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Combining genotyping
approaches improves resolution
for association mapping: a case
study in tropical maize under
water stress conditions
Fernanda Carla Ferreira de Pontes1*, Ingrid Pinheiro Machado1,
Maria Valnice de Souza Silveira1, Antônio Lucas Aguiar Lobo1,
Felipe Sabadin2, Roberto Fritsche-Neto3

and Júlio César DoVale1

1Postgraduate Program of Plant Science, Federal University of Ceará, Fortaleza, Ceará, Brazil, 2College
of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States, 3Louisiana State
University Agricultural Center, Baton Rouge, LA, United States
Genome-wide Association Studies (GWAS) identify genome variations related to

specific phenotypes using Single Nucleotide Polymorphism (SNP) markers.

Genotyping platforms like SNP-Array or sequencing-based techniques (GBS)

can genotype samples with many SNPs. These approaches may bias tropical

maize analyses due to reliance on the temperate line B73 as the reference

genome. An alternative is a simulated genome called “Mock,” adapted to the

population using bioinformatics. Recent studies show SNP-Array, GBS, and Mock

yield similar results for population structure, heterotic groups definition, tester

selection, and genomic hybrid prediction. However, no studies have examined

the results generated by these different genotyping approaches for GWAS. This

study aims to test the equivalence among the three genotyping scenarios in

identifying significant effect genes in GWAS. To achieve this, maize was used as

the model species, where SNP-Array genotyped 360 inbred lines from a public

panel via the Affymetrix platform and GBS. The GBS data were used to perform

SNP calling using the temperate inbred line B73 as the reference genome (GBS-

B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study

encompassed four above-ground traits with plants grown under two levels of

water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31

SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios,

respectively, across the two water levels, associated with the evaluated traits

following the comparative analysis of each genotyping method individually.

Overall, the identified candidate genes varied along the various scenarios but

had the same functionality. Regarding SNP-Array and GBS-B73, genes with

functional similarity were identified even without coincidence in the physical

position of the SNPs. These genes and regions are involved in various processes

and responses with applications in plant breeding. In terms of accuracy, the

combination of genotyping scenarios compared to those isolated is feasible and

recommended, as it increased all traits under both water conditions. In this sense,
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it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios,

not only due to the increase in the resolution of GWAS results but also the

reduction of costs associated with genotyping and the possibility of conducting

genomic breeding methods.
KEYWORDS

SNP-array, genotyping by sequencing, simulated genome, GWAS, genotyping
platforms, candidate genes, genes with similar functions
1 Introduction

Water is the most abundant and often limiting of all plant

resources needed to grow and function (Taiz et al., 2015). Water

availability is considered one of the most influential factors in

agricultural productivity, controlling species distribution in

different climatic zones on Earth (Turner and Jones, 1980). In the

tropical zone, characterized by relatively high temperatures and low

rainfall compared to other zones, plants thriving in these

environments are often more exposed to prolonged periods of

water scarcity, especially in arid and semi-arid regions. According

to climate change projections, this scenario will likely continue or

worsen over the years, with potentially more drastic effects on plants

(Raza et al., 2019; IPCC, 2023).

Stress can be considered a significant deviation from optimal

life conditions (Larcher, 2003), inducing changes and responses as

the plant fails to complete its physiological processes for growth and

production. The lack of adequate water supply causes greater

expansion of the root system into deeper and moister zones of

the soil profile, reduction in the development of cells in the aerial

tissues, resulting in decreased growth and stomatal closure to

reduce transpiration rate and, consequently, photosynthetic

activity (Frensch and Hsiao, 1994; Hsiao, 1973). Control

measures are complex and difficult for humans to manage, and

the search for genotypes that will perform better and economically

viable yields in water-limited environments has been increasingly

important for genetic improvement.

Conventional breeding for water deficit conditions is still time-

consuming, laborious, and costly, as experimental conditions must

be carefully managed. However, in recent years, with advances in

molecular biology, the development of high-throughput genotyping

technologies, and progress in platform development, new

opportunities have emerged to enhance this process. This is partly

due to cost reduction, which has consequently driven advances in

genomic sequencing; another factor is the versatility of SNP (Single

Nucleotide Polymorphism) markers, most commonly used in this

process (Ingvarsson and Street, 2011). SNPs are abundant markers

in crop genomes and are ideal for genetic discovery research and

molecular improvement (Rasheed et al., 2017). According to the

same authors, genotyping platforms involving Next Generation

Sequencing (NGS) and SNP-Array technologies are suitable for
02
genotyping hundreds to thousands of samples with many SNP

markers in a single assay much more quickly, revolutionizing the

study of genomics and molecular biology.

Genotyping techniques by sequencing or GBS (Genotyping by

Sequencing) are simple and highly multiplexed systems used for

constructing libraries intended for next-generation sequencing.

SNP-Array is a technique that uses microarrays designed to pre-

select previously identified genetic markers characterized by wide

polymorphism. These markers are then incorporated into a specific

platform. GBS-scored SNP platforms provide many markers,

although they have high rates of missing data. On the other hand,

Array-scored SNP platforms are of high quality but have relatively

high costs (Elbasyoni et al., 2018) and possible ascertainment bias if

the genetic material used for array development is not related to the

tested germplasm (Heslot et al., 2013).

Arrays are well-designed and established in the market to assist

studies and breeding programs of major commodity crops (Ganal

et al., 2011). For minor crops, arrays are still rarely available, and

researchers often rely on information from other crops that is

already accessible. However, due to the high cost associated with

array development, these platforms are preferably employed when it

is possible to use a “universal” approach that applies to various

germplasms. However, this can be challenging if researchers

attempt to identify rare SNPs across various germplasms; a

universal design can become large and expensive, resulting in

many monomorphic loci for non-target germplasm groups

(Thomson, 2014).

The advancement of model genome knowledge and the advent

of next-generation sequencing techniques open up the possibility of

a great leap in understanding the genome of relatively lesser-known

species. The GBS pipelines are based on a reference genome or

assembly of a new genome, applied to model organisms and species

lacking pre-existing genomic information (Davey et al., 2011;

Poland et al., 2012). In cases where a reference genome is not yet

available, a simulated genome can be employed for SNP discovery,

which can serve as a valid alternative (Melo et al., 2016). The same

authors developed a bioinformatics pipeline to construct a

simulated genome called “Mock,” adapted to the population and

built from GBS data. This genome is already being used in genomic

studies and indicated that the Mock produces similar results when it

comes to organizing populations, identifying heterotic groups,
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selecting testers, and predicting genomic characteristics of hybrids

compared to standard approaches (SNP-Array and GBS)

(MaChado et al., 2023; Sabadin et al., 2022). This suggests that

simulated genomes can be a good alternative, especially for species

without the reference genome. However, no studies have been

identified on the results generated by these different genotyping

approaches in Genome-Wide Association Studies (GWAS).

Other studies have compared datasets from different high-

throughput genotyping technologies in GWAS. Darrier et al.

(2019), using standard platforms, GBS and SNP-Array,

demonstrated efficiency in characterizing genetic diversity in

barley, although accessing different regions of the genome.

Despite capturing different areas, there was a positive correlation

between the genetic distance matrices of both approaches,

validating the use of either one for the characterization. These

authors emphasized that the choice between GBS and SNP-Array

genotyping platforms should be based on various factors, including

the nature of the research and group preferences. For example, GBS

may be preferable for studies requiring broader genomic coverage

due to its ability to sequence a large number of genetic markers.

Conversely, SNP-Array may be more appropriate for analyses

focused on specific genome regions. Group preferences, previous

experience, and practical considerations such as cost and resource

availability influence platform choice. In a study with inbred maize

lines, Negro et al. (2019) concluded that GBS and SNP-Array were

complementary for detecting QTL marking different haplotypes in

association studies. Assuming they are complementary, combining

these platforms seeks to determine if it will result in greater

data accuracy.

To date, no study comparing GBS, SNP-Array, and simulated

genome for GWAS has been published yet. The application of

studies of this nature is crucial because they provide evidence that

the information obtained from various genotyping approaches may

be complementary during the genotyping process, thus

demonstrating an efficient alternative for identifying

polymorphisms. This, in turn, should offer better support to

breeding programs that consistently grapple with identifying

more efficient and tolerant genotypes against various abiotic and

biotic factors. Another relevant point is that, even with advances in

whole-genome sequencing and the complete publication of the

maize genome, approaches such as SNP-Array and GBS remain

important due to their lower cost and efficiency in genotyping large

populations. These techniques generate more manageable data,

requiring less computational infrastructure, and provide sufficient

resolution to address many biological questions. Their effectiveness

in GWAS studies and identifying loci in crops like maize is well

demonstrated. For breeding programs or projects with limited

resources, they represent agile and viable alternatives, balancing

cost, accessibility, and quality.

In this context, the objectives of this study were: i) to verify if

there is a difference in the identification of genes with significant

effects among genotyping platforms, SNP-Array, GBS, and

simulated genome (“Mock”) in GWAS; ii) once differences are

confirmed, to determine if the identified genomic regions are

complementary and if they provide better accuracy.
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2 Materials and methods

To enhance the comprehensibility of the analyses conducted in

this study, we present a workflow in which the experimental and

data analysis components are summarized in Figure 1. The

subsequent sections provide detailed explanations.
2.1 Genetic material and experimental trials

This study used maize as the model species in a public diversity

panel of 360 tropical inbred lines (Yassue et al., 2021). The genomic

and phenotypic data of this panel can be found on the Mendeley

platform (https://data.mendeley.com/datasets/6pb9prrbbb/1). The

data to be explored were obtained from eight experiments

conducted in 2020 and 2021, as detailed below. This study

involves contrasting water supply conditions, well-watered (WW)

and water-stressed (WS), so a pilot experiment was conducted

before the main experiments. A water retention curve was

established through regression to obtain field capacity and

determine the amount of water to be provided via irrigation (De

Souza Silveira et al., 2024). This pilot experiment involved five

randomly selected lines from the panel and five levels of water

supply: 100% of water applied (WA), 80% of WA, 70% of WA, 50%

of WA, and 40% of WA. As a result, the WW and WS points were

determined, with the 80% WA and 40% WA treatments

representing these conditions, respectively.

The main experiments were conducted at experimental fields of

the Department of Agriculture at UFC, Campus do Pici, Fortaleza-

CE, located at 3°44’24.27” S latitude and 38°34’29.93” W longitude.

The main experiments were conducted under WW and WS in

augmented partially repeated block design (augmented p-rep

designs), with two temporally spaced replicates (Williams et al.,

2011). Five common treatments (checks) were used, randomly

selected from within the panel and distributed in each block

within the WW and WS conditions (Supplementary Figure S1).

These experiments were always conducted in the second

semester of each year, following the rainy season in the region, a

period that resembles the climate of the semi-arid zone. The

sowings were carried out in plastic pots with a capacity of 2000

cm3, containing substrate (easily reproducible) in a ratio of 3:1

(sand: earthworm humus). The earthworm humus was chosen due

to its easy obtainability and effectiveness in providing nutrients to

the plants. The use of sand is justified by its easy acquisition,

availability, and low cost.

Two seeds were sown per pot at an average 3-4 cm depth.

Thinning was performed when the seedlings reached the V2 stage,

leaving only one seedling per pot (plot). At this same phenological

stage, a water deficit was also initiated, which continued until the V6

stage (harvest). Planting and topdressing fertilization were based on

the chemical analysis of the substrate, taking into consideration the

crop recommendations, to isolate nutritional stress during the

experimental conduct.

As the experiment was conducted in an open field, irrigation

control for each experiment was carried out manually and daily.
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Thus, 15 random samples were used to calculate the daily average

weight of the pots within each water supply level. Subsequently, the

difference between the current and total weights obtained at each

water supply level was calculated to replenish the water volume. It is

worth noting that, for each vegetative stage, the average plant

weight was obtained to subtract it along with the current weight,

thus not affecting the volume of water to be replenished.
2.2 Phenotypic data

The phenotypic evaluation was conducted when most plants

reached the V6 phenological stage. The traits considered in this

study were: Plant height (PH) - measured from the soil to the

insertion of the flag leaf, measured using a graduated ruler (cm);

Stalk diameter (SD) – an average of two measurements above

ground level at the second node of the stem obtained using a

caliper (mm); Chlorophyll content estimation - using SPAD,

measuring three leaves per plant to get the average. Subsequently,

the plants were cut off at ground level, placed in paper bags, and put

in a forced-air oven at 65°C for 72 hours to obtain: Shoot dry matter

(SDM)- quantified using an electronic analytical balance (0,005 g).
Frontiers in Plant Science 04
2.3 Phenotypic analysis

The outliers of the phenotypic data for the traits described in

section 2.2 were removed. Then, the remaining data were adjusted

for normality using the bestNormalize package (Peterson, 2021),

and the assumptions of normal distribution were checked via the

Shapiro test and Q-Q plots. Subsequently, equations of mixed linear

models were fitted to obtain the BLUP by REML for each trait

studied under WW and WS conditions, using the sommer package

(Covarrubias-Pazaran, 2016). These analyses were performed using

the following model:

y = X1t + X2l + X3n + Z1b + Z2g + Z3i + e (1)

where, y is the vector of phenotypic values of the inbred lines

panel and checks; X1, X2, and X3 are incidence matrices for t, l, and

n fixed effects; Z1, Z2 and Z3 are incidence matrices for b, g e i

random effects; t is the water supply fixed effect vector (WW and

WS conditions); l is the replicate (season) fixed effect vector within

water supply; n is the number of leaves used as a covariate to correct

for differences in plant vigor and development; b is the block/water

supply/season random effect vector, where g~N(0, Is 2
b ); g s the

genotype random effect vector, where g~N(0, Is 2
g ); i is the random
FIGURE 1

The workflow employed in the study. Different colors are used to represent distinct phases of the analysis.
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effect vector of the genotype–water supply interaction, where i~N

(0, Is 2
i ); e is the experimental error, where e~N(0, Rs 2

e ), obtained

using a structured diagonal matrix to make it possible to estimate

two residual variances, one for each water supply level (s 2
eWW and

s 2
eWS). The significance of fixed effects was assessed using the Wald

test, and random effects using the likelihood ratio test.

The variance components were used to estimate the

heritabilities (h2) by the following estimator:

h2 =
s 2

g

s 2
g +

s 2
ge

s +
(s 2

eWW+s 2
eWS)

rs

(2)

where h2 refers to the entry-mean heritability; s 2
g is the

genotypic variance of the inbred lines panel, s 2
ge is the variance of

the genotype–water supply interaction; s 2
eWW e s 2

eWS are the

environmental variance components in WW and WS; s are levels

of WW and WS; and r is the number of repetitions in each water

supply level.

The reliability of selection for each line [R2(â l) was obtained by

the following expression (Gorjanc et al., 2015):

R2(ba l) = 1 −
Var(ai − ba i)

Var(ai)
(3)

where Var(ai − â i) is the variance of the prediction error

(PEV) of line i and Var(ai) is the genotypic variance of the trait.

The de-regressed BLUPs (dBLUPs) were obtained by

calculating the ratio between the BLUPs of each inbred line in

WW and WS and their respective average reliabilities. After these

analyses, 313 lines remained out of the 360 in the panel. The

dBLUPs of these lines in WW and WS were used in the

GWAS analyses.
2.4 Genotypic data

The lines were genotyped using two SNP genotyping platforms:

Affymetrix® Axiom Maize Genotyping Array with 18.413 SNP

markers (SNP-Array) and genotyping-by-sequencing (GBS)

process following the sequencing protocol established by Poland

et al. (2012). In this method, genomic DNA was digested by two

restriction enzymes, PstI and MseI, to reduce the genome

complexity. Subsequently, specific adapters for sequencing on the

Illumina NextSeq 500 platform (Illumina Inc., San Diego, CA,

United States) were attached to the digested fragments.

The primary GBS data were employed for two purposes: firstly,

to perform SNP calling using the temperate line B73 as the reference

genome (RefGen v4). Secondly, to construct a simulated reference

genome (mock genome) for SNP calling, following the pipeline

proposed by Melo et al. (2016), considering all the lines in the

panel (Mock).

Therefore, the SNP data were subjected to three GWAS

approaches: 1) SNP-Array; 2) GBS with SNP calling based on the

B73 reference genome (GBS-B73); 3) GBS using the simulated

genome as the reference (GBS-Mock). The SNPs for the GBS

dataset was identified from raw data using the TASSEL 5.0 GBSv2

pipeline (Glaubitz et al., 2014), considering both GBS-B73 and
Frontiers in Plant Science 05
GBS-Mock as reference genomes, employing the BWA aligner. The

BWA aligner (Li and Durbin, 2009) was used to align the tags

against the reference genome (GBS-B73 and GBS-Mock).

The SNP sets obtained in these scenarios were submitted to

quality control parameters as call rate (CR) and Minor Allele

Frequency (MAF) procedures, where markers with CR < 90% and

MAF lower than 5%, and non-biallelic markers were removed from

the datasets (Morosini et al., 2017). Imputation of missing data was

performed using the Beagle 5.0 algorithm (Browning and

Browning, 2008).
2.5 Population structure and LD decay

In order to minimize potential bias caused by population

structure, a PCA was performed based on the additive genomic

relationship matrix among the remaining 313 panel lines, following

VanRaden (2008) using the SNPRelate package (Zheng et al., 2012).

FarmCPU automatically incorporated the correction via PCA in the

association analysis. Two principal components were used to

correct the population structure effect, and the best fit for the

model was determined based on Q-Q plots. The most likely number

of groups within the panel was determined according to Yassue

et al. (2021) as it involved the same diversity panel.

The Linkage Disequilibrium (LD) estimation between each pair

of SNP within the chromosomes was calculated by the square of the

allele frequency correlation (r²) among all SNP within a distance

less than 1 Mbp. The r² values were plotted against the base pair

distance of the SNP pair to obtain the LD decay by chromosome.

This procedure was performed with all SNP retained from the

quality control procedures.
2.6 Association analysis

GWAS were performed for each trait under WW and WS

conditions using the FarmCPU method (Liu et al., 2016a). The

method stands out for its computational efficiency and ability to

control false positives, demonstrating greater statistical power in

situations where the trait is strongly associated with kinship (Liu

et al., 2016a; Segura et al., 2012). The FarmCPU.P.Threshold

function was employed to obtain the p-threshold, specific for each

trait via a simulation process with 100 permutations. Subsequently,

the cutoff point was obtained by the ratio between the p-threshold

and the number of markers used. Subsequently, p-values

(significance), MAF, and ASE (Average Effect of Allele

Substitution) were obtained for each significantly associated SNP,

designated hereafter as a potential candidate gene underlying the

target trait. Furthermore, the coefficient of determination for each

significant SNP (R2
SNP was obtained based on ASE and MAF using

equations described in Da et al. (2014). Next, multiple linear

regressions were established for each trait using the significant

SNPs as predictor variables to quantify the markers’ influence on

that trait’s expression (R2
TOT ). The Manhattan and Q-Q plots graphs

were generated using the CMplot package (Yin, 2020), and the

graphs showing the proportion of phenotypic variance explained by
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the SNP were generated using the ggplot2 package (Wickham,

2011) in the R software. Venn diagrams based on the common gene

functionality for the traits at each water supply level were created

using LucidChart (lucidchart.com).
2.7 Correlation among markers of
different scenarios

Given the stability and efficiency of SNP-Array technology in

accurately genotyping numerous markers, we conducted Pearson

correlation analysis (r) among significant markers with known

functions identified in GWAS within the GBS-Mock scenario and

markers present in the SNP-Array scenario for each trait under

both WW and WS conditions. The analyses were performed using

the R software base. This approach aimed to assess the concordance

and potential overlap between markers identified through different

genotyping methods and their associations with specific traits. By

comparing these markers across scenarios, we sought to elucidate

common genetic factors contributing to trait variation and explore

the utility of integrating data from diverse genotyping platforms in

genomic analyses related to crop improvement and adaptation to

environmental stressors.
2.8 Gene annotation

A candidate gene association mapping was performed for traits

with significant SNP. The physical positions of SNP for GBS-Mock

were assigned using BLAST (Altschul et al., 1990) to align them

with the maize genome assembly for comparison purposes. These

positions were used to obtain 41 bp DNA fragments on a single

chromosome (Supplementary Table S2). Subsequently, a BLAST

was conducted exclusively for GBS-Mock on MaizeGDB1 via blast,

utilizing the B73 RefGen_v4 sequence database to locate the

chromosome by inserting the DNA fragment. The MaizeGDB

database and its functional information associated with each SNP

based on B73 RefGen_v4 were utilized for all scenarios. After

defining the region to be considered, potential candidate genes

flanking each marker were identified. Candidate genes linked to

each trait were determined through annotation within a sliding

window of 50 kb around each significant SNP, following a

conservative approach described by Yassue et al. (2021). All genes

within a range of 50 kb downstream and 50 kb upstream were

annotated. Subsequently, they were assessed and considered based

on two criteria: proximity to the SNP and functional similarity as

per databases available on the Maize eFP Browser (2023)2 and

Maize Genomics Resource (2023)3.
1 maizegdb.org

2 bar.utoronto.ca

3 maize.uga.edu

Frontiers in Plant Science 06
3 Results

3.1 Phenotypic analysis

In general, significant effects were detected for all sources of

variation, except for the G x WA interaction, in the studied traits

(Table 1). The variance components showed a similar pattern for all

traits, with a predominance of genotypic variance over the residual

variance of the interaction. Except for the PH trait, there was a higher

residual variance for the well-watered environment than the low-

water availability. The genotypic variance component ranged from

0.09 to 0.19, and the genotype x environment interaction approached

zero for all traits, affecting the estimates of heritabilities and accuracy.

Heritabilities ranged frommoderate to highmagnitude, ranging from

0.58 to 0.73. PH was the trait with the highest heritability (0.73) and

the least influenced by the environment, showing the highest

genotypic coefficient of variation (0.197). The adjusted means fall

within the same range observed in other studies.
3.2 Genotypic scenarios: number and
distribution of SNP

After the quality control, heterozygous markers were eliminated

using the MAF and CR procedures, resulting in 12.704 SNP
TABLE 1 Wald test of fixed effects, likelihood-ratio test (LRT) of random
effects, variance components, heritability, accuracy, and adjusted
average for SPAD, plant height (PH), stalk diameter (SD), and shoot dry
matter (SDM) of the inbred lines evaluated in WW (well-watered) and WS
(water-stressed) conditions water supply.

Source
of variation

SPAD PH SD SDM

Wald statistic

Water supply (WA) 1098.27*** 4353.03*** 4549.80*** 5393.32***

Replicates/WA 1076.83*** 2542.48*** 1842.71*** 2462.96***

Likelihood-ratio test (LRT)

Block/WA/Season 89.35*** 40.76*** 46.21*** 212.23***

Genotypes (G) 102.59*** 201.98*** 100.60*** 96.35***

G x WA 1.11NS 1.08 NS 0.72 NS 2.43 NS

Variance components

s 2
g 0.192 0.197 0.119 0.099

s 2
g�e 0.015 0.007 0.007 0.012

s 2
eWW 0.525 0.266 0.352 0.299

s 2
eWS 0.511 0.279 0.275 0.240

Heritability and accuracy

h2 0.58 0.73 0.59 0.58

Adjusted means

31.13 9.44 7.56 2.32
fro
***significant at the 0.001 probability level (by Wald test or LRT), respectively.
NSnon-significant.
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markers for SNP-Array out of a total of 18.413, 11.153 out of

131.350 for GBS-B73, and 4.935 out of 46.926 for GBS-Mock, which

were used in the association analyses (Table 2). Approximately 69%

of the marker set remained in the SNP-Array, while 10.5%

remained in the GBS-Mock and 8.5% in the GBS-B73 scenario.

However, there was a balanced distribution of SNP across the

chromosomes in the standard scenarios (SNP-Array and GBS-

B73). In total, 11 common SNPs were found among the

genotypic scenarios (Figure 2). Between SNP-Array and GBS-B73,

8 shared SNPs were observed: 3 for SPAD under well-watered

conditions and 1 under water-stressed conditions; 1 SNP in each

water supply condition for PH and SDM. In the GBS-B73 and GBS-

Mock scenarios, 1 common SNP was identified for PH under well-

watered conditions and 1 for SD in both water supply conditions.
3.3 GWAS analysis

Significant SNP were found on five of the ten maize

chromosomes for the SNP-Array scenario and four for GBS-B73

for the SPAD trait under theWW condition (Figures 3A, B). The Q-

Q plots showed data fitted to the model (Figures 3C–E). The

significant marker/trait association threshold ranged from 4.99 to

12.85 (Supplementary Table S1).

A total of 46, 34, and 31 significant SNP were found for SNP-

Array, GBS-B73, and GBS-Mock, respectively (Table 3;

Supplementary Figures S2–S9). There were no SNP common to

all three scenarios; however, at least one SNP was shared between

two of them (Figure 2). SPAD had the highest number of significant

SNP, totaling 34, followed by PH, SDM, 27, and SD, 23. The SNP
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array presented more markers for SPAD and PH and GBS-B73 for

SD, and there was an equivalence among the three scenarios for

SDM. Overall, GBS-B73 and GBS-Mock showed some similarity in

the quantity of markers.
3.4 Correlation among SNP in the GBS-
Mock and SNP-Array scenarios

Our results revealed 20 significant markers in the GBS-Mock

that positively correlated with the SNP-Array scenario to traits

under different environmental conditions (Table 4). Pearson

correlation coefficients (r) were observed, ranging from weak to

strong. Specifically, for SDM in WW conditions, correlations

ranged from 0.94 to 0.30. Similarly, SPAD values showed

moderate to strong correlations with markers, ranging from 0.52

to 0.76 in WW conditions and from 0.40 to 0.76 in WS conditions.

For PH, correlations were moderate, with values of 0.36 for WW

and 0.51 and 0.53 for WS. Notably, SD exhibited correlations

ranging from 0.35 to 0.87 in WW conditions and from 0.30 to

0.87 in WS conditions. Additionally, SDM showed moderate to

strong correlations, ranging from 0.46 to 0.94 in WW conditions

and 0.47 in WS conditions.
3.5 Candidate genes and
functional annotations

Based on the physical location of significant SNP in the B73

reference genome for SNP-Array and GBS-B73 and the reference

genome for GBS-Mock, genomic regions and candidate genes

related to significant loci were identified (Supplementary Table

S1). In some cases, the same genes and regions were identified for a

given trait under both water supply conditions. For example,

Zm00001d042735 and Zm00001d001852 in the GBS-Mock

scenario for SPAD and SD, respectively; Zm00001d017978 located

on chromosome 5 in SNP-Array for PH. Similarly, identical genes

and regions were found in different scenarios, for instance,

Zm00001d031759 located on chromosome 1 was detected in SNP-

Array and GBS-B73 for SPAD in WW and WS. The same gene was

also identified for different traits, such as Zm00001d005090 for SD

and SDM in GBS-B73.

The genomic regions and candidate genes with similar

functions were grouped, considering each trait at the same water

supply level across genotyping scenarios (Figure 2; Supplementary

Table S3). For SNP-Array and GBS-B73, regions and genes with the

same functionality on the same chromosome were observed, such as

Zm00001d031445 and Zm00001d027626, both on chromosome 1,

which are correlated with ethylene biosynthesis for SDM in WW.

Conversely, these platforms also identified genomic regions and

candidate genes on different chromosomes but with coinciding

functions. For example, Zm00001d026477 on chromosome 10 and

Zm00001d027695 on chromosome 1 are responsible for responses

to abiotic stress by reactive oxygen species (ROS), jasmonic acid

(JA), and ethylene; Zm00001d044194 on chromosome 3 and

Zm00001d018127 on chromosome 5 function in the regulation of
TABLE 2 Number of markers scored (raw data) and the final number of
markers (clean data) total and per chromosome (Chr) after quality
control for all genotyping scenarios used to assess inbred lines evaluated
in WW (well-watered) and WS (water-stressed) conditions water supply.

Genotyping scenariosa

SNP-Array GBS-B73 GBS-Mock

Raw data 18,413 131,350 46,926

Clean data 12,704 11,153 4,935

Chrm 1 1,977 (15.6%) 1,651 (15.0%)

Unique chrm

Chrm 2 1,643 (12.9%) 1,411 (12,7%)

Chrm 3 1,430 (11.3%) 1,269 (11.4%)

Chrm 4 1,412 (11.1%) 1,177 (10.6%)

Chrm 5 1,373 (10.8%) 1,336 (12.0%)

Chrm 6 1,018 (8.0%) 859 (7.7%)

Chrm 7 957 (7.5%) 831 (7.5%)

Chrm 8 1,116 (8.8%) 964 (8.6%)

Chrm 9 973 (7.7%) 855 (7.7%)

Chrm 10 805 (6.3%) 780 (7.0%)
aSNP-Array, Affymetrix® AxiomMaize Genotyping array; GBS-B73, genotyping-by-sequence
with SNP calling using B73 as reference genome; GBS-Mock, genotyping-by-sequence with
SNP calling using the mock reference built with all parental lines.
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the circadian cycle for SPAD under WW; Zm00001d017978 on

chromosome 5 and Zm00001d008952 on chromosome 8 are

involved in endoglucanase activity for PH in WW; and

Zm00001d053809 on chromosome 4 and Zm00001d042481 on

chromosome 3 for GBS-B73 are associated with ubiquitin

proteins for PH in WS; Zm00001d016786 on chromosome 5 and

Zm00001d005090 on chromosome 2 act in response to water stress

through abscisic acid (ABA) for SDM in WS.
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In scenarios involving GBS-B73 and GBS-Mock, genomic regions

and candidate genes with similar functions were identified for

Zm00001d021708 on chromosome 7 and Zm00001d012719 on the

single chromosome, related to plant responses to ABA for PH inWW;

Zm00001d014899 on chromosome 5 and Zm00001d001852 on the

single chromosome, associated with the phytohormone gibberellin for

SD inWW; Zm00001d00509 on chromosome 2 and Zm00001d053262

on the single chromosome, involved in ABA regulation for SD in WS.
FIGURE 2

Venn diagrams with the number of significant trait SNPs in three genotyping scenarios. (A) WW (well-watered) water supply condition column; (B) WS
(water-stressed) water supply condition column. SPAD, PH (plant height), SD (stalk diameter), and SDM (shoot dry matter).
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3.6 Phenotypic variation explained by SNP
in different genotyping scenarios

The proportions of phenotypic variance explained by significant

SNP (R2
TOT ) for the analyzed traits under both water supply

conditions, ideal (WW) and deficit (WS), were less explained in

the isolated genotyping scenarios for the studied traits (Figure 4).

Regarding the isolated scenarios, R2
TOT in SNP-Array ranged from

0.18 for SD (WW inWS) to 0.53 for SPAD (WW), GBS-B73 ranged

from 0.11 for SD (WS) to 0.48 for SD (WW), and GBS-Mock from

0.11 for PH (WW) to 0.53 for SPAD (WW). Overall, SNP-Array

performed better independently for SPAD and PH, except for SD

(WW), where GBS-B73 stood out, and SDM was almost the same

among the scenarios. When combined, the value of R2
TOT ranged

from 0.26 in SNP-Array + GBS-B73 for SD (WS) to 0.65 in SNP-

Array + GBS-Mock for SPAD (WW). The percentages obtained

represent the phenotypic variance explained by combining multiple

SNPs simultaneously.

The best scenario combination was SNP-Array + GBS-Mock for

SPAD (WW) with an increase of 0.12 in accuracy compared to the

best isolated scenario. For PH and SDM under WW condition,

SNP-Array + GBS-B73 was superior, increasing accuracy by 0.07

and 0.16, respectively, compared to the best single scenario. For SD,

combining GBS-B73 + GBS-Mock increased accuracy by 0.05.

Regarding water availability, the ideal water supply condition
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achieved better overall accuracy, except for PH in isolated SNP-

Array and combined with GBS-Mock. In the WS condition, better

accuracy was also observed for all traits when combining scenarios.
4 Discussion

Water is one of the most important factors limiting crop

growth. Maize requires a large amount of water throughout all

stages of development, from seed germination to the reproductive

phase. In this context, the significant effect of water supply levels

reveals contrasting conditions in WW and WS, indicating that the

irrigation treatments used in the present study to generate

contrasting environments were sufficient for all traits (Table 1).

Moreover, the significance of genotypes suggests that the panel used

in this study exhibits genetic variability. Previous studies have also

reported genetic diversity for the same tropical maize germplasm

panel (Yassue et al., 2021; De Souza Silveira et al., 2024). Genetic

variability is a fundamental factor for any breeding program.

However, the interaction effect shows that the responses were

not differentiated for the genotypes across environments; they

exhibit similar phenotypic responses to environmental changes.

Genotype x environment is important when estimating heritability

because it influences a trait’s genetic and environmental variation

(Falconer and Mackay, 1996). The low effect of interaction also
FIGURE 3

Manhattan plot and Quantile-Quantile (Q-Q) plots for Genome-Wide Association Study (GWAS) comparing genotyping platforms in tropical maize
for SPAD trait in WW (water-stressed) conditions water supply. The Manhattan plot displays GWAS results based on three datasets: SNP-Array and
GBS-B73 (A), and Mock (B). The x-axis represents the chromosomal positions, while the y-axis indicates the -log10 P-values, reflecting statistical
significance. The horizontal lines denote the genome-wide suggestive significance threshold, with dots above these lines marking significant SNPs.
The Q-Q plots illustrate the GWAS results for the same datasets: SNP-Array (C), GBS-B73 (D), and Mock (E). The x-axis corresponds to the -log10
expected P-values derived from the chi-square distribution, while the y-axis represents the -log10 observed P-values. Each dot represents an SNP,
with the most significant SNP appearing as the top hit. The red diagonal line shows the expected distribution under the null hypothesis of
no association.
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TABLE 4 Pearson correlation among significant markers from the GBS-Mock scenario with known functions and markers from the SNP-Array
scenario for traits in WW (well-watered) and WS (water-stressed) conditions water supply.

Trait
GBS-Mock SNP-Array

r
Marker Position Chrm Position

SPAD in WW

Zm00001d036175 76554426
6 66088433

0.71
6 68443154

Zm00001d042735 201318938
6 76875108

0.76
6 77806057

Zm00001d042755 230114762 1 99951335 0.41

Zm00001d024497 302570660 10 22670857 0.52

SPAD in WS

Zm00001d008500 200328622
3 179265803

0.40
4 214338748

Zm00001d042735 201318938
6 76875108

0.76
6 77806057

Zm00001d006357 306796326 2 206059268 0.49

Zm00001d029023 537851163 5 199240894 0.41

PH in WW Zm00001d012719 305928723 9 1840217 0.36

PH in WS
Zm00001d034057 399525514 1 279982555 0.51

Zm00001d018703 922415122 8 132436479 0.53

SD in WW

Zm00001d026300 205301556 1 62995980 0.38

Zm00001d001852 583680097 7 119716831 0.35

Zm00001d047956 831219654 10 144416974 0.87

SD in WS

Zm00001d001852 583680097 7 119716831 0.35

Zm00001d053262 751364673

1 33596576

0.30

1 156697884

2 2509863

2 176643239

2 226012848

3 200304796

4 30519074

(Continued)
F
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TABLE 3 Number, average, and standard deviation (SD) of significant SNPs per trait in WW (well-watered) and WS (water-stressed) conditions water
supply and genotyping scenario.

Water
Supply

SPAD PH SD SDM

SNP-
Array

GBS-
B73

GBS-
Mock

SNP-
Array

GBS-
B73

GBS-
Mock

SNP-
Array

GBS-
B73

GBS-
Mock

SNP-
Array

GBS-
B73

GBS-
Mock

WW 8 6 5 6 4 2 4 7 4 6 5 4

WS 7 3 5 9 3 3 3 2 3 3 4 5

Overall 15 9 10 15 7 5 7 9 7 9 9 9

Average 7.5 4.5 5 7.5 3.5 2.5 3.5 4.5 3.5 4.5 4.5 4.5

SD 0.5 1.5 0 1.5 0.5 0.5 0.5 2.5 0.5 1.5 0.5 0.5
fro
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maximizes the accuracy (Assareh et al., 2012); high accuracy

estimates indicate good experimental precision. Heritability was

higher for plant height, followed by stem diameter, consistent with

results from Sabiel et al. (2013), who reported moderate

heritabilities for plant height and stem diameter in maize under

water stress.
4.1 SNP in genotyping scenarios

Platforms such as SNP-Array and GBS are well-suited for

genotyping hundreds to thousands of samples, each containing

numerous SNPmarkers, in a single assay and at a significantly faster

pace (Rasheed et al., 2017). This study had a balanced SNP

distribution across chromosomes in the SNP-Array and GBS-B73

genotyping scenarios, perhaps attributed to using the same

reference genome (Table 2). The inbred line B73 has been utilized

as the reference genome for maize sequencing (Schnable et al.,

2009), and an example of a reference genome-based pipeline is

TASSEL-GBS.

In the GBS-Mock scenario, a smaller number of SNP markers

was observed. In cases where a reference genome is not yet available,

a simulated genome can perform SNP discovery, serving as a valid

alternative, especially for minor crops (MaChado et al., 2023;

Sabadin et al., 2022). Regarding the smaller number of markers

observed in GBS-B73 compared to SNP-Array, this may be related

to the low genomic coverage of GBS resulting in missing SNP

(Wang et al., 2020). However, this issue can be partially addressed

by using software employed in imputation, as missing SNP are

imputed to fi l l in the gaps in obtaining intermediate

genotype information.
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4.2 GWAS and candidate genes

GWAS has emerged as a crucial tool, allowing for a systematic

approach to identifying associations between thousands of genomic

loci and complex traits. In this study, overall, more SNP were

identified in association with the trait under ideal water supply

conditions than under water deficit conditions in all genotyping

scenarios (Table 3). A similar result was found by De Souza Silveira

et al (2024), who identified more SNPs associated with root traits of

tropical maize under ideal water supply conditions than those

subjected to water scarcity. Moreover, Yassue et al (2021); Yassue

et al, 2023) found more SNP associated with tropical maize traits

not evaluated under inoculation by growth-promoting bacteria,

such as plant height, stem diameter, and aboveground dry mass.

These authors also consider that growth-related traits, such as plant

height, stem diameter, and dry mass, are complex and controlled by

many genes with small individual effects.

The genes found in the study have small effects (ASE), revealing

the polygenic nature of the traits and controlling a relatively small

portion of the genotypic variation (Supplementary Table S1).

Complex traits in plants, such as height, diameter, and tolerance

to environmental stresses, often have a multifactorial genetic basis

involving the interaction of various genes and environmental

factors. Thus, knowledge of the genomic regions associated with

the traits of interest will provide insight into this genetic basis.

Additionally, the study also detected a common marker associated

with more than one trait at different water supply levels, indicating a

possible pleiotropic effect. Bouchet et al. (2017) reported pleiotropy

among phenology-related traits, such as plant height and leaf

number, and Zhang et al. (2022) for maize productivity traits.

Pleiotropic effects in GWAS studies can increase the complexity of
TABLE 4 Continued

Trait
GBS-Mock SNP-Array

r
Marker Position Chrm Position

4 74777100

4 194400472

4 195155904

4 235373522

5 153728179

5 219174423

7 119716831

8 26683716

8 136183604

Zm00001d047956 831219654 10 144416974 0.87

SDM in WW
Zm00001d046354 320987424 9 84921243 0.94

Zm00001d008954 511458983 10 94908425 0.46

SDM in WS Zm00001d018001 440728659 5 211640184 0.47
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understanding genetic and phenotypic relationships, indicating that

phenotypes are more interconnected than initially thought. This

complicates the interpretation of study results, as it may need to be

clarified which phenotype is directly influenced by the variant and

to what extent. In genetic improvement studies, pleiotropic effects

can affect the selection of desirable traits, as a single genetic variant

can influence multiple agronomic or desirable traits.

The candidate gene Zm00001d005090 is associated with SD

under both water conditions and SDM under water deficit, possibly

indicating a pleiotropic effect regulating the expression of these two

traits. This gene is responsible for the clathrin heavy chain, one of

the main subunits of clathrin, an essential protein in eukaryotic cells

playing a crucial role in the endocytosis process. Hence, endocytosis

occurs in many vital processes for plant development, such as

abscisic acid (ABA) responses (Sutter et al., 2007). These authors

state that in situations involving ABA, specific proteins in the
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plasma membrane are negatively regulated through the induction

of their endocytosis. It has been demonstrated that ABA and

salicylic acid positively regulate a gene encoding a clathrin chain

in maize (Zeng et al., 2013). ABA is produced in various parts of

plants, including the stem, and it influences gene expression by

activating stress-response protein-coding genes and repressing

growth-related genes. There is also evidence that clathrin impacts

Arabidopsis’s stomatal function, gas exchange, and vegetative

growth (Larson et al., 2017). Thus, this gene may have a

pleiotropic effect, resulting in reduced height, stem diameter

growth, and dry mass.

SNP were found to be associated with the trait simultaneously in

both water availability levels, such as the gene Zm00001d017978

identified in association with the PH trait in the SNP-Array scenario

and the gene Zm00001d001852 in association with the SD trait in the

GBS-Mock scenario. Zm00001d017978 has a putative function in the
FIGURE 4

Proportion of phenotypic variance explained by the SNP (R2
TOT ) per trait in WW (well-watered) and WS (water-stressed) conditions water supply and

genotyping scenario). (A) SPAD, (B) PH (plant height), (C) SD (stalk diameter), and (D) SDM (shoot dry matter).
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endoglucanase enzyme, a subgroup of a larger enzyme family called

cellulase. Cellulases are part of a superfamily of enzymes called

hydrolases that use water to break down molecules. All cellulases

are essential to degrading cellulose, a structural polysaccharide found

in plant cell walls (Rahman et al., 2018). The cell wall plays a crucial

role in plants’ support and mechanical support, allowing them to

grow by providing rigidity and resistance. Therefore, any alteration in

cellulose degradation, caused by overexpression or underexpression

of enzymes can affect structural integrity and, consequently, plant

height. The applied water deficit may have negatively affected stem

elongation, contributing to plant height, as at the V6 stage, the stem

initiates the accelerated elongation phase. The gene Zm00001d001852

has a putative function as Gibberellin-regulated protein 2 (GRP) with

expression positively regulated by gibberellin. The plant hormone

gibberellin regulates major aspects of plant growth and development

(Yamaguchi, 2008), stimulating cell division and growth. The effect of

gibberellin on stem diameter may be related to cell division and radial

expansion of cells, increasing the number of cell layers. Additionally,

there is evidence that biotic stresses impact gibberellin and GRP

levels, as it has been reported that a slight increase in temperature can

raise endogenous gibberellin concentration (Camut et al., 2019).

The genes Zm00001d042735 and Zm00001d031759 were also

identified at both water supply levels and are associated with the

SPAD trait. The first one was identified in the GBS-Mock scenario,

while the other one was identified in both the SNP-Array and GBS-

B73 scenarios, and both belong to the zinc finger family. Zinc finger

proteins are named for their three-dimensional structure resembling

a finger, binding to zinc ions through amino acids in the peptide

sequence and widely distributed in eukaryotic organisms (Han et al.,

2020). They bind to specific genetic sequences, interact with various

proteins, participate in signal transduction, and regulate gene

expression, playing an essential role in growth, development, and

environmental adaptation. Zm00001d042735 was described as a

RING-type E3 ubiquitin transferase. Ubiquitin is a protein that acts

as a molecular marker, signaling various cellular functions such as

protein degradation, cell cycle regulation, cellular stress response, and

intracellular signaling (Lee and Kim, 2011). E3 ubiquitin proteins

respond to water stress by regulating ABA biosynthesis and signal

transduction, modifying and degrading stress-related proteins (Han

et al., 2022). An example is ZmAIRP4, which is involved in maize’s

ABA signaling, and this gene’s overexpression increased water stress

tolerance in Arabidopsis (Yang et al., 2018). Changes in water content

induced by water stress can directly affect the SPAD index and

chlorophyll content, as ABA concentration increases, causing

stomatal closure to reduce water loss, which may affect the

expression of genes related to stress response.

The gene Zm00001d031759, also belonging to the zinc finger

protein family, has a putative function in the Protein shoot

gravitropism 5 group, acting in the morphogenesis of aerial

organs and responses to gravitropism. Some genes from the shoot

gravitropism family have been identified and are involved in the

perception and signal transduction for gravity associated with the

branching angle (Yamauchi et al., 1997). It has also been found that

loss of functionality of the shoot gravitropism five gene (SGR5)

resulted in decreased starch accumulation in aerial tissues and

consequently reduced gravity sensitivity (Tanimoto et al., 2008).
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Gravity is an important regulator of plant architecture, allowing

plants to optimize their position relative to the soil for nutrient

absorption and to light for photosynthesis. Furthermore, some

genes and regions manifest for the expression of the trait

independently of the water supply level, probably unrelated to

water stress.

4.2.1 Genes associated with phytohormone
signaling pathway

Genes and regions shared among the genotyping scenarios were

identified based on their function for the same trait (Supplementary

Table S3). For example, genes Zm00001d026477 in SNP-Array and

Zm00001d027695 in GBS-B73 are related to jasmonic acid (JA)

response, associated with SPAD in WW traits. Jasmonate ZIM

domain proteins, well-known as JAZ proteins, play a crucial role in

pathogen responses (Ishiga et al., 2013) and are important signaling

molecules in the JA pathway (Liu et al., 2017). Glutaredoxins are

associated with water-induced stress response in maize, also

participating in the abiotic stress response mediated by JA and

ethylene through their interaction with transcription factors (Ding

et al., 2019). As JA is involved in various signaling pathways

regulating physiological and molecular processes in plants, in

defense against biotic and abiotic stresses, such as drought

(Rehman et al., 2023), signaling pathways induce stomatal closure,

activating potassium efflux in guard cell protoplasts (Evans, 2003)

enhancing the plants’ ability to cope with environmental stresses.

Regarding ABA regulation, Zm00001d016786 was associated with

SDM in WS in SNP-Array and Zm00001d005090 in GBS-B73.

Zm00001d021708 was found in GBS-B73, and Zm00001d012719 in

GBS-Mock for PH under WW conditions. Zm00001d005090 and

Zm00001d053262 were also identified in GBS-B73 and GBS-Mock,

respectively, for SD under WS conditions. Protein disulfide-isomerase

(PDI) is a member of the thioredoxin superfamily of redox proteins

with multiple physiological functions (Khan and Mutus, 2014),

playing a crucial role in abiotic stress tolerance. Thioredoxin

(TRXo1) is involved in ABA perception through redox regulation

of specific receptors (De Brasi-Velasco et al., 2023). In maize, genes

related to PDI were highly responsive to ABA and water stress (Liu

et al., 2009). A PDI-like protein strongly associated with aboveground

biomass and leaf size was also identified (Kang et al., 2015). According

to Tanz et al. (2012), PDI is a family of proteins that affect chlorophyll

biosynthesis in Arabidopsis seedlings.

The PPR (pentatricopeptide repeat) proteins are located in

mitochondria or chloroplasts. In contrast, the BZIP (basic leucine

zipper) proteins constitute a family of transcription factors (TFs)

associated with plant growth, development, and stress responses. A

typical PPR protein is targeted to mitochondria or chloroplasts,

binds to one or several organellar transcripts, and influences their

expression by altering RNA sequence, turnover, processing, or

translation (Barkan and Small, 2014). It has been found that the

PPR96 protein, located in mitochondria, altered the transcription

levels of various stress-responsive genes under ABA treatments (Liu

et al., 2016b). BZIP proteins are involved in multiple stress

responses, primarily through the ABA signaling pathway (Uno

et al., 2000). Changes in the transcription levels of maize BZIP

TFs were observed in response to ABA treatments (Cao et al., 2019).
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As mentioned earlier in SDM and SD, the Clathrin heavy chain

indicates possible pleiotropy. Calcium-dependent lipid-binding

proteins act in response to abiotic stress, such as drought. The

expression of sANN3, a calcium-dependent lipid-protein, increased

in response to water stress in rice, inducing various genes in the

ABA signaling pathway and promoting root growth to enhance

water absorption and stomatal closure to reduce water loss (Li et al.,

2019). Therefore, these proteins and the biosynthesis pathways in

ABA regulation may influence photosynthesis, plant development,

and growth.

The genes Zm00001d014899 in GBS-B73 and Zm00001d001852

in GBS-Mock are associated with the trait SD under WW

conditions, involved with the phytohormone gibberellin. The first

encodes a protein from the tetratricopeptide repeat (TPR)-like

superfamily. Proteins containing tetratricopeptide repeats play an

important role in protein-protein interaction and regulating various

cellular functions (Rosado et al., 2006). They serve different crucial

roles in plants, including their involvement in phytohormone

signaling, such as gibberellin (Jacobsen and Olszewski, 1993;

Silverstone et al., 2007). Therefore, TPR-repeat-containing

proteins are pivotal in signaling phytohormones and regulating

various physiological processes, including growth, development,

and environmental response. Gibberellin-regulated protein 2

(GRP) was mentioned earlier, occurring at both levels of water

availability for SD.

Genes associated with SDM under WW conditions were found

on the same chromosome, Zm00001d031445 in the SNP-Array and

Zm00001d027626 in the GBS-B73, both involved in ethylene

biosynthesis. The ethylene-insensitive3-like/ethylene-insensitive3

(EIL/EIN3) is one of the major regulatory families in ethylene

signaling, also serving as a hub for ethylene connections with

various plant responses to different environmental conditions

(Wu and Yang, 2019). Ethylene is a crucial regulator in stress

signaling, and its interaction with a receptor complex triggers the

inactivation of kinase response, resulting in the initial

dephosphorylation of EIN2, followed by the cleavage of the C-

terminal of EIN2. Subsequently, EIN2 translocates to the nucleus,

regulating the activation of EIN3/EIL1. These proteins, in turn,

exert control over ethylene response factors (Yoshida et al., 2011).

S-adenosyl-L-methionine synthetase, known as SAM, is a donor

of methyl groups in the biosynthesis of nucleic acids, proteins,

lipids, polysaccharides, and secondary compounds (Heidari et al.,

2020). SAM is involved in many important biological processes,

such as ethylene biosynthesis. Yu et al. (2012) found that alterations

in the expression level of SAM affected protein synthesis,

phytohormones (JA and ethylene), and genes related to stress

defense response. Ethylene is a volatile compound produced

endogenously by plants for growth regulation - roots, stems,

leaves, and flowers (Shilev, 2020). Plants increase the synthesis of

this hormone when subjected to stressful situations, whether biotic

or abiotic. Water deficit, in particular, is one of the main factors

related to its increase (Apelbaum and Yang, 1981). Thus, the plant

alters its growth rates, decreases biomass, and reduces development

(Glick, 2014).
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4.2.2 Genes associated with the circadian clock
Zm00001d044194 was identified in the SNP-Array, and

Zm00001d018127 in the GBS-B73 under WW condition

associated with the SPAD trait acting in the circadian clock. The

MYB proteins constitute one of the most extensive families of

transcription factors found in plants, playing an important role in

growth and development, with widespread expression in the

development of corn and soybeans in stress responses, and are

closely correlated with the circadian rhythm (Du et al., 2013). MYB-

related genes can act as repressors and activators associated with the

circadian clock (Kamioka et al., 2016; Hsu et al., 2013; Hu et al.,

2024; Schaffer et al., 1998).

The SNW/Ski domain protein is involved in the post-

transcriptional regulation of circadian clock genes. SkipP interacts

with the serine/arginine-rich spliceosomal protein 45 (SR45) and

controls the circadian cycle through alternative splicing of circadian

clock genes under biotic stress conditions (Wang et al., 2012). The

circadian clock in plants refers to an internal timing system on a

cycle of approximately 24 hours that regulates plants’ behavioral

and physiological processes, including photosynthesis (Niwa et al.,

2009). Likely, each guard cell maintains its circadian rhythm, and

a clock controlling stomatal opening seems advantageous for the

plant, helping prevent unnecessary water loss through transpiration

(Dodd et al., 2005; Gorton et al., 1993). Thus, besides the

environmental and internal factors that influence stomatal

function, the circadian pattern in regulating stomatal movements

is advantageous as it can enhance photosynthetic and water

use efficiency.

4.2.3 Genes associated with
ubiquitination regulation

The genes associated with the PH trait under WS conditions

were Zm00001d053809 in SNP-Array and Zm00001d042481 in

GBS-B73, which are related to the regulation of protein

ubiquitination. Culins neddylation modulates the ubiquitin ligase

activity of the complex, leading to increased ubiquitination and

degradation of target proteins by the proteasome (Biswas et al.,

2007; Mohanty et al., 2021; Pan et al., 2004). Neddylation is the

post-translational protein modification most closely related to the

regulation of protein ubiquitination (Rabut and Peter, 2008).

Ubiquitin thioesterases play a fundamental role in regulating the

degradation of proteins marked with ubiquitin in plants. The

ubiquitin system regulates virtually all aspects of cellular function

(Ernst et al., 2013), which is important in controlling abiotic stress

and processes that affect agronomic traits. For example, the ubiquitin-

proteasome system is an essential pathway for protein degradation in

plant growth and development (Linden and Callis, 2020). The

ubiquitin-proteasome system is involved in regulating transcription

responsive to ABA, allowing plants to respond to abiotic stresses such

as drought (Dreher and Callis, 2007). Thus, ubiquitination affects

gene expression or protein abundance to determine agronomic traits

and stress control, enabling dynamic adjustments in physiological

and biochemical responses contributing to plant survival and

adaptation under adverse conditions.
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4.2.4 Coincident genes among
genotyping scenarios

Concerning the SNP-Array and GBS-B73 genotyping scenarios,

these platforms are based on the same reference genome (B73) and

are physically fixed, making it possible to determine the physical

position of the marker in the genome. The coincidence between

genes and regions on the same chromosome occurred only for

Zm00001d031445 in the SNP-Array and Zm00001d027626 in the

GBS-B73, both on chromosome 1. However, it was observed that,

even though there was no coincidence regarding the physical

position of the markers and chromosomes, there was still

similarity regarding the gene functions.

Considering the three scenarios, when identifying the gene and

region, it was observed that there was coincidence only for one

marker in the SPAD trait under both irrigation conditions.

However, possible coincidences were highlighted when deeper

analyses were conducted regarding the gene function. Negro et al.

(2019) concluded that GBS and SNP-Array were complementary

for detecting QTLs in maize, marking different haplotypes. In a

study performed in barley by Darrier et al. (2019), GBS and SNP-

Array were shown to be efficient in accessing diversity. Still, they

accessed different regions of the genome. These are methods that

will capture different SNPs, there will be differences in position,

density and distribution of the marks. However, even though they

captured different regions, there was a positive correlation between

the similarity matrices of both approaches. Thus, even when

accessing different genome regions, these platforms demonstrate

that they can be complementary. In the study, there was also a

coincidence for the simulated genome, GBS-Mock, validating the

complementarity for this scenario.
4.3 Association of markers in
genotyping scenarios

The correlation between the markers in the SNP-Array and

GBS-Mock scenarios provides information about the location of the

markers on the chromosomes. Identifying a marker highly

correlated with the GBS-Mock suggests that this marker is likely

on a specific chromosome. The strength of the correlation between

two markers is related to their physical proximity; the closer the

markers are, the stronger the linkage disequilibrium (LD) (Myles

et al., 2009). When markers are closer, they are more likely to be

inherited together, leading to a stronger correlation between them.

This is because when two markers are very close, they have fewer

opportunities for recombination during meiosis, the process of

gamete formation, which maintains stable combinations of

adjacent alleles across generations. This information can be useful

for guiding research and providing an initial direction for

investigating the specific position of the marker in the genome.

However, according to the study results, the markers are located

throughout the genome and not necessarily physically close. In

other words, despite the relationship between the correlation’s

strength and the markers’ physical proximity, the results showed

that the markers are distributed across the entire genome. This

suggests that other factors, besides physical proximity, may
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influence the correlation between the markers, such as genetic

inheritance patterns, recombination rate, and genomic structure,

highlighting the importance of considering these aspects.
4.4 Combining genotyping scenarios

Combining genotyping scenarios can be a valid alternative for

GWAS studies, providing higher resolution results than those

obtained in isolated scenarios. In the approach involving Array and

GBS, it was noticed that one tool complements the other, regardless

of how GBS data are explored, whether with the referenced genome

or in-silico, as there was little difference between SNP-Array + GBS-

B73 and SNP-Array + GBS-Mock. Using multiple genotyping

platforms, capturing a broader range of genetic markers in linkage

disequilibrium with the loci of interest is possible. This can increase

the ability to detect significant associations between genetic variants

and phenotypes in GWAS studies.

Concerning the use of simulated genomes, MaChado et al. (2023)

and Sabadin et al. (2022), assert that it is an excellent strategy for

studies on diversity, population structure, heterotic group definition,

tester selection, and genomic prediction for minor crops. Another

caveat is that using temperate germplasm as a reference genome may

introduce a significant bias when analyzing tropical germplasm (Xu

et al., 2017). As a result, favorable alleles hidden in tropical maize, in

specific tropical genomic regions, may be lost (Rasheed et al., 2017).

With GBS, marker discovery and genotyping occur simultaneously,

mitigating this bias and enabling the identification of markers in the

analyzed diversity panel (Heslot et al., 2013). Furthermore,

combining information obtained via conventional approaches with

a reference genome obtained from the simulated genome should

improve accuracy in association studies and impact the advancement

of genetic research and the development of breeding strategies.
5 Final remarks

Negro et al. (2019) and Darrier et al. (2019) highlighted the

complementarity between standard genotyping platforms for GWAS,

demonstrating that both SNP-Array and GBS can identify markers

strongly linked to genes influencing key phenotypic traits. However,

adopting different genotyping platforms may incur substantial costs

due to their distinct methodologies. Conversely, GBS genotyping offers

the flexibility to utilize both the reference genome and in-silico genome,

thereby avoiding additional expenses associated with combining these

scenarios. In our study, combining GBS-B73 and GBS-Mock datasets

resulted in a notable increase in accuracy for several traits compared to

the highest accuracy achieved by GBS alone. Specifically, we observed

accuracy gains of 0.06, 0.03, 0.05, and 0.15 for SPAD, PH, SD, and

SDM, respectively. This integration of datasets allows for more

comprehensive analyses, capturing a broader range of SNPs and

providing enhanced resolution in explaining phenotypic variation.

Ultimately, leveraging a single genotyping method enables more

informative and efficient data exploration, facilitating a deeper

understanding of the genetic basis of traits and informing crop

improvement strategies.
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Indeed, when a study aims to uncover greater genetic

polymorphism within a species, and SNP-Array technology is

unavailable, leveraging GBS approaches becomes a viable

alternative. By conducting GWAS using GBS methods, researchers

can effectively identify additional polymorphisms, thereby increasing

the resolution and depth of the study. This strategy is particularly

beneficial for minor or orphan crops with a genome reference but

need access to SNP-Array technology. In such cases, GBS offers a

cost-effective and accessible means to explore the genetic diversity

present within these crops, facilitating a more comprehensive

understanding of their genetic architecture and potential avenues

for crop improvement. By harnessing the power of GBS-based

GWAS, researchers can unlock valuable insights into the genetic

factors underlying traits of interest, ultimately contributing to the

development of improved varieties tailored to the specific needs of

these crops.

Maize, with its high genetic diversity, can target pangenomes to

improve the accuracy of genetic and phenotypic analyses (Lu et al.,

2015). Pangenomes offer a more comprehensive representation of

genomic variations within the species, allowing for the capture of

rare or subpopulation-specific variations that may not be present in

a single reference genome (Marschall et al., 2018). However, if the

resources needed to generate or utilize pangenomes are not

available, GBS remains an effective and accessible alternative.

Compared to other approaches, GBS provides greater flexibility

and sufficient resolution to identify significant polymorphisms,

contributing to the exploration of genetic diversity and the

advancement of breeding programs. By leveraging the power of

GBS-based GWAS, either alongside pangenomes or as an

alternative to them, researchers can unlock valuable insights into

the genetic factors underlying traits of interest. This ultimately

contributes to the development of improved varieties tailored to the

specific needs of these crops.
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Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012).
An efficient multi-locus mixed-model approach for genome-wide association studies in
structured populations. Nat. Genet. 44, 825–830. doi: 10.3390/app10207326. Plant-
growth-promoting bacteria mitigating soil salinity stress in plants. Appl. Sci. 10, 1–20.
Frontiers in Plant Science 18
Silverstone, A. L., Tseng, T.-S., Swain, S. M., Dill, A., Jeong, S. Y., Olszewski, N. E.,
et al. (2007). Functional analysis of SPINDLY in gibberellin signaling in arabidopsis.
Plant Physiol. 143, 987–1000. doi: 10.1104/pp.106.091025

Sutter, J. U., Sieben, C., Hartel, A., Eisenach, C., Thiel, G., and Blatt, M. R. (2007). Abscisic
acid triggers the endocytosis of the arabidopsis KAT1 K+ Channel and its recycling to the
plasma membrane. Curr. Biol. 17, 1396–1402. doi: 10.1016/j.cub.2007.07.020

Taiz, L., Zeiger, E., Moller, I. M., and Murphy, A. (2015). Plant physiology and
development. 6th Edn (Sunderland, Massachusetts, USA: Sinauer Associates Incorporated).

Tanimoto, M., Tremblay, R., and Colasanti, J. (2008). Altered gravitropic response,
amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5
mutant are associated with reduced starch levels. Plant Mol. Biol. 67, 57–69.
doi: 10.1007/s11103-008-9301-0

Tanz, S. K., Kilian, J., Johnsson, C., Apel, K., Small, I., Harter, K., et al. (2012). The
SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts
with LCHB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in
Arabidopsis seedlings. Plant J. 69, 743–754. doi: 10.1111/j.1365-313X.2011.04833.x

Thomson, M. J. (2014). High-throughput SNP genotyping to accelerate crop
improvement. Plant Breed. Biotechnol. 2, 195–212. doi: 10.9787/pbb.2014.2.3.195

Turner, N. C., and Jones, M. M. (1980). “Turgor maintenance by osmotic adjustment :
A Review and evaluation,” in Adaptation of plants to water and high temperatures stress.
Eds. N. C. Turner and P. J. Kramer (New York: Willey & Sons), 87–103.

Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K.
(2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-
dependent signal transduction pathway under drought and high-salinity conditions. Proc.
Natl. Acad. Sci. U. S. A. 97, 11632–11637. doi: 10.1073/pnas.190309197

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy
Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Wang, X., Wu, F., Xie, Q., Wang, H., Wang, Y., Yue, Y., et al. (2012). SKIP is a
component of the spliceosome linking alternative splicing and the circadian clock in
Arabidopsis. Plant Cell 24, 3278–3295. doi: 10.1105/tpc.112.100081

Wang, N., Yuan, Y., Wang, H., Yu, D., Liu, Y., Zhang, A., et al. (2020). Applications
of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci. Rep. 10, 1–12.
doi: 10.1038/s41598-020-73321-8

Wickham, H. (2011). ggplot2. WIREs Comput. Stat. 3, 180–185. doi: 10.1002/
wics.147

Williams, E., Piepho, H. P., and Whitaker, D. (2011). Augmented p-rep designs.
Biometrical J. 53, 19–27. doi: 10.1002/bimj.201000102

Wu, Y. S., and Yang, C. Y. (2019). Ethylene-mediated signaling confers
thermotolerance and regulates transcript levels of heat shock factors in rice seedlings
under heat stress. Bot. Stud. 60. doi: 10.1186/s40529-019-0272-z

Xu, Y., Li, P., Zou, C., Lu, Y., Xie, C., Zhang, X., et al. (2017). Enhancing genetic gain
in the era of molecular breeding. J. Exp. Bot. 68, 2641–2666. doi: 10.1093/jxb/erx135

Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annu. Rev. Plant
Biol. 59, 225–251. doi: 10.1146/annurev.arplant.59.032607.092804

Yamauchi, Y., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Mutations in the
SGR4, SGR5 and SGR6 loci of arabidopsis thaliana alter the shoot gravitropism. Plant
Cell Physiol. 38, 530–535. doi: 10.1093/oxfordjournals.pcp.a029201

Yang, L., Wu, L., Chang, W., Li, Z., Miao, M., Li, Y., et al. (2018). Overexpression of
the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in
Arabidopsis. Plant Physiol. Biochem. 123, 34–42. doi: 10.1016/j.plaphy.2017.11.017

Yassue, R. M., Carvalho, H. F., Gevartosky, R., Sabadin, F., Souza, P. H., Bonatelli, M.
L., et al. (2021). On the genetic architecture in a public tropical maize panel of the
symbiosis between corn and plant growth-promoting bacteria aiming to improve plant
resilience. Mol. Breed. 41. doi: 10.1007/s11032-021-01257-6

Yassue, R. M., Galli, G., Chun-Peng, J. C., Fritsche-Neto, R., and Gota, M. (2023).
Genome-wide association analysis of hyperspectral reflectance data to dissect the
genetic architecture of growth-related traits in maize under plant growth-promoting
bacteria inoculation. Plant Direct 7. doi: 10.1002/pld3.492

Yin, L. (2020). CMplot: circle manhattan plot. C. Circ. Manhattan Plot.

Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., et al.
(2011). Arabidopsis HsfA1 transcription factors function as the main positive
regulators in heat shock-responsive gene expression. Mol. Genet. Genomics 286, 321–
332. doi: 10.1007/s00438-011-0647-7

Yu, J. G., Lee, G. H., and Park, Y. D. (2012). Physiological role of endogenous S-
adenosyl-L-methionine synthetase in Chinese cabbage. Hortic. Environ. Biotechnol. 53,
247–255. doi: 10.1007/s13580-012-0021-7

Zeng, M. H., Liu, S. H., Yang, M. X., Zhang, Y. J., Liang, J. Y., Wan, X. R., et al. (2013).
Characterization of a gene encoding clathrin heavy chain in maize up-regulated by
salicylic acid, abscisic acid and high boron supply. Int. J. Mol. Sci. 14, 15179–15198.
doi: 10.3390/ijms140715179

Zhang, X., Ren, Z., Luo, B., Zhong, H., Ma, P., Zhang, H., et al. (2022). Genetic
architecture of maize yield traits dissected by QTL mapping and GWAS in maize. Crop
J. 10, 436–446. doi: 10.1016/j.cj.2021.07.008

Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., and Weir, B. S. (2012). A
high-performance computing toolset for relatedness and principal component analysis
of SNP data. Bioinformatics 28, 3326–3328. doi: 10.1093/bioinformatics/bts606
frontiersin.org

https://doi.org/10.3389/fpls.2016.01825
https://doi.org/10.1038/ncomms7914
https://doi.org/10.3389/fpls.2023.1164555
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1186/s12859-016-0879-y
https://doi.org/10.3389/fimmu.2021.695331
https://doi.org/10.1007/s11104-017-3479-3
https://doi.org/10.1105/tpc.109.068437
https://doi.org/10.1186/s12870-019-1926-4
https://doi.org/10.1093/pcp/pcp028
https://doi.org/10.1038/sj.onc.1207414
https://doi.org/10.1038/sj.onc.1207414
https://doi.org/10.32614/RJ-2021-041
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1038/embor.2008.183
https://doi.org/10.1007/978-1-4939-7877-9
https://doi.org/10.1007/978-1-4939-7877-9
https://doi.org/10.1016/j.molp.2017.06.008
https://doi.org/10.3390/plants8020034
https://doi.org/10.3390/plants12233982
https://doi.org/10.1104/pp.106.085191
https://doi.org/10.1007/s00438-021-01831-9
https://doi.org/10.1016/S0092-8674(00)81465-8
https://doi.org/10.1016/S0092-8674(00)81465-8
https://doi.org/10.1126/science.1178534
https://doi.org/10.3390/app10207326
https://doi.org/10.1104/pp.106.091025
https://doi.org/10.1016/j.cub.2007.07.020
https://doi.org/10.1007/s11103-008-9301-0
https://doi.org/10.1111/j.1365-313X.2011.04833.x
https://doi.org/10.9787/pbb.2014.2.3.195
https://doi.org/10.1073/pnas.190309197
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1105/tpc.112.100081
https://doi.org/10.1038/s41598-020-73321-8
https://doi.org/10.1002/wics.147
https://doi.org/10.1002/wics.147
https://doi.org/10.1002/bimj.201000102
https://doi.org/10.1186/s40529-019-0272-z
https://doi.org/10.1093/jxb/erx135
https://doi.org/10.1146/annurev.arplant.59.032607.092804
https://doi.org/10.1093/oxfordjournals.pcp.a029201
https://doi.org/10.1016/j.plaphy.2017.11.017
https://doi.org/10.1007/s11032-021-01257-6
https://doi.org/10.1002/pld3.492
https://doi.org/10.1007/s00438-011-0647-7
https://doi.org/10.1007/s13580-012-0021-7
https://doi.org/10.3390/ijms140715179
https://doi.org/10.1016/j.cj.2021.07.008
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.3389/fpls.2024.1442008
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
	1 Introduction
	2 Materials and methods
	2.1 Genetic material and experimental trials
	2.2 Phenotypic data
	2.3 Phenotypic analysis
	2.4 Genotypic data
	2.5 Population structure and LD decay
	2.6 Association analysis
	2.7 Correlation among markers of different scenarios
	2.8 Gene annotation

	3 Results
	3.1 Phenotypic analysis
	3.2 Genotypic scenarios: number and distribution of SNP
	3.3 GWAS analysis
	3.4 Correlation among SNP in the GBS-Mock and SNP-Array scenarios
	3.5 Candidate genes and functional annotations
	3.6 Phenotypic variation explained by SNP in different genotyping scenarios

	4 Discussion
	4.1 SNP in genotyping scenarios
	4.2 GWAS and candidate genes
	4.2.1 Genes associated with phytohormone signaling pathway
	4.2.2 Genes associated with the circadian clock
	4.2.3 Genes associated with ubiquitination regulation
	4.2.4 Coincident genes among genotyping scenarios

	4.3 Association of markers in genotyping scenarios
	4.4 Combining genotyping scenarios

	5 Final remarks
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


