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Training set optimization is a
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germplasm management: an
Acrocomia aculeata example
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Carlos Augusto Colombo4 and Maria Imaculada Zucchi5*

1Deparment of Agronomy, Federal University of Viçosa, Viçosa, Brazil, 2Deparment of General Biology,
Federal University of Viçosa, Viçosa, Brazil, 3Genetics and Molecular Biology Department, Biology
Institute, University of Campinas (UNICAMP), Campinas, Brazil, 4Research Center of Plant Genetic
Resources, Campinas Agronomic Institute, Campinas, Brazil, 5Department of Genetics, "Luiz de
Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
Orphan perennial native species are gaining importance as sustainability in

agriculture becomes crucial to mitigate climate change. Nevertheless, issues

related to the undomesticated status and lack of improved germplasm impede

the evolution of formal agricultural initiatives. Acrocomia aculeata - a neotropical

palmwith potential for oil production - is an example. Breeding efforts can aid the

species to reach its full potential and increase market competitiveness. Here, we

present genomic information and training set optimization as alternatives to

boost orphan perennial native species breeding using Acrocomia aculeata as an

example. Furthermore, we compared three SNP calling methods and, for the first

time, presented the prediction accuracies of three yield-related traits. We

collected data for two years from 201 wild individuals. These trees were

genotyped, and three references were used for SNP calling: the oil palm

genome, de novo sequencing, and the A. aculeata transcriptome. The traits

analyzed were fruit dry mass (FDM), pulp dry mass (PDM), and pulp oil content

(OC). We compared the predictive ability of GBLUP and BayesB models in cross-

and real validation procedures. Afterwards, we tested several optimization criteria

regarding consistency and the ability to provide the optimized training set that

yielded less risk in both targeted and untargeted scenarios. Using the oil palm

genome as a reference and GBLUP models had better results for the genomic

prediction of FDM, OC, and PDM (prediction accuracies of 0.46, 0.45, and 0.39,

respectively). Using the criteria PEV, r-score and core collection methodology

provides risk-averse decisions. Training set optimization is an alternative to

improve decision-making while leveraging genomic information as a cost-
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saving tool to accelerate plant domestication and breeding. The optimized

training set can be used as a reference for the characterization of native

species populations, aiding in decisions involving germplasm collection and

construction of breeding populations
KEYWORDS

genomic prediction, macauba, perennial native species, risk-averse decisions,
GBLUP, BayesB
1 Introduction
As the world increasingly emphasizes sustainability in agricultural

ecosystems amid climate change, the exploration of orphan native

species gains importance. These species represent novel sources of

germplasm, holding alleles that confer resistance to both biotic and

abiotic stresses. They are adapted to local environmental conditions

and can thrive under less intensive, more sustainable agricultural

management practices (Ulian et al., 2020; Yaqoob et al., 2023).

Acrocomia aculeata (Jacq.) Lood. ex Mart (Arecaceae), 2n = 2x =

30, a neotropical native palm, stands out as an economically promising

orphan species. This palm is considered the most widespread in Brazil,

occurring in all Brazilian biomes but the Pampa, in the Southern

region. Particularly, Cerrado is the biome in which it most occurs

(Lima et al., 2018; Scariot et al., 1995; Lorenzi, 2010). It demonstrates

resilience to severe drought and exhibits wide adaptation across the

Brazilian territory, being able to recolonize devastated areas, with high

solar incidence and low water index (Lima et al., 2018; Cardoso et al.,

2017; Vargas-Carpintero et al., 2021). Several studies emphasize the A.

aculeata fruits as a valuable source of nutrients, finding applications in

the food, cosmetic, pharmaceutical, and biofuel industries (Lescano

et al., 2021; Aguieiras et al., 2014; Monteiro-Alfredo et al., 2023).

Nowadays, there is an increasing interest in the A. aculeata fruits due

to their high yield and oil quality derived from pulp and kernel

(Evaristo et al., 2016; Lanes et al., 2016; Madeira et al., 2024). In

making a parallel with its relative, oil palm (Elaeis guineensis), A.

aculeata is more adapted as it grows in regions where the oil palm

could not due to insufficient water availability (Pires et al., 2013). In

fact,A. aculeata is a native pioneer species and, different from oil palm,

A. aculeata plantations can be installed without touching rainforests

and protected biomes.

Despite the research highlighting its potential, formal agricultural

initiatives involving A. aculeata remain scarce. The limited use of A.

aculeata can be attributed to several factors, such as i) undomesticated

status, meaning that optimal agronomic practices particular to each

environmental condition have not been firmly established; ii) lack of

improved germplasm and operational issues, which increases the risk

of agricultural losses and hampers field management due to the lack of

uniformity in the field; and iii) post-harvesting challenges, i.e. issues

such as low processing efficiency and the absence of a well-established
02
industry to absorb the production (Resende et al., 2020; Cardoso et al.,

2017; Vargas-Carpintero et al., 2022).

Usage of genomic information can potentially expedite the

domestication process of A. aculeata and advance the development

of improved cultivars. Moreover, it can enhance the precision of

breeding efforts, optimizing both time and resources—financial and

human (Laviola et al., 2022). For instance, genomic information can

be leveraged in genomic selection/predictionmodels (Bernardo, 1994;

Meuwissen et al., 2001), which, after training a statistical model

enriched with phenotypic and genomic information, allows for the

selection of candidates based only on its allelic constitution. However,

comprehensive research detailing how to leverage genomic selection

in the species’ breeding program effectively remains scarce. Currently,

most A. aculeata applied researches are focused on entering the pre-

breeding stage (Vargas-Carpintero et al., 2021). These initial steps

include the characterization and collection of wild individuals, the

establishment of germplasm banks, and the formation of breeding

populations (Vargas-Carpintero et al., 2021; Lanes et al., 2016). These

initial steps would be simple and straightforward had not the

perennial nature of A. aculeata: under natural conditions, it begins

producing fruits in the fourth or fifth year of life (Forest Resources

Development Branch, 1986), making each step time-consuming. This

trend extends beyond A. aculeata to encompass other orphan

perennial native species. Given this context, breeders need to

explore alternative applications for genomic selection/prediction

beyond the conventional approach employed in established

breeding populations (Tanaka and Iwata, 2018; Gorjanc et al.,

2016). This exploration can facilitate the selection of plants with

phenotypic traits of commercial interest, thereby accelerating their

domestication. The standard procedure usually involves training a

genomic prediction model using the entire population as a training

set to predict the performance of future genetically related

populations (Grattapaglia, 2022; Crossa et al., 2017).

An alternative is the training set optimization. This method was

developed to select a subset of genotypes from the population that

shares the closest relationship with the test set, providing more reliable

predictions (Rincent et al., 2012; Akdemir et al., 2015). This approach

can reduce phenotyping costs, as only genotypes within the optimized

training set are phenotyped. Moreover, it enhances prediction

efficiency, as the relationship between training and test sets

significantly influences genomic prediction accuracy (Bustos-Korts
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et al., 2016; Isidro et al., 2015). In the pre-breeding context, the

training set optimization can be employed to characterize germplasm,

guiding decisions on the collection of accessions and utilization of

specific genotypes as parents (Yu et al., 2016; Akdemir and Sánchez,

2016). This approach can steer the breeding program toward an

efficient and sustainable trajectory from its inception. Training set

optimization is categorized into two scenarios (Figure 1) (Isidro y

Sánchez and Akdemir, 2021; Fernández-González et al., 2023):
Fron
• Targeted optimization: involves leveraging a known,

genotyped population to refine the composition of a training

set, aiming to identify a subset of phenotyped and genotyped

individuals that closely resemble those in the testing set, who

are also known. This optimized training set is then employed

to predict the performance of the genotypes within the testing

set. Atanda et al. (2021) and Roth et al. (2020) showed this

strategy’s efficiency in improving genomic predictions in
tiers in Plant Science 03
maize and apple, respectively. In the realm of pre-breeding

for perennial native species, targeted optimization offers a

strategic approach to conserving resources in germplasm

phenotyping. By selecting a subset of individuals for both

phenotyping and genotyping, this method identifies the most

promising candidates to predict the performance of the

remaining individuals - which would be only genotyped,

thereby streamlining the process and reducing costs.

• Untargeted optimization: entails selecting a subset of

phenotyped and genotyped candidates that effectively

capture the available diversity within the dataset, without

necessarily requiring knowledge of the testing set. The

objective is to create an optimized training robust enough to

be a reliable tool for predicting the performance of any

genetically related unphenotyped population. The strategies

used by Yu et al. (2016) in sorghum (Sorghum spp.) and Rio

et al. (2019) in maize (when they built a diverse training set,
FIGURE 1

Schematic illustration presenting the fundamental concept of targeted and untargeted training set optimization: a genotyped and phenotyped
population is utilized to identify a subset of individuals for enhanced genomic prediction accuracy. Two scenarios are illustrated: i) optimization
directed at predicting the performance of a known, unphenotyped population (targeted optimization); and ii) optimization to predict the
performance of an unknown, unphenotyped population (untargeted optimization). Despite being distinct objectives, the same individuals can be
chosen to form optimized training sets in both situations.
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with representatives of multiple groups) are categorized in this

class. In the context of pre-breeding for perennial native

species, untargeted optimization serves as a valuable tool for

guiding accession collection strategies. By genotyping a subset

of candidates within a specific area, this approach facilitates

the identification and collection of individuals that best

represent the genetic diversity of the region. Leveraging the

principle that geographically proximate trees are more

likely to be genetically related than those further apart, the

sampled subset offers a comprehensive representation of the

local genetic pool and is well-suited for predicting the

performance of individuals within that area.
In this study, we illustrate the effective utilization of genomic

selection in both predicting the performance of unphenotyped trees

and optimizing training sets for recurrent objectives in perennial

orphan native species, taking A. aculeata breeding as an example.

Our objectives were i) to assess the predictive ability of different

statistical-genetics models and SNP calling methods for predicting

A. aculeata fruit productive traits; and ii) to show the application of

training set optimization to select a subset of wild individuals that

more accurately captures the diversity within a population and, or

are the most genetically close to a known, unphenotyped

population. We posit that the methodology exemplified in this

study regarding training set optimization serves as a cost-effective

alternative for characterizing native species populations - not only

for A. aculeata, selecting germplasm for gene banks, and making

risk-averse decisions.
tiers in Plant Science 04
2 Materials and methods

2.1 Plant material

Two hundred and one individuals of Acrocomia aculeata were

sampled from three rural areas in Dourado, a city in São Paulo state,

Brazil. We prioritized palm trees that had ripe fruits in the year

2019/2020, and evaluated these trees in the years 2019/2020 and

2021/2022. We collected data of 201 palm trees in three rural areas

(henceforth referred as “locations”) approximately 500 meters apart

(Figure 2). The sampled individuals were part of wild populations,

and data was collected in loco. In other words, there is no specific

experimental design. The collected phenotypes relate to vegetative

growth and yield-related traits. In this study, we considered three of

them: fruit dry mass (FDM), pulp dry mass (PDM), and pulp oil

content (OC). During data collection, fruits were carefully dissected

and separated into four components: husk, pulp, endocarp, and

almond. FDM and PDM measurements were obtained after drying

the samples in a ventilated oven at 36°C, while OC was assessed

based on the dry mesocarp mass using Near-infrared Spectroscopy.

For more detailed information, refer to Couto et al. (2024).
2.2 Genotypic information

Genotyping was conducted using the genotyping-by-sequencing

protocol (GBS). Genomic DNA was isolated from leaf material

following the methodology described by Doyle and Doyle (1990).
FIGURE 2

Map of the areas where wild Acrocomia aculeata populations were sampled. Each dot represents an individual. The green ones were used in the
subsequent analyses. The red circles and the numbers within them represent the locations used in the real validation.
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For GBS library preparation, two restriction enzymes, NsiI and MseI

(New England Biolabs), were employed according to the protocol

outlined by Poland et al. (2012), with modifications as per Dıáz et al.

(2021). The 201 sample libraries were sequenced in a single run on an

Illumina HiSeq3000 platform, configured with single-end and 101bp

settings. Following quality control and demultiplexing of the

sequencing reads, SNP calling was performed using three strategies

due to the absence of a reference genome for A. aculeata: utilizing the

genome of Elaeis guineensis EG5 (NCBI GCA_000442705.1), the

transcriptome of A. aculeata (Bazzo et al., 2018), and the de novo

pipeline (Stacks v.1.42, Catchen et al., 2011). SNPs were filtered based

on the following criteria: maximum number of alleles = 2, minor

allele frequency ≥ 0.01, sequencing depth ≥ 3X, mapping quality ≥ 20,

maximum percentage of 30% missing data per locus, and 45%

missing data per individual. This filtering process resulted in the

identification of a total of 10,444 SNPs in 158 individuals using the oil

palm reference genome, 4,329 SNPs in 167 individuals using the

transcriptome reference, and 27,410 SNPs in 153 individuals from the

de novo pipeline. Missing data were imputed using the Beagle 5.3

software (Browning et al., 2021). Further details on the genotyping

sequencing methodology are found in Couto et al. (2024).
2.3 Genomic selection/prediction models

To perform the analyses described in this section, we kept data

from trees that had information from the tree SNP calling methods,

and nomissing data regarding the three analysed traits. Thus, from the

201 available plants, 145 were kept. The letter V (v =  1, 2,… V) will

represent this amount in the mathematical notations below.

First, we built the genomic relationship matrices (Gx) using the

R package AGHmatrix (Amadeu et al., 2023). We utilized the

equation proposed by VanRaden (2008):

Gx =
�Mx

�M
0
x

2ojpj(1 − pj)
(1)

where �Mx = Mx − 2Px , in which Mx is the SNP matrix obtained

using the xth SNP-calling reference, Px is a matrix of frequencies for

the alternative allele in each locus, and pj is the alternative allele

frequency in the jth locus.Gx are V � V matrices. We investigated the

genetic diversity among plants using Gx in a principal component

analysis (PCA), using the R package FactoMineR (Lê et al., 2008).

Next, we extracted the adjusted means of each trait using the

following model:

yt = 1m + X1a + X2g + e (2)

where yt is the N � 1 vector of phenotypic records of the tth

trait, in which N is the number of records; m is the intercept,

connected to yt by a N � 1 vector of ones (1); a and g are theM � 1

and V � 1 vectors of fixed effects of years (m ∈ 1, 2f g,M = 2) and

genotypes, followed by their N �M and N � V incidence matrices,

respectively; and e is the N � 1 vector of residual effects

[e ∼ N(0,s 2
e IN ), where s 2

e is the residual variance and IN is an

identity matrix of order N]. These means were used to train the

genomic selection/prediction models.
Frontiers in Plant Science 05
2.3.1 GBLUP
We used the following GBLUP (Bernardo, 1994) model:

�yt = 1m + Zg + e (3)

where �yt is the V � 1 vector of adjusted means, and g is the

V � 1 vector of random genetic effects [g ∼ N(0,s 2
gGx), where s 2

g

is the genetic variance], accompanied by its V � V incidence

matrix. The other terms were previously declared in Equation 2.

Note that the model described in Equation 3 was fitted thrice, each

time with a different Gx , i.e., a genomic kinship matrix originated

from markers from different SNP calling methods. The variance

component estimates of each model were used to calculate the

narrow-sense heritabilities of each trait (h2tx ):

h2tx =
s 2
gx

s 2
gx + s 2

e
(4)

we computed the approximate standard error of these estimates

using the Delta method [see Holland et al. (2002) for more details

about this method].

The model of Equation 2 and the GBLUP model of Equation 3

were fitted using the ASReml-R package, version 4.2.0.267 (The

VSNi Team, 2023).

2.3.2 BayesB
We fitted the following BayesB model:

�yt = 1m +Mxb + e (5)

where b is the vector of random marker effects. We used the

default priors of the R package we employed to fit the model, BGLR

(Pérez and de los Campos, 2014).

2.3.3 Cross- and real validation
To evaluate the predictive prowess of the models, we

implemented a k-fold cross-validation approach. The dataset was

partitioned into five folds (k = 5), with one fold excluded (20%) in

each round to be predicted by the remaining four (80%). Each fold

had 29 individuals. We iterated this process five times to mitigate

bias linked to fold composition, randomly shuffling the fold makeup

with each repetition. At the end of each iteration, we integrated the

outputs in a single V � 1 vector (ŷ ). We computed the correlation

between predicted and observed values (r�yŷ ) and the mean squared

prediction error (MSPE = 1
V oV

v=1(�y − ŷ )2).

We estimate the real predictive accuracy leveraging the

empirical grouping based on the geographic distance between

trees. This was done employing a leave-one-out scheme. In each

iteration, we used data from two locations (say, 1 and 3) to predict

the values of the third location (e.g., location 2). The number of

individuals per location was 66, 24 and 55 (locations 1, 2, and 3,

respectively). In this validation, we also computed r�yŷ and MSPE.
2.4 Training set optimization

After determining the SNP-calling reference yielding the best

prediction results, we employed the corresponding SNP matrix, Mx ,
frontiersin.org
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and genomic relationship matrix, Gx , in training set optimization

algorithms. Optimization was carried out in two primary scenarios:

targeted and untargeted (Figure 1). In both scenarios, we used the

memetic evolutionary algorithm implemented in the R package

TrainSel (Akdemir et al., 2021) and the genetic algorithm of the

TSDFGSR package (Ou and Liao, 2019) to perform the recursive

search of optimized training sets. The fundamental concept involves

testing various genotype combinations to construct the training set

and utilizing an optimization criterion to assess set quality. These

algorithms might yield different outcomes based on factors such as the

initial training set composition and the number of iterations. To

overcome this issue, we performed the recursive search 50 times. We

then selected the genotypes most frequently included in the optimized

training set across these repetitions. To monitor convergence, we

examined the progress of the best training set optimization criterion

value across iterations in each repetition (an example is provided in

Supplementary Figure S1 in the Supplementary Material). For a

deeper understanding of the memetic evolutionary and genetic

algorithms, refer to Holland (1992), Hart et al. (2005); Akdemir

et al. (2015) and Akdemir et al. (2021). The subsequent sections

provide a detailed breakdown of the procedures and methods used to

ascertain the composition of the optimized training set in each

scenario. To differ from the notation adopted to represent the total

number of genotypes, the training set size will be represented by �V and

the test set size will be €V(€V = V − V
⌣
)

2.4.1 Untargeted optimization
This scenario was subdivided according to the training set size. We

tested two sizes: 50 and 100 genotypes. We used six optimization

criteria to determine the best training set composition, namely:
Fron
• D-optimality (Wald, 1943): The idea is to maximize the log-

determinant of S , the �V � �V matrix of principal

components derived from the centered SNP matrix. In

this context, maximizing |SS'| is equivalent to minimizing

the variance of marker effects. Using S instead of Mx

increases computational efficiency (Ou and Liao, 2019;

Akdemir et al., 2015).

• CDmean (Laloë, 1993): This metric is taken from the mean

of the diagonal values of the coefficient of determination

(CD) matrix, given by:
(GZ0PZG)⊘G (6)

in which P is the projectionmatrix [P = V−1 − V−11(10V−11)10V−1

whereV = ZGZ′ + R, with R being the residual covariance matrix] and

⊘ is the element-wise division. The closer the CDmean to 1, the better.
• CDmin (Akdemir et al., 2021): It has the structure of the

previously described CDmean, but instead of taking the

mean, CDmin takes the minimum value of the CD matrix

diagonal elements.

• PEV (Akdemir et al., 2015): An ideal training set minimizes

the prediction error variance (PEV) in the testing set. In the

untargeted case, all candidates who were not part of the

candidate training set composed the testing set. Leveraging
tiers in Plant Science 06
this division, we can partition S into Str , related to the �V

genotypes that compose the candidate training set, and Sts,

which contains information of the €V remaining

genotypes. Thence:
PEV ≈ (1€V , Sts)½(1�V , Str)
0
(1�V , Str) + lI(J−1))

−1(1€V , Sts)
0

(7)

where 1 is a vector of ones and I is an identity matrix, whose

sizes are indicated by their subscript. l is a regularization

parameter, fixed in 1=J , with J being the number of markers.
• r-score (Ou and Liao, 2019): This criterion is based on the

correlation between genomic-estimated breeding values

and phenotypic values in a test set. The r-score is

obtained as follows:
r − score =
q12ffiffiffiffiffiffiffiffiffi
q1q2

p (8)

where q12 = Tr½S0
ts(I€V − �J€V )StsAStr�, q1 = (€V − 1) + Tr½Sts(I€V −

�J€V )Sts�, and q2 = Tr½A0S
0
ts(I€V − �J€V )StsA� + Tr½A0S

0
tr(I€V − �J€V )StrA�.

�J€V is a €V � €V matrix filled with 1=€V , and A = S
0
tr(StrS

0
tr + lIV )−1,

with l being a regularization parameter (l = 1 for the r-score). Like

a regular correlation, the higher the r-score, the better.
• MaxiMin (Johnson et al., 1990): The sole non-parametric

criterion tested in the untargeted scenario, it aims to

maximize the minimum genetic distance among the

training set components.
We assessed the performance of optimized training sets

generated by each optimization criterion through a cross-

validation procedure, akin to the one detailed in section 2.3.3. To

substantiate our hypothesis that employing an optimized training

set yields lower risk compared to random sampling from the

population, we conducted 100 cross-validations using random

training sets. Instead of using a k-fold structure, we held the

training population size constant at 50 or 100.

2.4.2 Targeted optimization
We adopted the same framework as the real validation outlined

in section 2.3.3 to optimize a targeted training set. In this context,

we maintained the training set size at 50 genotypes and explored

two scenarios: predicting group 3 using groups 1 and 2 and

predicting group 2 using groups 1 and 3. Four of the six

optimization criteria utilized in the untargeted optimization—

CDmean, CDmin, PEV, and r-score—were also employed here.

The distinction lies in the fact that the testing set is confined to

genotypes exclusively from a single group. Alongside these criteria,

we introduced two additional ones:
• MiniMax (Johnson et al., 1990): the idea is to minimize the

maximum genetic distance between genotypes of the

training and test sets.

• Multiple design criterion (Akdemir and Sánchez, 2016):

Blending the goals of untargeted and targeted optimizations,

this criterion emphasizes training sets with the maximum
frontiersin.org
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Fron
mean genetic distance within the set and the minimum mean

genetic distance between the training set and the test set. For

this criterion, in particular, the selection of optimized training

sets was confined to a predefined empirical range of acceptable

distance values (refer to Supplementary Figure S2 in the

Supplementary Material).
After identifying the optimized training sets, we evaluated their

predictive ability using the leave-one-out scheme previously

described (section 2.3.3). Following what was done in the

untargeted scenario, we also evaluated the efficiency of 100

training sets composed of randomly sampled genotypes.
2.5 Core collection

Some optimization criteria have the same objective as defining a

core collection: to select a subset of individuals that better represents

genetically the whole population. Here, we evaluate the Entry-to-

nearest-entry (E-NE) method, implemented in the corehunter R

package (De Beukelaer et al., 2018), as a seventh alternative to

defining an optimized training set, in both untargeted and targeted

scenarios. E-NE’s background is the genetic distances based on

molecular data. The algorithm can yield highly diversified sets since

it considers the average distance between each selected individual

and the closest other candidate. We used the Modified Roger’s as a

distance measure, given by (Thachuk et al., 2009):

0 ≤ M Rvv0 =
1
2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
J

j=1
o
A

a=1
(pvja − pv0 ja)

2

s
≤ 1 (9)

where MRvv0 is the Modified Roger’s distance between

individual v and v′, A is the number of alleles per locus, and p is

the relative frequency of allele a.

We also computed the expected proportion of heterozygous loci

per individual (HE) and the coverage of alleles in the core collection

(CV), given by, respectively (Thachuk et al., 2009):

0 ≤ H E =
1
J o

J

j=1
1 −o

A

a=1
p2ja

� �
≤ 1 (10)

CV = 1 −
Xcore

Xpop

 !
∗ 100 (11)

where Xcore and Xpop are the set of alleles found in the core

collection and the population, respectively.

In the untargeted scenario, all individuals were candidates to be

part of the core collection. We followed the adopted variation in the

sample size (50 and 100). In the targeted scenario, only genotypes

from the non-excluded group were considered to form the

core collection.

All analyses were performed in the R software environment,

version 4.3.2 (R Core Team, 2023). We build all plots using features

of the tidyverse library, with add-ins from the packages gghighlight,
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ggpubr and ggpattern (Wickham et al., 2019; Yutani, 2023;

Kassambara, 2023; FC et al., 2024).
3 Results

All results varied according to the reference genome used for

SNP calling. The narrow-sense heritabilities ranged from 0.68 to

0.84, 0.7 to 0.85 and 0.64 to 0.81 for FDM, OC and PDM,

respectively (Figure 3). A clear pattern is observed: using the A.

aculeata transcriptome as reference always yielded the highest

heritability values, followed by the oil palm reference genome and

the de novo sequencing.
3.1 Genomic prediction models

In the cross-validation, oil content (OC) and fruit dry mass

(FDM) exhibited similar r�yŷ , but OC demonstrated a lower MSPE.

Pulp dry mass (PDM) achieved the lowest MSPE, although r�yŷ was

inferior to the other two traits (Figure 4). In the real validation, the

results were highly variable, depending on the reference for SNP

calling, the model used and the training/test set division (Figure 5).

Overall, using groups 1 and 3 to predict group 2 seemed more

successful for OC. In FDM, predicting group 3 using groups 1 and 2

yielded the highest r�yŷ on two out of three occasions (Figure 5A),

but also had the highest MSPE (Figure 5B). For PDM, the models

more efficiently predicted group 1 using groups 2 and 3.

The utilization of the oil palm reference genome as a reference

for SNP calling yielded superior prediction results in the cross-

validation (Figure 4). Overall, the GBLUP model demonstrated

higher r�yŷ and lower MSPE than the BayesB model across most

traits and SNP calling methods (Figure 4). Due to the variation in

the real validation, we considered only the cross-validation results

to determine that using GBLUP and considering the oil palm

genome as a reference for SNP calling is more adequate for A.

aculeata genomics when breeding for the studied traits. These

findings can inform future decisions related to genomic

management in A. aculeata. Considering these outcomes, we

chose to proceed with training set optimization using only the oil

palm reference genome and GBLUP for cross-validation.
3.2 Untargeted training set optimization

The studied population lacks a distinct structure, and most

genotypes exhibit a close genetic relationship, irrespective of

geographic distance (Figures 6; Supplementary Figure S3 of the

Supplementary Material). This condition theoretically enhances

genomic prediction and training set optimization. As anticipated,

the composition of the untargeted optimal training set varied based

on the optimization criterion. Figure 6 illustrates how genotypes

frequently present in the optimized training sets across runs are

dispersed in the PCA biplot in all criteria. This underscores the
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objective of untargeted optimization: selecting a subset of genotypes

that can effectively represent the genomic diversity in the

population. The PEV criterion exhibited the highest consistency

in selecting the same genotypes across runs, while D-optimality was
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the least consistent (Figure 6; Supplementary Figure S4 of the

Supplementary Material).

No optimization criterion consistently outperformed others in

all situations during cross-validation. The criterion performance
FIGURE 4

Boxplots depict the cross-validation results of the GBLUP and the BayesB models for each trait (FDM, fruit dry mass; OC, oil content, and PDM, pulp
dry mass) and SNP calling reference (De novo sequencing, oil palm genome and A. aculeata transcriptome). The top three plots show the correlation
between observed and predicted values, and the lower three plots display the mean squared prediction error.
FIGURE 3

Barplots representing the narrow-sense heritabilities estimated for each trait (FDM, fruit dry mass; OC, oil content, and PDM, pulp dry mass), using
different references for SNP calling. The error bars illustrate the upper and lower limits taking an approximate standard error calculated using the
Delta method.
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varied depending on the trait and training set size. For instance,

considering FDM, the MaxiMin criterion demonstrated the highest

r�yŷ and the lowest MSPE with a training set size of 50. However,

with a size of 100, it ranked fourth in r�yŷ and fourth lowest inMSPE

(Figure 7). Still, two criteria stand out for always yielding good

results: PEV and r-score. Another interesting outcome is the high

performance of the training sets composed of the core collection,

which always featured amongst the top three criteria. Notably, some

random-sampled training sets outperformed all optimized training

sets (Figure 7). This is important to stress that the objective of the

optimization is not to find the training set for the highest r�yŷ and

lowest MSPE but to provide sets with lower risk in predictions,

prioritizing risk-averse decisions. In the untargeted scenario, this is

achieved using PEV, r-score, or the core collection.
3.3 Targeted training set optimization

When predicting group 3, all criteria except CDmin and Mult

consistently selected the same representatives, indicating close

genetic relation to the test set. Minimax and PEV showed more

stable performance across runs when group 2 was the test set

(Figures 8; Supplementary Figure S5 of the Supplementary Figure
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S4). Convergence issues impeded the prediction of group 1 using

groups 2 and 3.

In the cross-validations, the targeted training set performances

varied more among optimization criteria compared to the

untargeted scenario (Figure 9). Using FDM as an example again,

CDmin provided the best-optimized training set when group 3 was

the test set, but had only the fourth-best performance when group 2

was the test set. It is challenging to identify standout optimization

criteria in this scenario. However, it is noteworthy that all criteria,

except MiniMax for OC, yielded results above average in all

situations. Furthermore, like in the untargeted optimization, using

the core collection is an interesting alternative for the targeted

scenario. This method produced good results for OC when group 3

was the test set and for FDM and PDM, where it provided the

training set with the best outcome among all tested sets, including

random-sampled sets (Figure 9).
4 Discussion

In this study, we underscored the considerable impact of the

reference genome on genomic-related outcomes. Optimal results in

the studied traits were attained by leveraging the oil palm as the
FIGURE 5

Real validation outcomes per trait (columns, FDM, fruit dry mass; OC, oil content, and PDM, pulp dry mass) and SNP calling reference (rows, De
novo sequencing, oil palm genome and A. aculeata transcriptome) of the GBLUP (dotted pattern) and BayesB (striped pattern) models. In Plot (A),
the correlation between observed and predicted values is presented, while Plot (B) shows the mean squared prediction error. Bar colors correspond
to the groups constituting the training set, with the x-axis indicating the test set group.
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reference genome in conjunction with the GBLUP statistical-genetic

model. Our investigation established the viability of training set

optimization in the pre-breeding context as a robust strategy for

ensuring reliable predictions, both in untargeted and targeted

scenarios. Additionally, we highlighted the efficacy of utilizing the

core collection, demonstrating its capacity to yield high-performance

results in prediction models. These findings instill confidence in

breeders of native orphan species, providing a secure foundation for

genomic-based decisions in crucial breeding activities like germplasm

characterization and breeding population structuring.
4.1 Genomic prediction models

Depending on the genetic architecture of the trait, GBLUP may

yield suboptimal results, as it assumes equal variances for all markers.

On the other hand, BayesB assumes that some markers are not in

linkage disequilibrium with the quantitative trait loci (QTL), and do

not segregate (i.e., have nil variance) (Meuwissen et al., 2001). Still,

the BayesB priors do not reflect the real genetic architecture of the

studied traits, as the general assumptions of GBLUP provided the best

prediction outcomes in the cross-validation.

The importance of a high-quality reference genome in ensuring

accurate predictions has been well-established in genomic research
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(Benevenuto et al., 2019). Given the absence of a dedicated reference

genome for A. aculeata, our study demonstrated that employing the

reference genome of a closely related species (E. guineensis, Lopes

et al., 2018) resulted in the highest predictive performances across

the tested models. This result makes sense, since E. guineensis and

A. aculeate are phylogenetically close species (Francisconi et al.,

2023). Notably, previous studies utilizing genome-wide SNP

markers in similar contexts have employed different references.

For instance, Dıáz et al. (2021) relied on de novo sequencing to

study genetic diversity in the Acrocomia genus, and Couto et al.

(2024) considered multiple references in their comprehensive

genome-wide association study (GWAS). In a formal breeding

pipeline, it is not feasible to test several SNP-calling methods, per

objective, per trait. Thus, based on our results and in the absence of

a proper reference genome for A. aculeata, we recommend the

usage of E. guineensis reference genome as an alternative.

Focusing on the results of the oil palm reference genome, the

narrow-sense heritabilities for the studied traits hovered around

0.75. Such values serve as an upper limit for prediction accuracy and

play a crucial role as benchmarks for evaluating the models’

predictive capabilities. It is worth noting that the values are close

to what was previously found for the same traits in another

population (Costa et al., 2018). While heritability values can vary

across populations, having this reference value is pivotal for guiding
FIGURE 6

Biplot depicting the genotype distribution using the first two principal components. Dots are colored according to their frequency in the untargeted
optimized training set after 50 runs, following various optimization criteria. Opaque and intensely colored dots indicate the 100 (upper plots) and 50
(lower plots) genotypes selected for the optimized training set.
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decision-making in subsequent studies. Another important

observation is that cross-validation tends to bias upward the real

predictive ability of models (Gezan et al., 2017), as shown by the

difference between the outcomes of cross- and real validations. The

training set composition and its relation to the test set is one of the

causes of this pattern since predictive ability in real validations

varied per trait and groups used as training and test sets. This

justifies the concern of seeking an optimized training set.
4.2 Training set optimization

The composition of the optimized training set introduces an

element of uncertainty, which we sought to mitigate by employing

multiple iterations of the recursive search (Akdemir et al., 2015).

This inherent uncertainty is counterbalanced by the consistently

above-average performance exhibited by most of the optimized

training sets across various optimization criteria (Isidro et al., 2015;

Fernández-González et al., 2023). Our study emphasizes that

training sets selected through the PEV and r-score criteria, along

with the utilization of the core collection, consistently enhance the

predictive capacity of the GBLUP model in all scenarios. Therefore,

it is reasonable to endorse these criteria for A. aculeata in situations

where cross-validation may not be feasible. It is important to note
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that the efficacy of optimized training sets, based on different

criteria, is contingent on factors such as training set size, trait

architecture, and population structure (Isidro et al., 2015; Rincent

et al., 2012; Ou and Liao, 2019). Consequently, thorough validation

is crucial before implementing this strategy in other species or even

in different populations of the same species (Tanaka and Iwata,

2018; Akdemir et al., 2015; Guo et al., 2019).

Training set optimization emerges as a viable strategy for

harnessing genomic information, particularly in the pre-breeding

stages. While studies by Yu et al. (2016) and Tanaka and Iwata

(2018) have demonstrated this in the context of large genebanks for

staple crops, our proposal extends this approach to perennial

species, drawing inspiration from the dataset employed in this

study: wild individuals assessed over multiple years across distinct

areas. Perennial species require extended evaluation periods to draw

reliable conclusions. Training set optimization can facilitate

germplasm characterization by concentrating phenotyping efforts

on a subset of representative individuals, reducing the associated

costs. Moreover, employing training set optimization allows for

investigating whether the performance of trees in a less accessible

area can be predicted from a more accessible one. In scenarios

where germplasm collection is the objective, the genotypes

within the optimized training set are likely to represent a diverse

sample of alleles present in the entire population. For genebank
FIGURE 7

Violin plot illustrating cross-validation outcomes post untargeted training set optimization for two different training set sizes (y-axis). Transparent
grey circles depict results from 100 cross-validations using randomly sampled training sets. Colored triangles represent optimized training sets based
on different optimization criteria. The upper plots display the correlation between observed and predicted values, while the three lower plots show
the mean squared prediction error.
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characterization and breeding population structuring, crossings

between components of the optimized training set offer the

potential to generate progenies with alleles from different sources,

providing a promising foundation for recurrent selection programs.

Another important detail is that the extrapolation of results based

on the optimized training set is only as reliable as the sample

quality. For instance, in this study, it would be inappropriate to

assert that the diversity captured by the optimized training set

represents the entire A. aculeata diversity in Brazil. To achieve this,

we would need to sample individuals from populations occurring in

other biomes, altitudes, soil classes, etc. [See, for example, Resende

et al. (2020)]. This is a topic for future studies.

It is essential to note that the methodology outlined in this study

does not negate the significance of other information sources, such as

a plant’s performance for a specific trait, its reproductive capacity, or

the impacts on genetic diversity and inbreeding (Simiqueli et al., 2018;

Dıáz-Hernández et al., 2024). Instead, it should be regarded as an

additional tool to mitigate the risk of erroneous decisions in the initial

stages of breeding programs, thus safeguarding subsequent results.

This integrated approach aims to enhance the efficiency and reliability

of breeding efforts in perennial species.
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4.3 Perspectives

The results of this study could further be refined under

conditions mirroring a formal genebank setting—where trees share

the same age and are arranged in a controlled experimental design.

Enhancements in reliability could be achieved through additional

measures such as expanding the sampled population size, increasing

the number of measurements, evaluating multiple environments, and

accounting for genotype-by-environment interactions. These

considerations collectively underscore the adaptability and utility of

the optimization strategies in a variety of breeding program scenarios

for orphan species. Genomic information stands as a powerful tool

poised to greatly enhance the efficiency of breeding programs,

especially as the costs associated with sequencing continue to

decline. This is particularly pertinent for orphan species, which are

gaining prominence in response to the growing need to broaden the

genetic and nutritional foundations of crops. Many of these species

find themselves in the pre-breeding stage, often constrained by

limited human and financial resources. The optimization strategies

demonstrated in this study present a practical and cost-effective

means to harness the potential benefits of genomic information.
FIGURE 8

Biplot depicting the genotype distribution in the first two principal components. Triangles represent the genotypes in the test set, and circle the
candidates to compose the training set. Circle colors indicate the frequency of their inclusion in the targeted optimized training set across 50 runs
with different optimization criteria. Intensely colored, opaque dots represent the 50 genotypes chosen for the optimized training set when the test
set was group 3 (upper plots) and group 2 (lower plots).
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5 Concluding remarks

The training set optimization methods exhibited in this study

are alternatives to decrease the risk of making a flawed decision

while leveraging genomic information as a cost-saving tool. We

showed that the predictive ability of genomic prediction models is

hardly below average when using an optimized training set. This

provides breeders with the reliability required to use the optimized

training set as a reference for the characterization of native species

populations, aiding in decisions involving germplasm collection and

construction of breeding populations. Particularly for A. aculeata,

we showed that an appropriate genome reference is vital for SNP

calling, and consequently, any initiative that involves genomic

information. While waiting for a proper reference genome, using

the oil palm genome as a reference for SNP calling seems to yield

better results for the genomic prediction of FDM, OC and PDM. By

using this reference for SNP calling in GBLUP models, we reached

mean prediction accuracies of 0.46, 0.45 and 0.39 for FDM, OC and

PDM, respectively, in cross-validations. Genomic prediction proved

to be feasible and would represent a boost in efficiency if adopted in

the breeding program pipeline, given the species’ perennial nature.
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