351

Leaf radiation -> leaf temperature -> leaf photosynthesis
-> bud

−0.087

Plant spacing -> leaf temperature -> leaf photosynthesis
-> bud

0.062

Plant spacing -> leaf radiation -> leaf photosynthesis -> bud −0.019

Density -> leaf radiation -> leaf temperature −0.254

Density -> leaf radiation -> leaf photosynthesis −0.357

Plant spacing -> leaf radiation -> leaf temperature −0.014

Planting pattern -> leaf radiation -> leaf temperature 0.064

Row distance -> leaf radiation -> leaf temperature 0.353

Plant spacing -> leaf radiation -> leaf photosynthesis −0.020

Planting pattern -> leaf radiation -> leaf photosynthesis
-> bud

0.088

Density -> leaf radiation -> leaf temperature ->
leaf photosynthesis

0.029

Planting pattern -> leaf radiation -> leaf photosynthesis 0.090

Planting pattern -> leaf temperature -> leaf photosynthesis
-> bud

0.003

Row distance -> leaf radiation -> leaf photosynthesis 0.496

Plant spacing -> leaf radiation -> leaf temperature ->
leaf photosynthesis

0.002

Row distance -> leaf radiation -> leaf temperature ->
leaf photosynthesis

−0.041

Leaf radiation -> leaf photosynthesis -> bud 1.063

Leaf temperature -> leaf photosynthesis -> bud −0.114
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