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Discrimination of 14 olive
cultivars using morphological
analysis and machine
learning algorithms
Konstantinos N. Blazakis1*, Danil Stupichev1, Maria Kosma1,
Mohamad Ali Hassan El Chami1, Anastasia Apodiakou1,
George Kostelenos2 and Panagiotis Kalaitzis1*

1Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of
Chania (MAICh), Chania, Greece, 2Kostelenos Olive Nurseries, Poros, Greece
Traditional morphological analysis is a widely employed tool for the identification

and discrimination of olive germplasm by usingmorphological markers which are

monitored by subjective manual measurements that are labor intensive and

time-consuming. Alternatively, an automated methodology can quantify the

geometrical features of fruits, leaves and endocarps with high accuracy and

efficiency in order to define their morphological characteristics. In this study, 24

characteristics for fruits, 16 for leaves and 25 for endocarps were determined and

used in an automated way with basic classifiers combined with a meta-classsifier

approach. This resulted to the discrimination of 14 olive cultivars utilizing data

obtained from two consecutive olive growing periods. The cultivar classification

algorithms were based on machine learning techniques. The 95% accuracy rate

of the meta-classifier approach indicated that was an efficient tool to

discriminate olive cultivars. The contribution of each morphological feature to

cultivar discrimination was quantified, and the significance of each one was

automatically detected in a quantitative way. The higher the contribution of each

feature, the higher the significance for cultivar discrimination. The identification

of most cultivars was guided by the features of both endocarps and fruits, while

those of leaves were only efficient to identify the Kalamon cultivar. The combined

use of morphological features of three olive organs might have an additive effect

leading to higher capacity for discrimination of cultivars. The proposed

methodology might be considered a phenomics tool for olive cultivar

identification and discrimination in a wide range of applications

including breeding.
KEYWORDS

olive cultivar identification, morphological analysis, machine learning, image analysis,
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1 Introduction

Olive (Olea europaea L. subsp. europaea var. europaea) is an

important fruit tree crop in the Mediterranean Basin while its

cultivation has expanded across the rest of the world, including the

United States of America, Oceania, South Africa and Asia (Torres

et al., 2017; Koubouris et al., 2019; Mousavi et al., 2019). Olive oil

originating in the Mediterranean region accounts for more than

90% of global production and has significant socioeconomic

importance for the European Union, since Spain, Italy, Greece

and Portugal produce approximately 75% of the world’s olive oil

supply (Paredes et al., 2019). The ability to identify and discriminate

olive cultivars is important for the efficient management and

exploitation of the available olive genetic resources and for

breeding programs (Beiki et al., 2012; De Ollas et al., 2019). The

identification, cataloguing and exploitation of germplasm

collections comprising cultivars and accessions is performed by

using morphological and molecular markers (Rallo et al., 2018).

Molecular markers and new, advanced biotechnological

platforms have been used for genetic diversity assessment and

cultivar discrimination (D’Imperio et al., 2011; Muleo et al., 2016;

Sebastiani and Busconi, 2017; Zhu et al., 2019; Gomez-Rodrıguez

et al., 2021) while morphological markers continue to constitute the

main approach for describing and discriminating olive germplasm,

despite limitations such as the variability of environmental

conditions, the age of trees, agronomical practices and phenological

stage of trees (Trujillo et al., 2014; Blazakis et al., 2017).

Molecular markers and new, advanced biotechnological

platforms have been used for genetic diversity assessment and

cultivar discrimination (Diaz et al., 2004; D’Imperio et al., 2011;

Muleo et al., 2016; Sebastiani and Busconi, 2017; Zhu et al., 2019;

Gomez-Rodrıguez et al., 2021). However, morphological markers

continue to constitute the main approach for describing and

discriminating olive germplasm, despite limitations such as the

variability of environmental conditions, the age of trees,

agronomical practices, and the phenological stage of trees

(Trujillo et al., 2014; Blazakis et al., 2017). Most morphological

studies are based on a simplified scheme that has been adopted by

the International Union for the Protection of New Varieties of

Plants (UPOV) which focuses on the morphological characteristics

of leaves, fruits and endocarps (Trujillo et al., 2014). These

characteristics have been widely used for descriptive purposes to

distinguish olive cultivars (Barranco et al., 2000; Trujillo et al., 2014;

Beyaz et al., 2017; Blazakis et al., 2017; Rallo et al., 2018; Koubouris

et al., 2019). Currently, most morphological characterization of

olive organs is performed by either time-consuming, labor-

intensive, manual measurements or by one of several stand-alone

software-based methodologies (Riquelme et al., 2008; Rodrıǵuez

et al., 2010; Orrù et al., 2013; Beyaz et al., 2017).

Despite the extensive use of morphological characteristics of olive

fruits, leaves and endocarps for the identification of cultivars, there is

a lack of automated methodologies to further assist in the

development of this field. Working in this direction, (Blazakis et al.,

2017) an integrated image-based tool on automated methodology

was developed in order to describe olive fruit, leaf and endocarp

morphologies. The methodology quantifies many features of these
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organs based on strictly mathematical morphological parameters and

provides accurate, objective numerical measurements of the olive

organ morphology attributes in a more robust and efficient way.

Currently, there are several olive cultivar identification methods

that use chemical and genetic fingerprinting techniques. However,

these methods require a high level of specialization, specific

expensive infrastructure, and laboratory work. In contrast, user-

friendly image-based methodologies could enable fast, accurate

identification of olive cultivars that could be valuable for farmers,

food inspection authorities or researchers (Beiki et al., 2012; Trujillo

et al., 2014; Ponce et al., 2019; Gomes et al., 2020; Khadivi et al.,

2022; Gago et al., 2024). The effectiveness and accuracy of image-

based methodologies for morphological characterization of different

crop species is usually linked to cultivar discrimination and

classification (Fuentes et al., 2018; Ishikawa et al., 2018; Wäldchen

et al., 2018; Dheer and Singh, 2019). Traditionally, a rapid cultivar

identification is a non-automated process involving visual

inspection: the user tries to identify the organ characteristics that

will be considered the discriminating keys for each cultivar

(Wäldchen et al., 2018). Discriminating morphological

characteristics of fruits, leaves, endocarps or other organs is

commonly used for a quick cultivar identification based on

appearance, but visual observations require experience and

sometimes appear to be very subjective, inconsistent and

inaccurate (Grinblat et al., 2016; Fuentes et al., 2018; Wäldchen

and Mäder, 2018). Automated methodologies for plant cultivar

identification based only on morphological characteristics are still

in the very early stages (Ishikawa et al., 2018; Miho et al., 2024).

This report focusses on the design of an automated

methodology for olive cultivar discrimination based on the

calculation of different morphological features of fruits, leaves and

endocarps through geometrical feature extraction and cultivar

classification. The cultivar classification algorithms are based on

established machine learning techniques, while the morphological

analysis was based on a previously developed methodology

(Blazakis et al., 2017). This new automated methodology takes a

further step in the development of an integrated automated tool to

characterize, identify and discriminate a large set of olive cultivars

using machine learning approaches. The relative contribution of

each morphological feature for olive cultivar discrimination was

also determined in a quantitative way.
2 Materials and methods

2.1 Plant material

Fourteen Greek and international olive cultivars were

discriminated in this study: Arbequina, Arbosana, Asprolia

Alexandroupolis, Kalamon, Karidolia Chalkidikis, Koroneiki,

Kothreiki, Koutsourelia, Mastoidis Gigas, Mavrolia Serron,

Megaron, Ntopia Atsiholou, Thiaki and Tragolia. All fruit, leaf

and endocarp samples of the olive cultivars were collected in 2016

and 2017 from the olive germplasm collection of the commercial

nursery “Kostelenos” in Poros, Trizinia in Greece. All the trees were

grown under identical conditions, and the fruit samples were
frontiersin.org
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collected at the breaker stage. Fruits were collected from the middle

part of one year-old shoots around the canopy at approximately

1.5 m height from the ground. They were collected from fruit-

bearing branches avoiding irregular fruits and taking into account

the fruit load of each tree. Moreover, mature, healthy leaves were

collected from the most representative one year-old shoots located

on the southern part of the tree. Finally, the endocarps were

extracted from the sample fruits, and the pulp was removed by a

coarse fabric. All kernels were soaked in 10% bleach for 5 minutes

and stored in a dry place for later usage. At least 100 samples from

fruits, leaves or endocarps were used for the morphological analysis

and the classification algorithms.
2.2 Morphological analysis

To generate the imaging data for the olive samples, we followed

the methodology described in (Blazakis et al., 2017). The

morphological analysis of the fruit and endocarp samples was

performed using the imaging positions adopted by UPOV and

the International Olive Council (IOC). However, for the

development of the classification algorithms we used all the

numerical values corresponding to both positions of fruits and

endocarps. A meopta copy imaging stand was used to create the

imaging data of fruits and endocarps. All the samples were placed

on a 2mm-thick piece of elevated glass to eliminate shadows, and

the camera was installed above them, on a fixed solid arm. An HP

DeskJet Ink Advantage 3636 scanner was used to scan the leaves at a

resolution of at least 600 dots per inch (dpi). All the photographs

were saved as jpeg or png files, and a scaler was placed next to them.

Next, we separated the items in an image from their background

(a process known as segmentation). This resulted in a binary image

of each shape. The morphological analysis of olive fruits, leaves and

endocarps was performed using OliveID, a set of state-of-the-art

automatic algorithms for object contour extraction from imaging

data that was developed in MATLAB (The Mathworks Inc., Natick,

MA, USA) (Guide, 1998; Blazakis et al., 2017). OliveID is a

computational methodology for olive morphological analysis that

identifies various geometrical characteristics which are assigned to

different morphological traits. The outcome of the algorithm is the

representation of each shape by a discrete sequence with all its

boundary points that enables us to quantitatively and qualitatively

analyze the morphology of the olives, leaves and endocarps of each

cultivar. For the morphological analysis of fruit, we used 24

parameters that describe fruit morphological characteristics, while

we used 16 for the leaf. Finally, for the stone’s morphology

description in two positions (A and B) we used 22 morphological

characters. All the morphological characters were purely

mathematically defined, and we refer to (Blazakis et al., 2017) and

the references therein, for further details.
2.3 Data processing and analysis

The statistical analysis of datasets and the creation and study of

classifiers were implemented in a Jupyter Notebook in Python
Frontiers in Plant Science 03
(Kluyver et al., 2016). Principal component analysis (PCA) was

executed to visualize the initial classification of the olive cultivars

based on quantitative data retrieved from the analysis that

corresponds to the morphological traits of olive fruits, leaves and

endocarps. It was implemented using the scikit-learn library

(Pedregosa et al., 2011) in Python. For a more comprehensive

view of the data set collected and calculated during the two

consecutive years, split violin plots were built which allowed a

direct comparison between the years. Violin plots can graphically

represent the data distribution of a set of data by combining a box

plot and a rotated density plot. By inspecting the shape of the violin

plot representing the density estimate of the data points, regions

with a higher frequency of particular values can easily be

highlighted. Within a split violin plot, the left side represents the

numerical data regarding the specific morphological characteristic

relative to the first year, while the right side is for data extracted

from the next year’s morphological analysis.
2.4 Classification algorithm

The ability to explain in understandable terms why a machine

learning model makes a certain classification is becoming

immensely important, as it ensures trust and transparency in the

decision-making process of the model. Therefore, in order to

explore the morphological features ’ importance in the

classification process, a general model-agnostic method for model

interpretation, Shapley values, was used. Shapley values can provide

accurate explanations, as they assign each morphological feature an

importance value for olive cultivar prediction and determination

(Kumar et al., 2020; Wang et al., 2021). It was implemented using

the scikit-learn library (Pedregosa et al., 2011) in Python.
2.5 Machine learning classifier algorithms
for olive cultivar identification

Supervised and unsupervised machine learning techniques

provide a powerful tool for agriculture due to their wide range of

applications, such as detection of crop disease, crop management

and plant phenotyping (Rehman et al., 2019). The task of

discriminating olive cultivars based on morphological parameters

of olive fruits, leaves and endocarps relies on a data mining problem

in which several classification supervised learning methods were

tested for an appropriate classification model (Gomes et al., 2020).

The proposed methodology uses classifiers of two different types:
• basic classifiers that determine the cultivar by using the

quantitative data revealed by the morphological analysis of

either fruit, leaf, or endocarp;

• meta-classifiers that determine the cultivar by using all data

from the morphological analysis of olive fruit, leaf

and endocarp.
The Random Forest Classifier (Breiman, 2001), k-Nearest

Neighbor (Venables and Ripley, 2002) and Support Vector
frontiersin.org
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Classifier (Boser et al., 1992) and the scikit-learn library (Pedregosa

et al., 2011) were used as basic classifiers for olive fruits, leaves, and

endocarps. Of all the classification algorithms tested, the

XGBClassifier had an advantage due to the high accuracy of the

classifier analysis.

In order to perform the olive cultivar identification based on the

morphological analysis of a plant’s organs, we use the stacking

method (Dou et al., 2020), in which not raw data are used for

training, but probability matrices from the basic classifiers. The

meta-classifier learning process can be described as follows

(Supplementary Figure 1):
Fron
1. Initially, the entire dataset is divided into two different sets.

9/10 of the whole dataset is used for training; and the other

1/10 is used at the end to test the meta-classifier.

2. Then the first set which was intended for training of the

algorithm is sub-divided into 5 parts. 4/5 is used to train the

three individual basic classifiers of fruits, leaves and endocarps.

3. After training, the remaining 1/5 of the data is used as input

for the basic classifiers, and the result of the classification is 3

matrices of the probability of attribution to the cultivar by

fruit, leaf and endocarp. Obtained matrices of the probabilities

are used as a training sample for the meta-classifier.

4. The meta-classifier is trained on the new data set, and the

cross-validation algorithm is performed to obtain the

metric of such classification.
3 Results

3.1 Morphological characterization

A group of 14 olive cultivars was characterized at the

morphological level and a wide range of diversity was determined

(Figure 1). This group was comprised of 12 Greek cultivars,

Asprolia Alexandroupolis, Kalamon, Karidolia Chalkidikis,

Koroneiki, Kothreiki, Koutsourelia, Mastoidis Gigas, Mavrolia

Serron, Megaron, Ntopia Atsiholou, Thiaki, and Tragolia and two

Spanish cultivars, Arbosana and Arbequina (Figure 1). The

indicative fruit, leaf and endocarp samples were acquired from

the first growing period (Figure 1). According to visual judgement,

Karidolia-Chalkidikis and Mavrolia-Serron have larger fruits. The

leaf morphology of Kalamon was also distinguished compared to

the other cultivars, as it is substantially larger (Supplementary

Figure 2). The endocarps of Karidolia-Chalkidikis and Mavrolia-

Serron were the largest in size.

The quantitative data of morphological features were acquired

from the consecutive growing periods of 2016 and 2017. The

distribution of the quantitative morphological features was

visualized using split violin plots to take into consideration the

variation due to climatic conditions, which showed the kernel

density estimation of the data as well as the median and the upper

and lower quartiles. Figures 2–4 show the fruit, leaf and endocarp split

violin plots for the most remarkable morphological features,

respectively. All the data are presented in the Supplementary Figure 2.
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The shape of fruits appeared to be similar for most of the

cultivars in the two consecutive growing periods, with the exception

of Arbosana, which showed a different shape distribution each year.

The fruit shape index indicated that Koroneiki and Kalamon had

more elongated fruits, whereas Asprolia-Alexandroupolis and

Mavrolia-Serron had more spherical fruits. Furthermore, the

Koroneiki, Tragolia and Thiaki fruits had a more pointed apex

than Mavrolia-Serron and Karidolia-Alexandroupolis fruits, in

which the apex curvature was close to zero. The height and

length of the minor axis of a fitted ellipse to the fruits followed

the same tendency in the two growing seasons.

The leaves of Megaron, Asprolia-Alexandroupolis and Mavrolia-

Serron were the only ones with a lanceolate shape, while the

maximum transverse diameter of blades appeared to be medium

sized inmost cultivars. Kalamon appeared to be the only cultivar with

a wide leaf blade, while Koutsourelia, Asprolia-Alexandroupolis and

Megaron cultivars had narrow leaves. The thickness of the upper part

of the petiole was also determined quantitatively, with Asprolia-

Alexandroupolis and Arbequina displaying contrasting profiles in

two consecutive years. The vertical symmetry of the leaf clearly

illustrated that the maximum transverse diameter was located

towards the apex, and this remained stable in time.

The most striking observation regarding the endocarps was that

the kernel density estimation of the morphological data remained

stable between the two years of growth in most of the cultivars for

all the phenotypic characteristics, according to the split violin plots

of the endocarp morphological analysis. Koroneiki and Tragolia

had small endocarps, while Karidolia-Chalkidikis and Kalamon had

larger ones. The Tragolia endocarps had an ovoid shape, whereas

Koroneiki and Koutsourelia were more elliptic based on the shape

index. The endocarp shape of Kalamon and Karidolia-Chalkidikis

appeared to be elongated. According to the shape index, cultivars

were clustered in two groups: one with an ovoid shape, and another

with an elliptic shape. This methodology also successfully detected

the endocarp apex length. Comparing the area of the apex curve and

the endocarp size in both years, the cultivars of Mastoidis and

Koutsourelia had a mucro present, whereas it was absent in

Kothreiki. Figure 5 shows a dendrogram indicating the clustering

of the 14 cultivars based on the entire set of morphological

characteristics. Four main groups were identified, all but one

consisting of three to five cultivars. Only the cultivar of Ntopia

Atsiholou is grouped distantly from the other clusters. It is

interesting that Thiaki and Tragolia showed higher similarity to

Koroneiki compared to the other cultivars. Moreover, the two

Spanish cultivars, Arbequina and Arbosana, are grouped together

in one sub cluster, separately from the Greek cultivars. Finally, the

cultivars of Kalamon, Mavrolia Serron and Karidolia Chalkidikis

form the cluster with the largest fruits.
3.2 The effect of environment conditions
on morphological parameters

Wide variation in the morphological characteristics was

detected due to variations in the environmental conditions in the

two sampling years (Supplementary Table 1). In fruits, higher
frontiersin.org
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variability was observed in the first growing period compared to the

second. The size of the fruit nipple showed the greatest variability

while the nipple index (presence or absence of the nipple) the lowest

(Supplementary Table 1). Kothreiki and Mastoidis showed the

highest variation among all cultivars in fruit area in 2017 and

2016, 0.20 and 0.18, respectively. The fruit shape index was one of

the most stable traits over the two growing periods, showing only a

6% coefficient variation (Supplementary Table 2), while the fruit
Frontiers in Plant Science 05
area exhibited a higher variability, as expected, compared to the

other morphological characteristics of fruit. Moreover, Arbequina

showed the highest stability in fruit morphological characteristics,

while Koutsourelia was the least stable (Supplementary Table 2).

In leaf characteristics, the average curvature of the Kothreiki leaf

tip had the highest variability in 2016 (1.74), while the shape index

of the Megaron leaf blade had the lowest (0.084). In addition, the

leaf petiole of all cultivars was the most variable feature over the two
FIGURE 1

Morphological features of olive cultivars. Fruits, leaves and endocarps of Arbequina, Arbosana, Asprolia Alexandroupolis, Kalamon, Karidolia
Chalkidikis, Koroneiki, Kothreiki, Koutsourelia, Mastoidis Gigas, Mavrolia Serron, Megaron, Ntopia Atsiholou, Thiaki, Tragolia are presented with a
similar scale. The images were modified to indicate the actual sizes for comparative purposes. The red line represents 1cm.
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years, whereas the vertical symmetry and the leaf circularity were

the most stable (Supplementary Table 2).

The observed variation in fruit size among cultivars was

accompanied by similar variation in endocarp size. Cultivars with

greater fruit size showed also greater endocarp size. The coefficient

of variation for all traits of endocarps varies in the lower range of

0.006 to 0.35 (Supplementary Table 1). The highest variation

appeared in the minimum distance between the transversal

diameter and endocarp’s contour of Kalamon in 2016 (CV=0.35),

while the lowest appeared in the average circularity of Arbequina

endocarps in 2016 (CV=0.006) (Supplementary Table 1). The traits

related to circularity and the shape index of the endocarp exhibited

high stability compared to those related to endocarp area

(Supplementary Tables 1, 2).
3.3 Principal component analysis

Principal Component Analysis (PCA) was used to determine

morphological features which differentiate among cultivars, indicating

which characteristics are more reliable for discrimination. Figures 6–8

show principal component analysis performed using the numerical

data of morphological characteristics of fruits, leaves and endocarps,
Frontiers in Plant Science 06
respectively. The first two components account for approximately

66%, 70%, and 77% of the total variance numerical data, respectively.

PCA revealed significant variation within cultivars which might

also be attributed to the differences in environmental conditions

between the growing periods. Olive cultivars are dispersed along

both principal component axes and are hardly distinguishable from

each other, illustrating the complexity of the classification. The two

PCA scatter plots of fruits and endocarps illustrate a more even

distribution of cultivars, providing higher discriminatory capacity

compared to the PCA of leaves. In the leaf PCA, only Kalamon was

clearly discriminated from the rest of the cultivars, probably because

this cultivar has larger leaves. Karidolia- Chalkidikis in both PCA of

fruits and endocarps appears to be more discernible from the other

cultivars, which might be attributed to the size of its fruits.

Similarly, the fruit size and shape of Kothreiki and Mavrolia-

Serron might be responsible for the classification in different

groups in the fruit Principal component analysis.

The first principal component of fruits and endocarps was

predominantly determined by area and height, whereas the second

principal component was generally determined by features responsible

for shape elongation (Supplementary Table 3). In the first main

component of leaves, the greatest contribution was made by features

that characterize the geometric size, such as perimeter, area, and height.
FIGURE 2

Morphological analysis. Violin graphs for fruits. Violin plots representing trait variation in two consecutive years. Each plot shows the distribution of
data from the minimum to the maximum level, with white inner dot showing the data median for 14 cultivars. The black boxplots represent the
lower and upper limits of the first and third quartiles. The outliers were removed. The horizontal width of the violin depends on the data density.
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The shape index, which is responsible for the leaf blade elongation, was

predominantly a positive effector for the second principal component.
3.4 Machine learning algorithm -
classification accuracy

The average values of morphological quantitative data for fruits,

leaves and endocarps showed no adequate capacity to reliably
Frontiers in Plant Science 07
discriminate olive cultivars according to Principal Component

Analysis. In fact, discrimination between cultivars could be

observed only if the morphological data of plant organs of

individual plants was taken into consideration using multivariate

statistical analysis.

Therefore, machine learning algorithms were used to classify

and discriminate olive cultivars. The Extreme Gradient Boost

(XGBoost) algorithm performed better than three other basic

classifiers (Random Forest Classifier, k-Nearest Neighbor (ΚNN)
FIGURE 3

Morphological analysis. Violin graphs for leaves. Violin plots representing trait variation in two consecutive years. Each plot shows the distribution of
data from the minimum to the maximum level, with white inner dot showing the data median for 14 cultivars. The black boxplots represent the
lower and upper limits of the first and third quartiles. The outliers were removed. The horizontal width of the violin depends on the data density.
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and Support Vector Classifier (SVM)) (Supplementary Table 4).

Figure 9 illustrates the mean accuracy of the classifier with different

numbers of cultivars. As expected, the number of olive cultivars

determined the success of the classification algorithm. The higher

the number of cultivars, the lower the classification accuracy

(Figure 9). Up to 6 cultivars could be classified with higher than

85% accuracy, while 14 cultivars were classified with 76% and 80%

accuracy using fruit and endocarp morphological data, respectively

(Figure 9). The mean accuracy of leaf classifier was nearly 55%.

These results indicate that endocarp morphological features have

the greatest capacity for cultivar discrimination, since these traits

are less affected by the variability of environmental conditions and

the training systems.

Single classifiers can be used to classify data for relatively simple

tasks. Olive cultivar discrimination is a complex task, and the

combination of simple classifiers can significantly improve

performance. A meta-classifier approach which uses three different
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combination methods (KNN, RandomForest, XGBoost) was

implemented in a similar way to the combination of simple

classifiers. This approach used the numerical data of the

morphological features of fruits, leaves and endocarps. Table 1

indicates the performance measures (precision, recall and F1-score

values) of the meta-classifier approach on the data set. It is remarkable

that the average accuracy of an identification was approximately 95%.
3.5 Importance of each morphological
feature and the contribution of plant
organs to cultivar classification

Machine learning models are increasingly used to replace

human decision-making. A concept from cooperative game

theory could be used to detect the fair contribution of each

morphological feature to olive cultivar identification. The
FIGURE 4

Morphological analysis. Violin graphs for endocarps. Violin plots representing trait variation in two consecutive years. Each plot shows the distribution
of data from the minimum to the maximum level, with white inner dot showing the data median for 14 cultivars. The black boxplots represent the
lower and upper limits of the first and third quartiles. The outliers were removed. The horizontal width of the violin depends on the data density.
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FIGURE 5

Dendrogram indicating the clustering of the 14 cultivars based on the entire set of morphological characteristics.
FIGURE 6

Principal Component Analysis (PCA). PCA for fruits. PCA shows a score plot of the morphological analysis of the fruits of 14 cultivars in two
consecutive years. Different colors represent different cultivars. Squares represent the 2016 data, whereas circles represent 2017.
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FIGURE 7

Principal Component Analysis (PCA). PCA for leaves. PCA shows a score plot of the morphological analysis of the leaves of 14 cultivars in two
consecutive years. Different colors represent different cultivars. Squares represent the 2016 data, whereas circles represent 2017.
FIGURE 8

Principal Component Analysis (PCA). PCA for endocarps. PCA shows a score plot of the morphological analysis of the endocarps of 14 cultivars in
two consecutive years. Different colors represent different cultivars. Squares represent the 2016 data, whereas circles represent 2017.
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importance of morphological features for classification by the

XGBoost algorithm was analyzed on the entire dataset using

Shapley values. A wider spread of Shapley values implies more

differentiation in classification model output and therefore higher

feature importance.

As shown in Figure 10, the most important features for olive fruit

classification were the minor axis of the ellipse and fruit height. The
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latter was followed by the presence or absence of a nipple, a feature

which is commonly used in olive cultivar identification by visual

assessment. However, it seemed that the measurements related to the

nipple and the fruits’ transversal symmetry had little influence on the

classification. The most important morphological features for the

olive fruit classification of Kalamon are the height, the shape, the

shape and size of a fitted ellipse (its curvature and the length of its

major axis) and the fruit circularity (Figure 10). The most significant

morphological characteristics for Karidolia Chalkidikis are the area,

the size of a fitted ellipse (the length of its major and minor axes) and

the position of the transversal diameter.

The most important morphological feature for olive leaf

classification was the roundness of the leaf blade, which is

important for the identification of Megaron, the cultivar with the

narrowest leaves, and Thiaki, the cultivar with the most circular

leaves. The thickness of the petiole was also of importance for olive

cultivar identification (Figure 11).

For endocarp classification, the key features were the area and

the length of the base, which are related to the presence of a mucro.

This trait is widely used for the identification of olive cultivars.

Cultivars with shortened or elongated apexes and bases, such as

Koutsourelia, Mastoidis, Arbequina and Arbosana, were also

efficiently discriminated by the algorithm (Figure 12).

The analysis of the characteristics of the meta-classifier revealed

the contribution of either fruit, leaf or endocarp in the classification

process. Figure 13 depicts the contribution of each plant organ in

cultivar identification. The discrimination of most cultivars was

guided by both olive endocarps and fruits. The leaves only

contributed to the identification of the Kalamon cultivar, the olive

cultivar with the largest leaf blade.
4 Discussion

Morphological characterization has been used primarily to

assess the diversity of olive genetic resources (Beiki et al., 2012;

Trujillo et al., 2014) and to correctly identify and discriminate

cultivars. Synonymous cultivars corresponding to different

genotypes or identical cultivars with different names are

frequently observed in germplasm collections (Ganino et al.,

2006). In addition, cultivar identification is used extensively for

food authentication purposes to ensure that the cultivar origin on

an olive oil label correspond to the bottled product (Trujillo et al.,

2014). Moreover, the sorting of olive fruits according to cultivar

origin before milling and of table olives according to cultivar and

fruit size and shape are important for the food industry (Puerto

et al., 2015; Beyaz et al., 2017; Ponce et al., 2018, Ponce et al., 2019;

Gomes et al., 2020; Khadivi et al., 2022; Gago et al., 2024).

Efficient morphological characterization requires the

determination of morphological characteristics including

fundamental shape descriptors of plant organs such as fruits,

leaves and endocarps by using semi-automatic methodologies in a

numerically precise manner (Blazakis et al., 2017) to increase the

reliability of the measurements.

The variation in environmental conditions causes variation in

the morphological characteristics. This variation was analyzed in 14
FIGURE 9

Dependence of classification accuracy on the number of olive
cultivars. The fruit, endocarp and leaf morphological data were used
to predict the percent accuracy of cultivar classification in relation
to number of cultivars in the range of 3 to 14 cultivars.
TABLE 1 Performance of meta-classifier.

precision recall f1-score

Kothreiki 0.92 ± 0.07 0.97 ± 0.05 0.94 ± 0.05

Karidolia-chalkidikis 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Asprolia-alexandroupolis 0.95 ± 0.1 0.88 ± 0.13 0.91 ± 0.1

Arbequina 1.0 ± 0.0 0.95 ± 0.11 0.97 ± 0.07

Arbosana 0.98 ± 0.05 0.96 ± 0.07 0.96 ± 0.05

Megaron 0.95 ± 0.1 0.96 ± 0.08 0.95 ± 0.06

Tragolia 0.9 ± 0.13 0.93 ± 0.08 0.91 ± 0.08

Mavrolia-serron 0.94 ± 0.09 0.98 ± 0.05 0.96 ± 0.05

Koutsourelia 0.97 ± 0.04 0.98 ± 0.03 0.98 ± 0.03

Ntopia-atsiholou 0.93 ± 0.09 0.95 ± 0.06 0.94 ± 0.06

Kalamon 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Thiaki 0.97 ± 0.05 0.9 ± 0.09 0.93 ± 0.06

Mastoidis-gigas 0.97 ± 0.05 0.98 ± 0.04 0.97 ± 0.03

Koroneiki 0.92 ± 0.09 0.96 ± 0.04 0.94 ± 0.06

Total 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.02
Performance measures using precision, recall and F1 score values.
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olive cultivars using split violin plots in order to determine which

morphological characteristics were less affected by environmental

factors. The presence of the nipple and the shape index of fruit were

marginally affected by the environmental conditions, therefore

remained stable for all cultivars. Morphological characteristics

related to fruit size, such as perimeter and area, showed high

variability between the two growing periods. The morphological

analysis of leaves showed that the circularity remained stable in the

two growing periods, whereas the transversal symmetry of the leaf

blade varied greatly. These results indicate that there are

morphological characteristics which are stable and are not

affected by the environmental conditions in each growing period

suggesting that are mainly defined by genetic factors. These traits

might be considered of particular importance for breeding purposes
Frontiers in Plant Science 12
since they can be used as specific morphological markers to identify

specific cultivars.

The numerical data from morphological analysis were processed

using principal component analysis for olive cultivar identification.

This approach did not discriminate cultivars indicating that the use of

multivariate statistical techniques with principal component analysis

was not efficient. In another study, a versatile algorithm was used for

discriminative variable selection as an additional methodology along

with principal component analysis (Vanloot et al., 2014). An attempt

by using the multivariate statistical method “Orthogonal Partial Least

Square Discriminant Analysis” managed to discriminate six Greek

protected designation of origin table olive varieties with almost 98%

correct classification using morphological characteristics

(Agriopoulou et al., 2021).
FIGURE 10

Morphological feature importance for fruits. The importance of each morphological parameter computed in olive fruit morphology.
FIGURE 11

Morphological feature importance for leaves. The importance of each morphological parameter computed in olive leaf morphology.
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The use of morphological characteristics from either only fruits

or leaves or endocarps resulted in discriminatory capacity of lower

efficiency (Orrù et al., 2013; Fuentes et al., 2018). This suggested the

importance of determining the most important characteristics for

classification of olive cultivars, as well as the need to consider

different classification algorithms. The use of basic classifiers to

discriminate cultivars by taking into consideration only quantitative

morphological data revealed that olive fruits and endocarps resulted

in better classification accuracy than leaves. Moreover, the endocarp

was the most suitable organ for cultivar identification because it

showed lower variation than fruit and leaf in all morphological

characteristics in two growing periods. This might be attributed to
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the wooden origin of the endocarp, the protection by the olive

mesocarp pulp, and the lower impact of climatic conditions on its

shape features (Trujillo et al., 2014; Koubouris et al., 2019).

However, a previous study employed a computer-image analysis

approach to classify olive cultivars using mathematical tools,

specifically fractal geometry and moments (Bari et al., 2003). The

methodology focused on analyzing the surface and shape

characteristics for olive cultivar identification based on the

endocarps of nine different cultivars leading to the classification

of approximately 55% of the cultivars (Bari et al., 2003).

The combinatorial approach of olive leaf, fruit, and endocarp

classifiers showed greater potential compared to individual
FIGURE 12

Morphological feature importance for endocarps. The importance of each morphological parameter computed in olive fruit endocarp morphology.
FIGURE 13

Plant organ contribution to cultivar identification for each cultivar.
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classifiers, since the final prediction of the cultivar was determined

by the organ with numerical traits exhibiting the highest

discriminatory power. Analysis of the meta-classifier traits for

each cultivar indicated which plant organ and trait showed the

highest discriminatory power. This approach showed a very high

classification accuracy among 14 olive cultivars in comparison to

previous studies. The meta-classifier approach revealed

morphological traits with higher discriminatory power, which are

not always those with lower variability in the two growing seasons.

This is because it considers the combined data of olive leaf, fruit,

and endocarp morphological analysis. Accurate measurements of

the most characteristic plant organs would be particularly suitable

for inputs into models of genetic selection which are built on the

concept of quantitative trait loci (QTLs) (Sadok et al., 2013; Kaya

et al., 2019). Moreover, the minor axis of the ellipse, the height, the

nipple index and the shape index were determined as the most

important morphological characteristics of fruit for cultivar

discrimination while the least important was the transversal

symmetry. Taking into consideration these data, a strategy can be

developed to prioritize morphological characteristics for cultivar

identification purposes in order to accelerate the whole process for a

large number of fruit samples.

Automated cultivar identification of olives and other species using

morphological characteristics is a challenging task (Ponce et al., 2019).

Artificial neural networks have been used mostly for specific olive

cultivar identification cases in which the statistical standards proved to

be insufficient. An attempt was made previously to use traits related

to leaf morphologies in an artificial neural network methodology to

discriminate different olive cultivars (Mancuso and Nicese, 1999). In

another report, Artificial Neural Network analysis was utilized to

assess data on the length, width, and color of the fruits and endocarps

(Beyaz et al., 2017). Sets of five and seven cultivars were correctly

identified with an accuracy of 89% and 90%, respectively (Beyaz et al.,

2017). In addition, partial least squares-discriminant analysis (PLS-

DA) based on morphological characteristics and texture features of

olive endocarps resulted in 89% accurate classification of a set of five

Spanish cultivars (Martıńez et al., 2018) while a similar methodology

on morphological and chemometric analysis from imaging data using

different endocarp positions achieved 100% correct classification of

five French cultivars in an approach similar to the one used in this

report (Vanloot et al., 2014). Moreover, different artificial neural

network models were used with commercial software to assess their

use in the identification of a set of eleven Spanish and Turkish

cultivars, utilizing the color properties, length and width of an olive

fruit and stone (Beyaz and Öztürk, 2017). In that case, olive cultivars

were classified with more than 91% accuracy.

The current study demonstrates that morphological markers,

specifically the geometrical features of fruits, leaves, and endocarps,

could effectively identify and discriminate olive germplasm. By

employing machine learning techniques and a meta-classifier

approach, the methodology achieved a 95% accuracy rate in

classifying 14 olive cultivars over two consecutive growing

periods. The study quantified the contribution of each

morphological feature to the discrimination process, highlighting

that endocarps and fruits were essential for identifying most

cultivars, while leaves were particularly significant for identifying
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the Kalamon cultivar. The combined use of morphological traits

from these three olive organs enhanced the overall discrimination

capacity, suggesting the methodology’s potential application in olive

breeding and cultivar identification.

Machine learning algorithms were used for cultivar

classification and other applications (Fuentes et al., 2018;

Ishikawa et al., 2018; Miho et al., 2024). A statistical methodology

was developed based on classification binary trees for the

discrimination of different morphologies of endocarps (Koubouris

et al., 2019). A powerful image processing, artificial intelligence

approach was used by designing a procedure based on

convolutional neural networks (CNN) and image processing to

classify images of olive fruits (Ponce et al., 2019). In this report, the

classification accuracy for the discrimination of up to 8 cultivars was

approximately 90% by using the basic classifier. However, the

classification accuracy for the discrimination of 14 cultivars was

higher than 95% by using the meta-classifier approach. These

results indicate that the use of a meta-classifier combined with

the quantitative data of endocarp, fruit and leaf morphological

characteristics has higher capacity for discrimination.

The proposed methodology discriminated higher number of

olive cultivars compared to the other approaches (Beyaz et al., 2017;

Fuentes et al., 2018; Ishikawa et al., 2018; Koubouris et al., 2019;

Ponce et al., 2019; Agriopoulou et al., 2021). It is comprised of an

integrated method to morphological description and discrimination

of olive cultivars that uses image analysis tools and machine

learning algorithms. While machine learning is a data analytics

technique that teaches computational approaches to “learn”

information direct ly from data without relying on a

predetermined model, the algorithms adaptively improve their

performance as the number of samples available for learning

increases (Guide, 1998). One limitation of the current approach is

the lack of data related to color traits of olive fruits, leaves and

endocarps. Moreover, the depth and the pattern of grooves of

endocarps, valuable characteristics for cultivar identification, were

not taken into consideration (Trujillo et al., 2014). In the future,

additional qualitative measurements of attributes regarding the

texture and color of olive fruit, leaf or endocarp could be

considered, increasing the classification accuracy of the current

approach. This methodology is based on two-dimensional

morphological data on olive cultivars, but a focus on three-

dimensional settings might be the next step. However, this

approach requires additional infrastructure and introduces

different computational challenges.
5 Conclusion

The discrimination of olive cultivars by using morphological

characteristics of their fruits, leaves and endocarps was performed

up to now mostly by visual assessment and was considered

challenging to transfer the classification of the visual assessment

to an automated computerized methodology. This report suggest

that machine learning is efficient and accurate for the classification

of olive cultivars, while the algorithms provide information on the

contribution of fruit, leaf and endocarp morphological
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characteristics to the discrimination process. Finally, the proposed

methodology has the capacity to provide the basis for a wide range

of applications for olive cultivar identification including breeding.
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characterization of relict olive varieties (Olea europaea L.) in the Northwest of the
Iberian Peninsula. Horticulturae 10, 175.

Ganino, T., Bartolini, G., and Fabbri, A. (2006). The classification of olive
germplasm. J . Hor t i c . Sc i . B io techno l . 81 , 319–334 . do i : 10 .1080/
14620316.2006.11512069

Gomes, L., Nobre, T., Sousa, A., Rei, F., and Guiomar, N. (2020). Hyperspectral
reflectance as a basis to discriminate olive varieties—a tool for sustainable crop
management. Sustainability 12, 3059. doi: 10.3390/su12073059
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