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Rapid detection of plant phenotypic traits is crucial for plant breeding and

cultivation. Traditional measurement methods are carried out by rich-

experienced agronomists, which are time-consuming and labor-intensive.

However, with the increasing demand for rapid and high-throughput testing in

tea plants traits, digital breeding and smart cultivation of tea plants rely heavily on

precise plant phenotypic trait measurement techniques, among which

hyperspectral imaging (HSI) technology stands out for its ability to provide

real-time and rich-information. In this paper, we provide a comprehensive

overview of the principles of hyperspectral imaging technology, the processing

methods of cubic data, and relevant algorithms in tea plant phenomics, reviewing

the progress of applying hyperspectral imaging technology to obtain information

on tea plant phenotypes, growth conditions, and quality indicators under

environmental stress. Lastly, we discuss the challenges faced by HSI

technology in the detection of tea plant phenotypic traits from different

perspectives, propose possible solutions, and envision the potential

development prospects of HSI technology in the digital breeding and smart

cultivation of tea plants. This review aims to provide theoretical and technical

support for the application of HSI technology in detecting tea plant phenotypic

information, further promoting the trend of developing high quality and high

yield tea leaves.
KEYWORDS

hyperspectral imaging, tea plants, plant phenomics, high-throughput, rapid detection,
environmental stress
1 Introduction

As a popular beverage crop, tea plants are extensively cultivated in regions including

Asia and Africa. For instance, over seventy million labors in China are engaged in tea-

related industries in 2020, and the income of them is closely related to the yield and quality

of tea product. In modern agricultural science, digital breeding and precision cultivation
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technologies emerged to obtain specific phenotypic traits of tea

plants, and thus to promote tea production (Lu et al., 2020; Wang

et al., 2023). The digital breeding mainly focuses on interpreting the

genetic foundation of the tea plant phenotypic traits, while the

precision cultivation technology is to unveil the regulatory network

between the tea plant phenotyping and environment factors.

Therefore, it can also be seen that the phenotype of tea plants is

affected by the synergistic regulation of genetic material and

environment. Unlike cereal crops and other horticultural plants,

tea plants are typical foliar plants with unique phenotypic indices of

interest. For instance, leaf area in tea plants correlates directly with

yield to some extent, and the morphology of tea buds serves as a

criterion in the grade evaluation of Chinese green tea. The content

of polyphenols and theanine in leaves significantly influences the

suitable processing methods for tea leaves and plays a critical role in

the flavor and taste profile of the tea. In sum, the phenotype

information of tea plants encompasses aspects such as

environmental stress responses, growth status, and quality traits,

characterized by rich connotations and target-oriented traits.

Compared to genetic breeding and cultivation techniques,

traditional phenotypic detection in plants researches is usually

performed manually, which is less efficient, highly dependent on

experienced professionals, time-consuming, and labor-intensive.

Especially in the determination of biochemical components in plants,

wet chemistry method leads to “Phenotyping bottleneck” (Watt et al.,

2020; Tao et al., 2022). In order to meet the need of high-throughput

rapid detection of plant phenotyping, hyperspectral imaging

technology has been paid more attention by researchers.

Hyperspectral imaging (HSI) technique can be used to invert plant

traits based on the changes of plant optical properties, and can collect

multi-modal data of spectra and space information, which is especially

suitable for simultaneous monitoring of some plant traits. Combined

with machine learning and artificial intelligence technologies, HSI

technology enables automated and precise detection of plant

phenotypes, which has the potential to enhance the efficiency of

detection, reduces artificial error, and provide more objective and

accurate presentation of plant traits (Atefi et al., 2021).

In recent years, as a powerful manner for detecting plant

information, hyperspectral imaging technology has been

extensively applied in tea plant phenotyping researches, involving

environmental resistant, physiological, and biochemical traits.

However, many challenges are faced by HSI technology to further

promote the application in digital breeding and precision

cultivation research. For example, it is necessary to deeply

understand the relationship between tea plant phenotypic traits

and hyperspectral information, and comprehensively analyze its

feasibility and limitations for phenotyping. Hence, we elucidate the

principles of hyperspectral imaging technology and summarize

typical workflows and related algorithmic techniques for

hyperspectral data analysis. Based on these previous studies, we

categorize the application of hyperspectral imaging technology in

tea plant phenotyping into environmental stress responses, growth

status, and quality traits. Simultaneously, we discuss the current

challenges faced when using HSI technology in the detection of tea

plant phenotypic information and potential future trends.

Our aim is to comprehensively summarize the current state of tea
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plant phenotypic information detection researches using

hyperspectral imaging technology and provide in-depth

commentary and suggestions on the current predicaments in the

analysis of tea plant phenotyping.
2 Principles of hyperspectral imaging
technology for tea plant
phenotypic detection

Hyperspectral imaging technology combines spectroscopy and

computer vision, which is able to measure the optical absorption,

scattering, and reflectance properties of plant tissues and organs

across a wide variety of wavelengths, to perform quantitative

analyses and qualitative assessments for key agronomic traits such

as the growth status, yield, and quality of tea plants. In the visible to

near-infrared spectral wavelength (400-2500nm), this technology

captures the molecular vibration information of plant biochemical

components with hydrogen-containing groups, like chlorophyll and

other photosynthetic pigments (Slaton et al., 2001; Tang et al.,

2024). In addition, hyperspectral imaging technology also has the

ability to monitor the spatial distribution of plant phenotypic traits

at different scales, from cells, organs, individuals to populations, as

shown in Figure 1 (Mahlein, 2016; Kuswidiyanto et al., 2022).

Therefore, hyperspectral data is always stored in the format of a

multi-dimensional cube, as its spectral dimension records chemical

component content in plant leaf, while the spatial dimension details

the distribution of various compositional contents of canopy, or the

morphological structures of tea plant and epidemic range of pests

and diseases. For instance, by utilizing visual representations of

moisture distribution in tea leaves, one can observe the water

content at each pixel level in a more intuitive and comprehensive

manner, thereby offering an innovative approach for assessing

irrigation needs of tea plants (Sun et al., 2019).

In the plant phenomics research field, the principles of plant

phenotyping using hyperspectral imaging technology can be

divided into direct and indirect manners (Zhang N. et al., 2020).

In the study of detecting the content of water and polyphenols in

leaves by hyperspectral imaging technology, since water and

polyphenols have strong absorption peaks in the near-infrared

spectral band, a mathematical model between the absorbance of

tea leaves and the content of water and polyphenols can be directly

constructed, which belongs to direct detection methods. In plant

pest detection studies, plant leaves often appear different forms of

disease spots, necrotic or wilted areas after being infected by germs,

and the content and activity of pigments would be reduced,

resulting in an increase in the reflectivity of the visible region,

while the red edge (670-730nm) moves to the shortwave direction

(Bai et al., 2020). In these process of plant infestation by pests and

diseases, the spectral response is related to the symptoms on plant

pigment, water, leaf area and other biochemical substances caused

by diseases and pests, which belongs to indirect detection methods.

Compared to direct detection, the precision of indirect detection is

commonly susceptible to variations influenced by plant species, age,

and even the cultivation environment, resulted in necessary to

recalibrate the detection model in a period of time. However, this
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method can reflect the relationship between different traits of

plants, as well as the influencing factors and evolution rules.
3 The workflow of HSI application in
tea plant phenotypic analysis

No uniform standard workflow for hyperspectral data processing

in tea plants has been established. However, drawing upon a

summary of previous researches in detecting tea plant phenotypic
Frontiers in Plant Science 03
information using hyperspectral imaging technology, the entire data

processing workflow can generally be divided into four steps: data

acquisition, data preprocessing, data analysis, and data application

(Figure 2) (Li et al., 2013; Paulus and Mahlein, 2020).
3.1 Hyperspectral data acquisition

Hyperspectral imaging systems are usually deployed on diverse

platforms such as satellites, airplanes, unmanned aerial vehicles
FIGURE 1

Multi-scale hyperspectral data measurement scheme.
FIGURE 2

Workflow of hyperspectral data processing.
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(UAVs) and ground-based fixed equipment, which is typically

composed of components like light sources, optical lens, imaging

spectrometers, photoelectric detector, and computer data processing

systems (Lu et al., 2020). In the process of capturing optical

characteristic information of tea plants, samples are illuminated by

either natural or artificial light sources (such as halogen lamps), and

the optical lens gathers the reflected light from the samples. This

reflected light is split into different wavelengths by a diffraction

grating element within the spectrometer, and photoelectric detector

subsequently transform these light intensity into electrical signals.

Finally, computer data processing systems acquire and process these

electrical signals, transform them into digital signals, and form a

spectrum of target plant (Mishra et al., 2017).

There are mainly four hyperspectral data collection methods:

point scanning, line scanning, area scanning, and snapshot

(Figure 3). Point scanning (whisk-broom) acquires spectral

information pixel by pixel, providing high hyperspectral

resolution, its slow speed requires a highly stable platform to

avoid image blurring and distortion. Line scanning (push-broom),

currently the most commonly used scanning method, captures one

row of pixels at a time, balancing spatial and spectral resolution, but

care should be taken to minimize motion artifacts during the

acquisition process. Area scanning (staring) uses bandpass filters

to capture image data for individual bands, scanning band by band

to construct a hyperspectral data cube, providing high spatial
Frontiers in Plant Science 04
resolution images, but the scene must be kept stationary during

acquisition to ensure the accuracy of the localization and spectral

information. Snapshot technology can simultaneously capture

spatial and spectral information of the entire scene. A single

snapshot represents a perspective projection of the data cube,

from which its three-dimensional structure can be reconstructed.

However, as this technique is at an early stage of development, the

captured images often exhibit comparatively low spatial and

spectral resolution (Hagen and Kudenov, 2013). Based on their

respective detection principles, each mode has its own set of

advantages and weaknesses for practical application. With an in-

depth understanding of the basic principles of each imaging modes,

we are able to flexibly choose the appropriate acquisition manner in

various acquisition environments to maximize the imaging

requirements and improve the data acquisition efficiency. In this

case, different data collection methods also make it difficult to

standardize data, so it is necessary to build a hyperspectral

phenotyping data sharing platform, which not only facilitates the

global exchange of raw data and processing methods, so as to

maintain the consistency of data (Xu et al., 2020; Sun et al., 2022).

Despite continuous advancements in hyperspectral imaging

technology, the high resolution it offers comes with significant

costs that may detract from its cost-effectiveness compared to

other spectral sensing techniques. Nevertheless, as optical

technologies continue to evolve, these economic barriers are
FIGURE 3

Four modes of hyperspectral data acquisition.
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expected to be progressively mitigated, thereby fostering the

mainstream adoption of hyperspectral imaging in precision

agriculture, environmental monitoring, and beyond.
3.2 Hyperspectral data preprocessing

Before the spectral domain analysis of hyperspectral data, it is

necessary to segment the image data in the spatial domain to extract

the spectral and spatial characteristics of the target. Image

segmentation aims to effectively differentiate various substances

or objects within an image, dividing them into mutually

independent regions, with each region consisting of a collection

of pixels that share certain similar characteristics and attributes. For

the detection of plant phenotypic information, such operation is to

generate masks to accurately demarcate regions of interest (ROI),

thus eliminating irrelevant or even possible interference

information (ElMasry et al., 2009). Common strategies for image

segmentation include threshold segmentation, morphological

processing, edge segmentation and spectral image segmentation

(Tripathi et al., 2012; Wu and Sun, 2013). Typically, before

implementing hyperspectral image segmentation, a single band

sub-image with the greatest contrast against the background is

selected and segmented to serve as a mask for excluding background

pixels (Wang et al., 2020d). In the case of threshold segmentation,

an appropriate threshold is set to convert a grayscale image into a

binary image mask, to extract hyperspectral data of target object

based on its position in the image.

When measuring plant spectral data using a hyperspectral

imaging system, interference noise caused by variations from the

collection instrument, light source, and environmental conditions is
Frontiers in Plant Science 05
often encountered (Mishra et al., 2020; Çetin and Yıldız, 2022).

Depending on the characteristics, noise typically manifests as

continuous disturbances or transient spikes in the data. The

Savitzky-Golay (S-G) filter algorithm (Steinier et al., 1972), widely

used for smoothing, effectively removes the noise while preserving

the overall trend of the data by fitting a polynomial to the input

signal, while the limited effects in removing low-frequency noise

from spectral data. During practical measurement, the appearance

of multi-source noise in spectral data may be accompanied by

baseline drift (Zhang and Wang, 2023). Derivative algorithms can

realize the correction of baseline effects on the basis of removing

background interference and reduce the impact of baseline drift.

Nevertheless, directly applying a high-order derivative process to

spectral data with a low original signal-to-noise ratio might amplify

the noise present in the spectrum (Yan et al., 2000; Chu et al., 2004).

Therefore, for spectra with low signal-to-noise ratios, the derivative

algorithm needs to be used with caution, and noise smoothing or

other preprocessing steps may need to be applied before proceeding

to minimize potential noise effects. Moreover, the complex tissue

structure and surface microfeatures of tea plants can lead to non-

uniform scattering of light at different locations, resulting in various

scattering effects. Standard Normal Variate Transformation (SNV)

(Barnes et al., 1989) and Multiplicative Scatter Correction (MSC)

(Wu et al., 2019) are commonly used to correct scattering effects.

The MSC algorithm adjusts scattering effects in spectra by

comparing the ratio of sample spectra to reference spectra (Geladi

et al., 1985), while the SNV algorithm performs mean subtraction

and standard deviation division at each wavelength to transform the

spectral data into a standard normal distribution. Both algorithms

can eliminate scattering effects and spectral differences caused by

baseline drift, reducing noise interference encountered during
TABLE 1 Common preprocessing algorithms used in hyperspectral imaging technology for tea plant phenotypic information detection.

Common preprocess-
ing algorithms Functions References

Algorithms Abbreviations

Normalization -

Elimination of redundant information, resulting in better interpretability and comparability
of data

(Chu et al., 2004)Standardization -

Mean Centering -

Orthogonal
signal correction

OSC
Filtering out irrelevant information and retaining the main information in the

original spectrum
(Wold et al., 1998)

Savitzky-
Golay smoothing

S-G
Preserving the essential information and the morphology of the signal while reducing

random high-frequency noise in the spectral data
(Steinier et al., 1972)

Moving
average smoothing

-

Standard normal
variate transformation

SNV

Elimination of non-uniform scattering due to heterogeneity of tea plant surfaces

(Barnes et al., 1989)

Multiplicative
scatter correction

MSC (Wu et al., 2019)

Derivative 1st Der,2nd Der
Eliminating baseline effects and removing background interference for improved resolution

and sensitivity
(Chu et al., 2004)

De-trending DT Eliminating baseline drift, baseline tilt and curvature (Wold et al., 1998)
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derivative algorithm processing. To showcase the characteristics of

commonly used preprocessing algorithms in hyperspectral imaging

techniques for tea plant phenotypic analysis, Table 1 provides a

detailed description of the operating mechanism of each

preprocessing technique. To further enhance the effectiveness of

spectral data preprocessing, a combination of various preprocessing

techniques or structural improvements and parameter

optimizations of classical algorithms is commonly employed.

Additionally, machine learning models are increasingly applied to

spectral preprocessing. For instance, autoencoders (AE) utilize self-

supervised learning methods to map noisy inputs to latent variable

space, reconstructing outputs that closely approximate the original

noise-free data, thus achieving automatic denoising (Zhang C. et al.,

2020). The application of these methods not only improves the

accuracy and efficiency of spectral data modeling but also lays a

solid foundation for conducting more complex analyses

and applications.
3.3 Hyperspectral data processing

The huge amount of hyperspectral data often leads to the

complexity of the calculation, which makes it difficult to find

really useful information. It is imperative to select the most

informative features from a multitude of bands and remove

redundant or unnecessary data (Cheng et al., 2022; Omia et al.,

2023). Therefore, prior to establishing relational model between

plant phenotypic trait and hyperspectral data, it is often necessary

to perform dimensionality reduction operations such as feature

selection or feature extraction to address curse of dimensionality of

hyperspectral data. Feature selection is a method of filtering out the

most representative subset of features from the original feature set.

The aim is to preserve information most relevant to the research

objective and eliminate other unrelated features to reduce the

impact of redundancy and noise (Adao et al., 2017). In the

process of analyzing tea plant phenotypic information,

Competitive Adaptive Reweighted Sampling (CARS) and

Uninformative Variable Elimination (UVE) are two commonly

used feature selection methods. The CARS algorithm draws on

the “survival of the fittest” principle and calculates the

competitiveness score of features based on their inter-correlation

within a subset. Li et al. used the CARS algorithm to select 19

representative bands from a dataset of 700 bands, and the

corresponding CARS-PLS model reduces the RMSECV by 0.0433

in terms of detection effectiveness compared to the traditional PLS

model (Li et al., 2009). The UVE algorithm, on the other hand,

selects features with high information gain or chi-square statistic

between the selected target variable and the features as the initial

selection set, and progressively removes the uninformative variables

that do not have a significant impact on the classification

performance (Centner et al., 1996). Feature extraction is the

process of mapping original features onto a new feature space

through a certain transformation method and then selecting key

features that can describe essential characteristics of the original
Frontiers in Plant Science 06
data. The Successive Projections Algorithm (SPA) (Milanez et al.,

2017) is a widely used feature extraction method that sequentially

selects projection directions that maximally retain key

characteristics of the original data, mapping high-dimensional

data into a lower-dimensional subspace to achieve data

dimensionality reduction. In the study of post-harvest fresh tea

leaf quality indicators, the SPA-MLR model constructed via SPA

significantly outperformed other models in optimizing model

performance, demonstrating that the algorithm improves

prediction accuracy while simplifying the modeling process

(Wang et al., 2020b). Above all, these dimensionality reduction

algorithms are data-driven, and it is difficult to explain the physical

meaning behind them. And in fact, hyperspectral imaging

equipment is facing the dilemma of high cost. In response to this

challenge, researchers have ventured into the deployment of

multispectral imaging technology, which is more economically

viable (Tran, 2001; Xu et al., 2023). This technology typically

involves the acquisition of a finite number (usually not exceeding

ten) of discrete broadband (50-200nm) images for target objects. By

amalgamating hyperspectral data with theoretical analysis to

pinpoint wavelength variables associated with specific plant

phenotype indices, multispectral technology emerges as an

efficacious alternative, especially in designing portable

instruments targeted at specific detection objectives (Wang et al.,

2023). Future developments in portable multispectral instruments

not only have the potential to lower the application costs of the

technology but also to broaden the applicability of hyperspectral

technology in agricultural production practices, thereby enhancing

its viability and economic benefits in real-world production

environments (Yang et al., 2021; Saric et al., 2022).

Moreover, in the study of satellite remote sensing and UAV

observation, the construction of vegetation indices is also a

common method for processing hyperspectral data. Typically

formulated through combinations of the differences or ratios of

two or more spectral band variables, vegetation indices serve to

represent one or multiple parameters indicative of vegetation

status (Xue and Su, 2017; He et al., 2023). Typical multispectral

vegetation indices are primarily composed of red and near-

infrared spectral bands, as the red band reflects chlorophyll

content of vegetation, while the near-infrared band is closely

related to the structural characteristics of plant leaves. Such

indices are primarily employed in performing vegetation

monitoring tasks and are capable of mitigating the influence of

background interference to some extent. The advent of

hyperspectral technology broadens the observable spectral range

and offers more refined spectral bands. This enables the

hyperspectral vegetation indices to be used for more detailed

and precise monitoring of general plant phenotypes on the basis

of the original, and to be able to estimate and invert more relevant

phenotypic features (Verrelst et al., 2015; He et al., 2023). For

instance, the utilization of hyperspectral vegetation indices allows

differentiation between vegetation individuals and populations

under various stresses, such as water stress and nutrient

deficiency. The high-precision spectral data thus provided carry
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unparalleled scientific value for grasping the health status of

vegetation, growth dynamics, and even adaptive studies in

response to environmental changes (Fu et al., 2021). Table 2

lists some commonly used hyperspectral vegetation indices in

the research for detecting phenotypic information in tea plants.
3.4 Construction of phenotypic
information detection models

The most critical step in the workflow of tea plants phenotyping

using hyperspectral technology is the construction of math models

between plant traits and plant optical characteristics. As illustrated in
Frontiers in Plant Science 07
Figure 4, a model is established using machine learning techniques,

withmeasured spectral characteristics, spatial features, or fused features

as independent variables, and actual measured phenotypic parameters

of tea plants as dependent variables (Ang and Seng, 2021).

During model construction, we will involve two types of univariate

statistical models and multivariate statistical models. The former

focuses on the statistical analysis of a single variable to reveal

characteristics of the data. In phenotypic studies of tea plants,

univariate statistical techniques typically involve the creation of

spectral feature variables such as vegetation indices variables and

spectral position variables, etc., which reflect phenotypic

characteristics of the tea plants through statistical processing of

specific bands (Sonobe et al., 2018b; Cao et al., 2022b). According to
TABLE 2 Commonly used hyperspectral vegetation indices in the study of tea plant phenotypic information detection.

Vegetation Indices Characteristics and Functions Definition Reference

Structure (LAI, Green biomass, etc.)

Greenness Index GI
Estimate biochemical constituents and LAI at leaf and

canopy levels
R554=R677

(Zarco-Tejada
et al., 2005)

Improved Soil Adjusted
Vegetation Index

MSAVI
A more sensitive indicator of vegetation amount than SAVI at

canopy level
0:5½2R800 + 1 − ((2R800 + 1)2 −

8(R800 − R670))
1=2�

(Qi et al., 1994)

Narrow Band Normalized
Difference Vegetation Index

NBNDVI
Responds to change in the amount of green biomass and more

efficiently in vegetation with low to moderate density
(R874 − R1225)=(R874 + R1225)

(Rouse
et al., 1974)

Hyperspectral
Perpendicular VI

PVIhyp
More efficiently quantify the low amount of vegetation by

minimizing soil background influence on vegetation spectrum
(R1148 − aR807 − b)=(1 + a2)1=2,
where a  =  1:17, b  =  3:37

(Schlerf
et al., 2005)

Normalization or
Standard of the LAIDI

sLAIDI
Sensitive to LAI variation at canopy level with a saturation

point >8
S(R1050 − R1250)=(R1050 + R1250),

where S = 5
(Delalieux
et al., 2008)

Pigments (Chls, Cars)

Leaf Chlorophyll Index LCI
Estimate Chl content in higher plants, sensitive to variation in

reflectance caused by Chl absorption
(R850 − R710)=(R850 + R680) (Datt, 1999)

Modified Chlorophyll
Absorption in

Reflectance Index
MCARI Respond to Chl variation and estimate Chl absorption

½(R701 − R671) − 0:2(R701 + R549)�
� (R701=R671)

(Daughtry
et al., 2000)

Ratio Analysis of
Reflectance Spectra

RARS Estimate carotenoid pigment contents in foliage R760=R500
(Chappelle
et al., 1992)

Triangle chlorophyll
vegetation index

TCI Quantify chlorophyll content of tallgrass at leaf and canopy levels
½(R800 + 1:5� R550) − R675�=(

R800 − R700)
(Gao, 2006)

Vogelmann red edge index VOG
Sensitive to the combined effects of foliage chlorophyll
concentration, canopy leaf area, and water content

R740=R720
(Vogelmann
et al., 1993)

Water

Leaf Water VI 1 LWVI-1 Estimate leaf water content, an NDWI variant (R1094 − R893)=(R1094 + R893)
(Galvao

et al., 2005)

ND Water Index NDWI
Improving the accuracy in retrieving the vegetation water content

at both leaf and canopy levels
(R860 − R1240)=(R860 + R1240) (Gao, 1996)

Shortwave Infrared Water
Stress Index

SIWSI
Estimate leaf or canopy water stress, especially in the

semiarid environment
(R860 − R1640)=(R860 + R1640)

(Fensholt and
Sandholt, 2003)

Water Index WI Quantify relative water content at leaf level R900=R970
(Peñuelas
et al., 1997)

Stress

Red-Edge Vegetation
Stress Index

RVSI Assess vegetation community stress at canopy level ½(R712 + R752)�=2 − R732

(Merton and
Huntington,

1999)
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Wu et al. the constructed vegetation index variable VI4
(VI4 = SDr=SDy) not only had a correlation coefficient as high as

0.799 with the nitrogen content of tea tree leaves, but also the index

model constructed using VI4 had the lowest RMSE of 0.1029, which

showed an excellent fitting effect (Wu et al., 2018). On the other hand,

statistical analysis methods rely on the entire spectral range or selected

feature bands, aiming to comprehensively recognize patterns hidden

amongst multiple variables, thereby facilitating an in-depth

understanding of the overall data characteristics. Regression

algorithms, one class of statistical analysis methods, are often used in

plant phenotyping task, to detect continuous plant traits such as plant

height, chlorophyll content. The most commonly used multivariate

statistical models in current research are theMultiple Linear Regression

(MLR) model (Huang et al., 2020) and the Partial Least Squares

Regression (PLSR) model (Cao et al., 2022a). The PLSR model, in

particular, is designed with the correlation among independent

variables in mind and has the capacity to transform variables in the

original spectral data that exhibit multicollinearity into a small number

of independent latent variables. Therefore, PLSR models typically

exhibit superior predictive efficacy, thus it is regarded as a

fundamental method for hyperspectral data analysis. Besides

regression task, classification and clustering are also common

phenotypic information detection models (Plaza et al., 2009; Layne

et al., 2020). The former aims to predict discrete category labels or to

distinguish image pixels, such as tea plant breeds identification,

environmental stress diagnosis, and disease and pest regions

detection. The latter can be used to find the internal structure of a

data set. Tea plant samples can be divided into autonomous groups by

applying clustering techniques [e.g., K-means (Shan et al., 2018)],

which allows for higher similarity between data within the same

category than between data belonging to other categories (Davis
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et al., 2020). Clustering algorithms can also be employed in image

segmentation, as it can proficiently discern and identify objects and

shapes within images (Zhang and Xu, 2018; Nikbakhsh et al., 2020).

Deep learning, as a new branch of machine learning, focuses on the

architecture and function of neural networks, particularly deep neural

networks. In recent years, it has demonstrated outstanding

performance in applications such as agricultural pest and disease

detection (Golhani et al., 2018; Xiao et al., 2022), and stress

monitoring (Singh et al., 2018). Compared to conventional machine

learning approaches, deep learning models autonomously discover

latent patterns and features within data, obviating the need for

manual feature engineering and selection. Deep neural networks

consist of multiple hidden layers, each transforming input data,

enabling deeper networks to capture more intricate features (LeCun

et al., 2015; Zhao et al., 2022b). This capability makes deep learning

especially suitable for handling high-dimensional and large-scale

complex datasets. Currently, some deep learning models have been

applied to phenotypic studies of tea plants. For instance, models based

on convolutional neural networks (CNN) exhibit superior overall

performance in quantifying low temperature stress in tea leaves

(Mao et al., 2023a), compared to traditional machine learning

methods. As deep learning technologies advance, the introduction of

generative models and the proliferation of large-scale models in the

processing of agricultural hyperspectral data deserve particular

attention. Through generative models, effective data augmentation

and synthesis, data dimensionality reduction, anomaly detection, and

spectral unmixing are facilitated, thereby opening new avenues in

hyperspectral data processing (Bhatt and Joshi, 2020; Hu et al., 2022;

Guerri et al., 2024). These advancements not only enhance the

performance of existing methods but also propel hyperspectral data

processing towards greater intelligence and efficiency.
FIGURE 4

Workflow for constructing the phenotypic information detection model.
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4 Application of hyperspectral imaging
technology in tea plant phenotyping

With an overview of the researches published recently, we

reviewed the application of hyperspectral imaging technology in

tea plant phenotyping from three aspects: environmental stress

diagnosis, growth state monitor, and quality indicators estimation.

Hyperspectral imaging technology could provide high-throughput

comprehensive technical support and data source for tea plant

phenotyping. In Table 3, we have summarized the application of

hyperspectral imaging technology to the phenotypic traits of

tea plants.
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4.1 Environmental stress diagnosis

The phenotype of plants is influenced by a combination of

genetic and environmental factors. Hyperspectral imaging

technology has been widely used in studying the phenotype of tea

plants under environmental stress, including both biotic and abiotic

stress conditions (Sun et al., 2021; Sanaeifar et al., 2023).

Physiological changes triggered by these conditions can

significantly affect the growth process of tea plants. Accurate

monitoring and assessment of the degree of environmental stress

on tea plants through hyperspectral imaging technology can not

only take timely and reasonable measures to alleviate the negative
TABLE 3 Examples of the application of hyperspectral imaging technology in the detection of tea plant phenotypic information.

Phenotypic
Trait

Domain
Data

preprocessing
Data processing

Data
analysis

Optimal
performance

Refs

Quality indicator detection

Polyphenols

Laboratory
1st Der,

Smoothing,
Normalization

SPA
MLR,

LS-SVM

Rp2(EGC) = 0.918 Rp2

(EGCG) = 0.918 Rp2

(EC) = 0.918 Rp2

(ECG) = 0.918

(Dutta et al., 2015;
Zhang, 2017; Tu
et al., 2018)

Field

WD, CR, SNV, 1st Der,
2nd Der

MNF, PCA, ICA

MLC,
MDC,

ANN, SVM,
PLSR,
BPANN

RCV = 0.9322
RMSECV = 0.9036

SR, NR, FDR SDA, PCA
SMLR,
PLSR

R2 = 0.81
RMSE = 1.39

Amino acids Field
WD, CR, SNV,1st

Der,2nd Der
MNF, PCA, ICA

MLC,
MDC,

ANN, SVM,
PLSR,
BPANN

RCV = 0.9322
RMSECV = 0.9036

(Tu et al., 2018)

Environmental stress monitoring

Heavy
metal stress

Laboratory BC, DT, SNV, MSC SPA, CARS, CARS-SPA
MLR, LS-
SVM, PLS

R2(Chl) = 0.691 R2

(ASA) = 0.596 R2

(GSH) = 0.646

R2(SP) = 0.624

(Jin, 2019)

Drought Laboratory

SG, 1st Der, 2nd
Der, MSC

SPA, CARS, UVE
RF,

SVM, PLSR

Rcal = 0.97
Rp = 0.95
RPD = 4.28

(Chen et al., 2021, 2022)

SG, 1st Der, 2nd Der,
MSC, SNV

SPA, CARS, UVE
RF,

SVM, PLSR

R2   = 0.77
RMSE = 0.073
MAPE = 0.16

Low
temperatures

Laboratory

SG, 1st Der, MSC SPA, CARS, UVE

RF, SVM,
PLS, BP,
CNN,
LSTM

R2 = 0.890
RMSEP = 0.325
RPD = 2.904 (Mao et al., 2023a, 2023)

SG, 1st Der, MSC SPA, UVE
SVM,

PLS, CNN
Rp2 = 0.812

RMSEP = 0.008

(Continued)
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TABLE 3 Continued

Phenotypic
Trait

Domain
Data

preprocessing
Data processing

Data
analysis

Optimal
performance

Refs

Environmental stress monitoring

Tea
green leafhopper

Laboratory -
CWA, Spectral derivative
features, Continuum
removal features

K-means,
SVM,
FLDA,

RF, SVM

OA = 90.69%

(Cui et al., 2021; Zhao
et al., 2022a)

Field -

SPA, Spectral derivative
features, Continuum
removal features,
Vegetation indices

KNN,
RF, Fisher

OA >= 98%

Anthracnose

Laboratory

SG, 2nd Der, SNV SPA, PLS-DA SVM, ELM
RMSEP = 0.2874
Accuracy = 95.77%

(Yuan et al., 2019; Bing
et al., 2021; Cui et al.,

2021; Zhao et al., 2022a)

-
Feature variables,
Vegetation indices

ISODATA
OA = 98%

Kappa = 0.96

-
CWA, Spectral derivative
features, Continuum
removal features

K-means,
SVM,
FLDA,

RF, SVM

OA = 90.69%

Field -

SPA, Spectral derivative
features, Continuum
removal features,
Vegetation indices

KNN,
RF, Fisher

OA >= 98%

White star
Disease

Laboratory SG, 2nd Der, SNV SPA, PLS-DA SVM, ELM
RMSEP = 0.2874
Accuracy = 95.77%

(Bing et al., 2021)

Growth and development information management

Water Laboratory

- RF, SPA
PLSR,
LS-SVR

Rp2 = 0.956
RMSEP = 0.027

(Sun et al., 2019; Wei
et al., 2019; Wang

et al., 2020b)
SG, OSC, MSC, DT

SPA, CARS,
SPA-SR, CARS-SR

MLR
Rp2 = 0.8631

RMSEP = 0.0163

- SPA, CARS MLR, PLSR
Rp = 0.8543,
0.9357,0.8188

Chlorophyll Laboratory

- -
Vegetation
indices

R = 0.8323
RMSE = 8.601

(Zhao et al., 2011;
Sonobe et al., 2018a;
Wang et al., 2019;

Yamashita et al., 2020)

1st Der, CR, SNV,
MSC, DT

-
RF, SVM,
Cubist,

SGB, KELM

RPD(N) = 0.0163
RPD(Chl) = 0.0163

1st Der, SNV, MSC 2nd Der, RC PLSR
Rp = 0.9322

RMSEP = 0.9036

- GA
RF, DBN,
ELM, SVM

RMSE = 0.36 ± 0.08

Carotenoid Laboratory

1st Der, SNV, MSC 2nd Der, RC PLSR
Rp = 0.9322

RMSEP = 0.9036 (Sonobe et al., 2018a;
Wang et al., 2019)

- GA
RF, DBN,
ELM, SVM

RMSE = 0.36 ± 0.08

Nitrogen Laboratory

SNV -
PLS-DA,
LS-SVM,
PLSR

CCR = 92%
Rp = 0.924

RMSEP = 0.209
(Wang et al., 2018; Wu
et al., 2018; Yamashita
et al., 2020; Wang et al.,

2020b, 2020)

- PCA, GLGCM SVM, ELM CCR = 100%

- SPA, CARS MLR, PLSR
Rp = 0.8543,
0.9357,0.8188

-

(Continued)
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impact of stress on tea plant growth, but also help the selection and

breeding of resistant tea plant varieties, which in turn promotes the

enhancement of tea yield and quality.

4.1.1 Biotic stress
Biotic stress refers to the attack and interference of biological

factors such as pathogenic microorganisms, pests, weeds, or other

plant competition to which the tea plant is subjected during the

growth process (Jeyaraj et al., 2020; Zahir et al., 2022). For example,

hyperspectral technology was applied to detect anthracnose, a

common foliar disease on tea plants. As shown in Figure 5, Yuan

et al. screened the optimal hyperspectral feature set suitable for
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anthracnose scab detection by observing the red-shift phenomenon

due to anthracnose in the wavelength range of 450-950 nm, and

further used autocorrelation analysis to accurately and rapidly

identify the anthracnose scab region on tea leaves. They combined

unsupervised classification and two-dimensional threshold

adaptation to construct an analytical framework for scab detection,

which achieved an overall accuracy of 94% in recognizing the disease

at the pixel level. Compared with traditional pixel-based classification

methods, this method can effectively identify diseased tea leaves and

analyze the degree of infection, indicating that hyperspectral

technology can help improve tea plant disease detection and field

management (Yuan et al., 2019). In the discrimination of leaf diseases
TABLE 3 Continued

Phenotypic
Trait

Domain
Data

preprocessing
Data processing

Data
analysis

Optimal
performance

Refs

Growth and development information management

1st Der, CR, SNV,
MSC, DT

RF, SVM,
Cubist,

SGB, KELM

RPD(N) = 0.0163
RPD(Chl) = 0.0163

Field - Feature variables
Regression
model

R2(N) = 0.8303

RMSE(N) = 0.1029 R2

(LAI) = 0.9
RMSE(LAI) = 0.0876

Phosphorus,
Potassium

Laboratory
SNV, MSC, 1st Der, 2nd

Der, Normalization
SPA, RC

PLSR,
MLR

Rp = 0.9168
RMSEP = 0.4941

(Wang et al., 2020a)

Leaf Area Index Field - Feature variables
Regression
model

R2(N) = 0.8303

RMSE(N) = 0.1029 R2

(LAI) = 0.9
RMSE(LAI) = 0.0876

(Wu et al., 2018)

Growing status Field -

Spectral band, Spectral
derivative features,
Continuum removal

features, Vegetation indices

FLDA, RF,
GA-SVM

OA = 98%
Kappa = 0.97

(Zhang et al., 2019)
FIGURE 5

Schematic of the workflow for detection of anthracnose in tea plants based on hyperspectral imaging.
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with multiple similar symptoms, Lu et al. used hyperspectral

technology (420-946nm) for identifying and distinguishing between

white star disease and anthracnose that have similar image features.

The highly similar morphological characteristics in mean spectra of

the whole leaf infected by the two diseases resulted in relatively low

data separability, while the mean spectra of the diseased spot regions

were significantly different. Therefore, the mean spectra of diseased

spot areas extracted after threshold segmentation and mask

processing were combined with different machine learning models

for classification, and the results of the study showed that the

prediction accuracy of the ELM model based on the neural

network structure was higher than that of the SVM model using

different kernel functions, and its classification accuracy reached

95.77% (Bing et al., 2021). For these two similar diseases,

hyperspectral technology can accurately recognize and detect the

disease severity at the early stage of the onset of tea plant diseases.

Compared to the computer vision technology, the above studies show

that hyperspectral technology has certain advantages in the early

detection of tea plant diseases, however its application is still mainly

based on the external characteristics of tea plants affected by diseases,

and it lacks the ability to qualitatively detect tea plants at the early

stage of infection by pathogens. Therefore, further researches should

take the implementation of predictive analysis in the early infect stage

of tea plant disease into consideration, so as to realize the effective

prevention and control of tea plant diseases (Lowe et al., 2017).

To minimize the loss caused by pests, pests early detection plays

a key role in preventing the spread of pests. In the actual tea garden

environment, the combined presence of pests and diseases is a

common phenomenon, and it is often difficult to discriminate

between plants diseases and pests due to the similarity of their

damage symptoms. Cui et al. proposed a method based on canopy

hyperspectral data (450-950nm) for detecting and distinguishing

between three tea plant stresses with similar external characteristics

(anthracnose, tea leafhopper and sunburn). Through spectral

sensitivity analysis, the best spectral features in the three

processes of removing plant background, identifying plant

damaged areas and distinguishing tea plant stresses were

determined, and then K-means clustering and KNN were used to

construct a model for detecting damaged areas of the tea plant, and

finally Fisher linear discriminant method was used to discriminate

the stress types in the damaged areas. The validation results of the

model showed that the detection accuracy of the damaged areas

could reach 95% and the accuracy for stress discrimination was 98%

(Cui et al., 2021). As can be seen from the above studies, the

research method based on hyperspectral imaging data mainly

establishes the relationship between spectral features and the

degree of disease or pest types through various statistical

discrimination or data mining algorithms, which is similar to the

analysis method of the process of identifying the disease of tea plant,

and thus reaches an accurate analysis of the infected areas under

different types of stresses, revealing the potential application in

large-scale tea plantation disease management, particularly in real-

time monitoring and accurate diagnosis. By reducing pesticide

usage and optimizing pest control strategies, hyperspectral

imaging technology can significantly mitigate the negative
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environmental impact of agricultural production while enhancing

both the yield and quality of tea leaves.

4.1.2 Abiotic stress
During the initial period when tea plants are in abiotic stress, tea

plants often do not exhibit obvious external characteristic changes.

However, significant external trait differences may emerge only

when the stress reaches a certain severity level, at which point the

stress may have caused irreversible damage to the tea plants.

Therefore, early identification and evaluation of characteristic

changes in tea plants under abiotic stress are vital for devising

timely measures to mitigate or reverse the stress effects (Gerhards

et al., 2019; Krishnatreya et al., 2021). As early signs of abiotic stress

in tea plants are usually reflected by changes in relevant biochemical

parameters within the tea plant tissues during the stress response

process, these changes can be captured as corresponding spectral

differences. This makes it possible to qualitatively analyze the

adaptation level of tea plants to current abiotic stresses.

Nowadays, the application of hyperspectral technology to detect

abiotic stress levels is being carried out and in-depth research. The

following sections will discuss the three considered abiotic stress

factors for tea plants: drought, low temperature, and heavy metal.

4.1.2.1 Drought stress

With the global climate warming leading to an increased

frequency of extreme weather events and the lack of agricultural

water causing ineffective irrigation of tea plants, tea plants are facing

more frequent drought stress, negatively impacting their growth,

development, and yield. To combat the adverse effects caused by

drought stress, tea plants undergo a series of physiological defense

mechanisms, including stomatal regulation, osmotic adjustment,

and regulation of the antioxidative enzyme system (Liu and Chen,

2014; Tony et al., 2016). Hyperspectral technology was used to

understand the changes in physiological and biochemical

parameters within these mechanisms to assess the severity of

drought stress. Chen et al. obtained five drought-related

physiological and biochemical index parameters, namely

malondialdehyde (MDA), electrolyte leakage (EL), maximal

efficiency of photosystem II (Fv/Fm), soluble saccharide (SS), and

drought damage degree (DDD), during the drought stress

treatments with different levels in tea seedlings. By trying various

data processing algorithms and modeling methods, they predicted

the drought stress severity for different tea seedlings. Among these,

UVE-SVM detection model for the drought damage degree (DDD)

achieved a high prediction accuracy (Rcal=0.97, Rp=0.95,

RPD=4.28), providing a comprehensive and objective assessment

of the tea plants’ drought resistance (Chen et al., 2021).

In another study by the same research team, hyperspectral

imaging technology (400-1000nm) was used to monitor drought

stress in 10 different tea germplasm resources to determine their

drought tolerance, proving the feasibility and effectiveness of

hyperspectral technology in screening for drought-resistant tea

plant germplasm. 3 indicators (malondialdehyde, soluble sugar,

and total phenol) directly used in drought evaluation positively

contributed to constructing a comprehensive index, DTC (Drought
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Tolerance Coefficient), for assessing the drought tolerance of tea

plants. The results indicated that the model constructed with the

MSC-2D-UVE-SVM method showed the best performance in

screening for drought-resistant tea germplasm resources (R2=0.77,

RMSE=0.073, MAPE=0.16) (Chen et al., 2022). Based on the above

research, tea plant drought stress detection using hyperspectral

technology, from the initial stages of genetic selection to the entire

cycle of plant life activities, have acquired real-time precise

monitoring technologies for traits exhibited by tea plants under

drought stress. However, the tea plants’ growing environments and

their growth stages causes variability in their drought stress

responses to some extent. Therefore, further research into tea

plants with complex phenotypic trait changes must be conducted,

and these studies will bring greater prospects for improvement in

tea plant breeding optimization and precision cultivation. In

general, current research on environmental stress detection in tea

plants predominantly focuses on single types of stress, overlooking

the reality that tea plants often encounter multiple environmental

stresses simultaneously in their natural growth processes (Safavi-

Rizi et al., 2021). For instance, tea plants might concurrently endure

the dual stresses of drought and high temperatures during the same

period, a scenario in which their phenotypic responses could

markedly differ from those observed under singular conditions of

drought or heat stress alone (Tang et al., 2023). This focus could

severely limit the applicability of research findings, leading to an

incomplete understanding of the overall tea plant phenotype and an

inability to reveal the complex interplay and comprehensive

responses of environmental factors that influence the growth and

physiology of tea plants (Cao et al., 2015).

4.1.2.2 Low temperature stress

Low temperature environment is one of the important

constraints on the growth and development rate, tea yield and

natural geographic distribution of tea plants. Under low

temperature stress, the cell membrane structure and function of

the tea plant will be damaged, triggering a series of abnormal

physiological and biochemical reactions, leading to cellular

metabolic disorders, and thus causing damage to the tea plant.

Relevant studies have shown that tea plant produces protective

enzymes such as catalase (CAT), peroxidase (POD), and superoxide

dismutase (SOD) to scavenge excessive active oxygen free radicals

accumulated under low temperature stress conditions (Wang et al.,

2021). Therefore, changes in these protective enzymes can be

tracked using hyperspectral techniques to measure the extent of

cold stress.

In addition, some physiological indicators such as

malondialdehyde, soluble proteins, and soluble sugars involved in

the cold resistance response can also be used as dependent factors for

assessing the degree of low temperature stress suffered by tea plants.

Mao et al. investigated the spectral changes of tea leaves after

exposure to low temperature stress at 8h and 12h intervals under

normal (25°C), chilling (4°C), and freezing (-4°C) conditions. Various

variable selectionmethods and machine learningmodels were used to

analyze the contents of chlorophyll (SPAD value), soluble sugar (SS),

and malondialdehyde (MDA), as well as the activities of catalase
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(CAT), peroxidase (POD), superoxide dismutase (SOD), and the Low

Temperature Response Index (LTRI). The UVE-CNN model

demonstrated high predictive accuracy corresponding to LTRI,

with Rp2= 0.8631 and RMSEP = 0.325 (Mao et al., 2023a). This

study identified the potential advantages of applying hyperspectral

techniques to detect low temperature stress in tea plants, which could

provide accurate data support for preventing damage caused by frost

damage in tea plants. The multi-parameters evaluation model was

generally superior to the single physicochemical index model in

analyzing abiotic stress in tea tree. This may be due to the multi-

parameters evaluation model in tea plant can be as internal standards

of each other and their response to low temperature stress were

considered. However, the selection of biochemical components in tea

plant, and the mechanism between them and low temperature stress

may need further investigation.

4.1.2.3 Heavy metal stress

Heavy metals in tea plant mainly originate from anthropogenic

factors, such as industrial emissions and excessive use of

agricultural fertilizers, which cause pollution of air, water and

soil. These heavy metals mainly enter the tea plant through two

pathways, root absorption and foliar infiltration, leading to

impaired nutrient absorption and metabolic function, and

hindering the normal growth and development of the tea plant

(Zhang J. et al., 2018; Sanaeifar et al., 2022). In addition, heavy

metals may accumulate in tea leaves, posing a serious threat to

human health. Therefore, timely monitoring and management of

heavy metal pollution is crucial for tea plantations. Like other

abiotic stresses, some stress-related physiological indexes of tea

plants under heavy metal stress also changed with the progress

of stress.

Jin et al. proposed a method using hyperspectral imaging (420-

946 nm) combined with chemometrics to quantify the changes of

four relevant indicators, chlorophyll (Chl), ascorbic acid (ASA),

glutathione (GSH)and soluble protein (SP), in the foliage and roots

of tea plant at different times and under different lead stresses. The

quantitative analysis model for each indicator was established by

optimal pretreatment and selection of characteristic wavelengths.

All the models based on MLR were simple and efficient while

showing good predictive effects, and the model prediction

coefficient of determination Rp2   could reach about 0.6~0.9 (Jin,

2019). Similarly, Sanaeifar et al. successfully applied a PLS-RBFNN

model based on visible and near-infrared (Vis-NIR) spectroscopy to

precisely predict the quality indices of tea leaves under foliar stress

at different intervals and varying treatment levels (Sanaeifar et al.,

2022). Both methodologies offer an effective approach for the rapid

analysis and accurate detection of the physiological status of tea

plant under heavy metal stress. However, the problem of heavy

metal contamination from air and soil that tea plant may face is not

limited to a single heavy metal, and there are differences in the

effects of different heavy metals on tea trees. Therefore, the

detection of various heavy metal stresses has the potential to

become a valuable research direction in the field of hyperspectral

technology-based detection of tea plant phenotypic information

(Zhang et al., 2021).
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4.2 Growth and developmental
information monitor

Information on the growth and development of the tea plant

mainly includes water, photosynthetic pigments, nutrient elements,

and morphological and structural parameters of the tea plant. This

information can be used to gain an in-depth understanding of the

real-time physiological state of the tea tree and the complexities of

the long-term growth process, which in turn provides a scientific

basis for assessing and improving tea yields (Li et al., 2022). The

application of hyperspectral technology allows for more accurate

quantitative analysis and visual representation of the phenotypic

parameters to be measured in a non-destructive manner.

Water is the most basic life element of the tea plant, which is

directly involved in the growth and development of the tea plant,

physiological metabolism and the construction of morphological

structure. Meanwhile, water also plays an important regulating role

in the formation of tea quality components. Therefore, real-time

and accurate detection of tea plant water status is of great

significance in tea plant cultivation and tea garden irrigation.

Estimating the moisture content of tea plant leaves has been an

important area of research in hyperspectral technology (Zhang X.

et al., 2018). Researchers have used near-infrared hyperspectral

imaging in conjunction with a variety of combinatorial algorithms

for quantitative modeling and visualization of tea leaf moisture

distribution (Sun et al., 2019). In addition, Wei et al. considered that

the hyperspectral data (380-1030nm) of the front and back sides of

the tea leaves would be different during the tea production process,

and designed a logistic classification regressor with a 100% correct

classification rate to identify the front and back sides of the tea

leaves, and then used the characteristic spectral bands

corresponding to the front and back sides of the tea leaves to

build a Least Squares Support Vector Machine (LS-SVR) model to

generate tea leaf water content distribution maps (Wei et al., 2019).

These published studies have mainly focused on the accurate

analysis of tea plant water content at the leaf scale. In order to

map the overall moisture status of tea trees more comprehensively,

future studies should aim to extend the assessment to the canopy

level of tea plants. Research in the field of monitoring the water

status of other crops, such as the studies by Lü et al., has

demonstrated the potential of canopy hyperspectral imaging

technology to quantify and predict the water status of

Arabidopsis thaliana (Lü et al., 2020). Similarly, Wocher et al.

have shown a significant relationship between canopy reflectance

and moisture content in winter wheat and maize (Wocher et al.,

2018). These studies underscore the effective application of spectral

data at the canopy scale across different crops, providing crucial

foundations and references for extending this approach to

monitoring the water status of tea plants.

The photosynthetic pigments in the tea plant are mainly

composed of chlorophyll and carotenoid, which are important

components of photosynthesis. The content of photosynthetic

pigments directly reflects the photosynthetic capacity of tea plants

and the degree of environmental adaptation. At present,

hyperspectral technology has become an effective tool for

accurately estimating the content of photosynthetic pigments and
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their spatial distribution in tea tree leaves. For example, Zhao et al.

successfully calculated the chlorophyll concentration at the scale of

image elements by the MSAVI2 (Modified secondary soil

adjustment vegetation index) prediction model (Zhao et al.,

2011). Meanwhile, the joint measurement of chlorophyll and

carotenoid content has the potential to detect environmental

stresses. Sonobe et al. used the KELM (Kernel-based Extreme

Learning Machine) model to establish the relationship between

hyperspectral data (400-900nm) and the content of the three

photosynthetic pigments (chlorophylls a, b, and carotenoids),

demonstrating their accuracy, with root mean square errors of

1.95 ± 0.36, 1.08 ± 0.11 and 0.68 ± 0.10 μg=cm2 for each

photosynthetic pigment corresponding model, respectively

(Sonobe et al., 2018a). In addition, nitrogen in tea plant leaves

mainly exists in photosynthetic pigments, so the nitrogen

nutritional status of tea trees can be effectively monitored by

grasping the dynamic changes of photosynthetic pigment content

in real time. Using hyperspectral imaging technology, through the

SNV-PLSR model constructed on the basis of the entire wavelength

range of 400-1000 nm and the 2-Der-PLSR model constructed on

the basis of characteristic wavelengths, Wang et al. highly accurate

prediction of chlorophyll a, chlorophyll b, total chlorophyll and

carotenoids contents in tea leaves under different nitrogen

application levels was successfully realized (Wang et al., 2019).

This series of studies vividly demonstrates the high precision and

efficiency of hyperspectral technology in measuring photosynthetic

pigments in tea plants. The dynamic changes in plant

photosynthetic pigments are closely linked to their physiological

state. Subsequent research can translate the spatiotemporal

dynamics of photosynthetic pigments into quantitative

assessments of key indicators for tea plant growth and

development, thereby expanding its potential applications in

actual tea production.

Nitrogen, phosphorus and potassium are essential nutrients for

the growth, development and yield formation of tea plants, and they

usually supply in the form of fertilizers to tea plants. Efficient, non-

destructive, and accurate monitoring of the nutrient status of tea

trees can help to diagnose the growth status of tea plants, improve

the efficiency of fertilizer application, and reduce the damage of

over-fertilization to soil nutrients and the negative impact on the

environment, so as to realize the precision management of tea plant

cultivation. Wang et al. utilized hyperspectral technology combined

with a multivariate classification algorithm to discriminate the

nitrogen application level of tea trees. The study firstly extracted

the five optimal wavelengths by principal component analysis from

the hyperspectral data containing 553 wavelengths in the spectral

range of 400-1000 nm, and then extracted texture features from the

images of the optimal wavelengths by using the gray level gradient

covariance matrix (GLGCM). Finally, the SVM model using fused

data gave the best performance with highest correct classification

rate of 100% for prediction set (Wang et al., 2018). In a related

study, the research team combined hyperspectral image technology

(400-1000nm) with chemometrics methods to accurately

discriminate the nitrogen level and status of tea plants by using

the SNV-LS-SVM model, and its correct classification rate reached

82% and 92%, respectively. Meanwhile, the nitrogen content of tea
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tree leaves was successfully quantified by the SNV-PLSR model with

a correlation coefficient Rp of 0.924 (Wang et al., 2020c). In

addition, the research team extended its research results to the

determination of phosphorus and potassium content in tea leaves

(Figure 6), and successfully achieved high-precision prediction

results of phosphorus and potassium content in tea samples of

different varieties with correlation coefficients Rp of 0.9423 and

0.9168, respectively, by the SPA-MLR prediction model (Wang

et al., 2020a). This series of studies have demonstrated the

promising application of hyperspectral technology in dynamic

nutrient tracking and field fertilization management of tea trees,

but there are many challenges and limitations to be faced in

translating the results of the studies into practical applications.

One of the common problems is the weak transferability of the

constructed prediction models, which mainly stems from the

influence of different tea plant breeds, geographical locations and

environmental factors on the prediction of tea tree growth and

development information. Therefore, diagnostic models with

broader applicability by relying on hyperspectral data of different

tea tree species under various environmental conditions should be

built in the future.

Morphological and structural parameters of tea tree are also an

important topic in the study of tea plant growth information detection,

which mainly involves leaf area, biomass and crown width and other

related parameters. Various types of vegetation indices derived from

hyperspectral data can be used to monitor the changes of

morphological and structural parameters, effectively assess the

growth status of tea plant, and reflect the production potential of tea

plant. To address the problems of time-consuming and destructive in

the traditional manual detection methods of tea tree LAI (leaf area

index), Wu et al. analyzed the correlation between LAI and
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hyperspectral feature variables, screened out the three feature

variables with the highest correlation (amplitude of yellow edge,

green peak reflectance and red valley position), and set up different

inversion models through the three variables, among which the

logarithmic fitting model with green peak reflectance Rg as the

independent variable was modeled better with validation sample R2

and RMSE values of 0.764 and 0.0876, respectively. This study verified

the feasibility of applying hyperspectral technology for real-time, rapid

and non-destructive measurement of tea tree leaf area index method

(Wu et al., 2018). As the morphological and structural characteristics of

tea tree are more intuitive in observation, conventional spectral

detection techniques can already provide more accurate results.

Hyperspectral techniques have not generated a strong demand in the

study of tea tree morphological structural parameters due to their high

economic cost and complexity of analyzing and processing the data.

However, through an in-depth analysis of hyperspectral data, its rich

information across spectral bands and high-resolution spectral features

can compensate for the limitations of traditional methods in terms of

vegetation spatial resolution and data sensitivity, enabling the

construction of vegetation indices capable of accurately detecting

morphological structural parameters in remote sensing.
4.3 Quality indicator detection

The quality of tea is one of the key factors determining its market

value and processing methods. The content of organic chemicals in tea

plant leaf, such as tea polyphenols, amino acids and caffeine, is an

important indicator of tea quality and flavor (Peng et al., 2016; Cao

et al., 2020). Traditionally, the content of these organic chemicals has

been assessed by destructive sampling followed by wet chemical
FIGURE 6

Illustration of the image processing and data analysis process used for quantifying the phosphorus and potassium content in different tea
plant cultivars.
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methods, which are time-consuming and labor-intensive and difficult

to adequately represent spatial variability in whole tea plant. Dutta et al.

analyzed in situ-measured hyperspectral data in the range of 347-2506

nm by applying different multivariate analytical methods to screen the

best predictive models, and developed a partial least squares regression

(FDR-PLSR) model for first-order derivative spectra to achieve

accurate estimation of tea polyphenol content at the leaf level, with

R2 and RMSE values of 0.81 and 1.39 for themodel, respectively (Dutta

et al., 2015). Hyperspectral techniques also offer the possibility of

estimating and monitoring the quality of tea on a spatial scale. Tu et al.

accurately classified tea tree varieties in large-scale tea plantations based

on the spectral characteristics of tea tree canopy data acquired by a 450-

998 nm hyperspectral camera mounted on a UAV. The hyperspectral

data were also processed through partial least squares regression

(PLSR) using standard normal variable transformation (SNV)

preprocessing method to predict tea polyphenol and amino acid

contents, although the model showed a relatively significant

prediction accuracy (RCV = 0.66, RMSECV = 13.27) in terms of the

ratio of tea polyphenols to amino acids (the main indicator of tea

sensory quality), which proves that there is an association between the

spectral data and quality indicators. To apply this correlation to the

prediction of actual tea tree quality indicators based on the UAV

platform, more in-depth research and exploration are still needed to

improve the accuracy of the model (Tu et al., 2018). On the basis of

existing researches, hyperspectral technology can be used to achieve

independent analysis and measurement of multiple subcomponent

contents of themain components of tea, in order to accurately feedback

the current quality of tea and provide favorable guidance for the

optimization of the subsequent production and processing processes.

On the other hand, current research primarily relies on spectral data

obtained in a single instance, without considering the temporal

dynamics of tea plant phenotypic characteristics throughout

phenological cycles (Mahlein et al., 2018). Phenotypic expression in

tea plants may vary over time, necessitating continuous observation to

accurately capture these dynamics. It is recommended that future

studies expand the range of tea plant sample collection to encompass

phenotypic differences in different environments. By conducting long-

term observational studies to establish comprehensive tea plant

phenotypic databases, the statistical significance and reliability of

research can be enhanced, facilitating the development of more

refined and generalizable models (Wijewardane et al., 2023).
5 Summary and outlook

In this paper, we comprehensively review the research progress of

hyperspectral imaging technology in the field of tea plant phenotyping

information detection, the main applications of which involve

environmental stress diagnosis, growth and development information

monitoring, and quality indicator detection of tea plant. Hyperspectral

technology in the detection of tea plant phenotypic information is still in

its nascent stage, with notable gaps in research. Despite the considerable

enrichment of our understanding of plant phenotypes facilitated by this

technique, the issue of potentially missed critical phenotypic information

due to restricted acquisition at specific wavelengths or resolutions
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remains pertinent. It thus becomes markedly important to introduce

more advanced hyperspectral technologies to enhance the accuracy and

comprehensiveness of data collection. In the data processing and analysis

phase, hyperspectral data necessitates navigation through a complex and

meticulous data processing workflow. Errors occurring at any stage

within this workflow harbor the potential to precipitate data

inconsistencies. Consequently, the development of more efficacious

data processing and analysis algorithms is instrumental in extracting

more precise and reliable information from hyperspectral data. In

addition, in order to ensure the comparability of data between

different studies, it is of great significance to further establish

standardized hyperspectral data processing and analysis methods. In

application, current research on tea plant phenotypic detection also

exhibits certain limitations, particularly the absence of a comprehensive

method that spans multiple observational scales, involving leaf organs,

plants individual, and populations. Integrating observations from

multiple scales is crucial for a comprehensive understanding of the

phenotypic information of tea plants. However, a unifiedmethodological

framework to integrate findings across different scales has yet to be

established. In addition, future research should focus on the cross-stress

response of tea plant, in order to deconstruct the association between

phenotypic characteristics of tea tree in a more comprehensive

perspective, and thus promote the deep optimization of tea plant

breeding strategies and cultivation management.
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