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Genomic prediction of yield-
related traits and genome-based
establishment of heterotic
pattern in maize hybrid breeding
of Southwest China
Yong Xiang †, Chao Xia †, Lujiang Li, Rujun Wei, Tingzhao Rong,
Hailan Liu* and Hai Lan*

Maize Research Institute/State Key Laboratory of Crop Gene Exploration and Utilization in Southwest
China, Sichuan Agricultural University, Chengdu, Sichuan, China
When genomic prediction is implemented in breeding maize (Zea mays L.), it can

accelerate the breeding process and reduce cost to a large extent. In this study, 11

yield-related traits of maize were used to evaluate four genomic prediction

methods including rrBLUP, HEBLP|A, RF, and LightGBM. In all the 11 traits, rrBLUP

had similar predictive accuracy to HEBLP|A, and so did RF to LightGBM, but rrBLUP

and HEBLP|A outperformed RF and LightGBM in 8 traits. Furthermore, genomic

prediction-based heterotic pattern of yieldwas established based on 64620 crosses

of maize in Southwest China, and the result showed that one of the parent lines of

the top 5% crosses came from temp-tropic or tropic germplasm, which is highly

consistent with the actual situation in breeding, and that heterotic pattern (Reid+ ×

Suwan+) will be a major heterotic pattern of Southwest China in the future.
KEYWORDS

genomic prediction, maize, yield-related traits, heterotic pattern of yield,

Southwest China
Introduction

Maize (Zea mays L.), one of the most important cereal crops throughout the world, has

been widely used as food, biofuel, feed and rawmaterials of many industrial products (Yang

et al., 2011a). In order to increase maize production, molecular marker techniques such as

RFLP, SSR, and SNP have been developed to improve agronomic traits of economic

importance (Stevens, 2008; Prasanna et al., 2010; Inghelandt et al., 2010). However,

conventional marker-assisted selection (MAS) can only utilize the markers tightly linked
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to large or moderate-effect QTL and fails to deal with quantitative

traits controlled by minor-polygene (Heffner et al., 2009; Jannink

et al., 2010; Chai et al., 2012; Hao et al., 2014).

Meuwissen et al. (2001) pioneered the technique of genomic

prediction to solve this problem. First, training population with

genotypic and phenotypic information is utilized to compute

genetic effect of each marker at the level of genome-wide markers,

and then the genomic estimated breeding values (GEBV) of each

individual in candidate population with only genotypic information

are obtained. The fact that all marker information is included in

genomic prediction contributes to higher predictive accuracy and

genetic gain. Applied successfully in the breeding programs of

animals and plants such as dairy cattle, beef cattle, pigs, sheep,

maize, wheat, and rice (Hayes et al., 2009; Heffner et al., 2011;

Meuwissen et al., 2013; Fristche-Neto et al., 2018; Cui et al., 2020;

Alemu et al., 2024), many genomic prediction methods have been

developed and can be categorized as (1) parametric methods such as

Genomic Best Linear Unbiased Prediction (GBLUP), ridge

regression Best Linear Unbiased Prediction (rrBLUP), Bayes,

Haseman-Elston regression Best Linear Prediction (HEBLP), and

RHPP (Meuwissen et al., 2001; VanRaden, 2008; Endelman, 2011;

Habier et al., 2011; Xu et al., 2014; Liu and Chen, 2017; Liu and Yu,

2023), and (2) non-parametric methods such as Random Forest

(RF), Support Vector Machine (SVM), Light Gradient Boosting

Machine (LightGBM) and deep learning (DL) (Ogutu et al., 2011;

Montesinos-López et al., 2018; Bellot et al., 2018; Yan et al., 2021).

Maize is the first crop to apply genomic prediction (Bernardo and

Yu, 2007). Riedelsheimer et al. (2012) used 56110 SNPs to predict

combining abilities of 7 biomass- and bioenergy-related traits of

maize and found that prediction accuracies ranged from 0.72 to 0.81.

Zhao et al. (2012) analyzed European maize elite breeding population

and found that prediction accuracies of grain moisture and grain

yield were respectively 0.90 and 0.58. Navarro et al. (2017) used 30000

markers to predict flower time traits including days to anthesis (DA)

and days to silking (DS) for 4471 maize landraces via rrBLUP and

found that the average prediction accuracy was 0.45. Li et al. (2020)

utilized 8 genomic prediction methods to predict 10 traits of maize

and found that the prediction accuracy ranged from 0.382 to 0.795.

Xiao et al. (2021) utilized 8652 F1 hybrids from maize CUBIC

population to predict days to tasseling (DTT), plant height (PH)

and ear weight (EW) and found that the prediction accuracies of

DTT, PH, and EW were 0.76, 0.81, and 0.66 respectively. Studies

above demonstrated that genomic prediction was a highly effective

technique to improve maize.

Southwest China is one of the three main production areas of

maize in the country. In order to increase yield and adapt to

complex ecological condition in this region, the breeders

introduced tropical or subtropical maize germplasm such as ETO,

Suwan, Dentado Amarillo, Tuson and Tuxpeno into the local maize

germplasm to broaden the narrow genetic base (Zhang et al., 2016;

Leng et al., 2019). Furthermore, a number of inbred lines containing

tropical or subtropical maize germplasm were used to obtain

excellent hybrid. In this study, we generated 2077 hybrids derived

from random crosses of 360 inbred lines to perform genomic

prediction analysis of 11 yield-related traits and furthermore

established genomic prediction-based heterotic pattern of yield.
Frontiers in Plant Science 02
Materials and methods

Phenotypic data collection of maize

In this study, 360maize inbred lines ofwide genetic backgroundand

origin were collected, including the most representative inbred lines in

Southwest China, inbred lines exchanged from the other breeding units

of Sichuan, temperate inbred lines introduced fromNorth China, tropic

inbred lines introduced from the other breeding units, and inbred lines

cultivated by our institute (Supplementary Table S1). From 64,620

crosses obtained through pairing of the 360 inbred lines, 2077 were

randomly selected to perform field evaluation. All hybrids were planted

in Field data of 11 traits including row number per ear, ear length, ear

diameter, grain number per row, grain length, grain width, grain

thickness, hundred grain weight, weight per unit volume, and yield

(kg/mu) for 2077 crosses were collected at Gasa town, Jinghong city

(21°95’N, 100°75’E, 520 meters above sea level), Yunnan province,

China, in 2019. All hybrids were planted in one-row plot using a

complete block design. Ten plants were planted in each row. The row

lengthwas2.5mandrowspacingwas0.8m.Theplantdensitywasabout

3300 plants/mu. Field management followed standard procedures. For

quality control, five plants in the middle of each row were selected to

obtain the phenotypes. No further phenotypic corrections were

performed on the basis of the other hybrid.
Genotypic data collection of maize
inbred lines

Genomic DNA of the 360 inbred lines were extracted via CTAB

method, and their qualities were evaluated with a Nanodrop 2000

Spectrophotometer (Thermo Fisher Scientific). High-quality DNA was

genotyped via 48K liquid phase gene chip and sequenced on an

Illumina Nova 150-bp paired-end sequencing platform in China

Golden Marker (Beijing, China). Quality control of raw reads was

performed via Trimmomatic-0.36 (Lohse et al., 2012) with default

parameter, and then the filtered data were mapped to B73_RefGen_v4

genome with BWA software (Li and Durbin, 2009). The SNPs were

called with GATK (McKenna et al., 2010) and further filtered with

VCFtools (Danecek et al., 2011). The parameters used in SNP filters

ration were: –minDP 4, –minGQ 10, –max-missing 0.8, –maf 0.05.
Construction of phylogenetic tree

45425 SNPs were used to generate distance matrix using

VCF2Dis (https://github.com/BGI-shenzhen/VCF2Dis) and then

phylogenetic tree was constructed based on distance matrix via

FastME2.1.6.4 (Lefort et al., 2015).
Genotyping of maize hybrids

The genotypes of 2077 hybrid were obtained based on those of

the inbred lines. 33009 of 45425 SNPs were kept according to the
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following criteria: (1) there are at least two kinds of genotype at each

locus; (2) the percentage of “NA” at each locus is not more than 0.3;

(3) the percentage of rare alleles at each locus is not less than 0.1.
Estimation of SNP heritability

The genetic model of a quantitative trait can be written as

y = Xb + Zu + e

where y is an n� 1 vector for the phenotypic values; X is a n� p

incidence matrix for fixed effects; b is a p� 1 vector offixed effects; p

is the number of fixed effects; Z is n�m genotype matrix; m is the

number of markers; u is a m� 1 vector of additive effects following

N(0, Is2
u ); e is a n� 1 vector of residual error following N(0, Is 2

e ).

The SNP heritability was calculated as:

h2 =
s 2
g

s 2
g + s 2

e

We estimated s 2
g and s 2

e via the program GCTA v1.94.1, which

consists of two steps: (1) computing the genetic relationship matrix

(GRM) of all individuals based on all SNPs; (2) estimating additive

genetic variance of a trait based on above GRM via the restricted

maximum likelihood (REML) (Yang et al., 2011b).
Evaluation of genomic prediction of 11
yield-related traits

Two parametric genomic prediction methods including rrBLUP

(Endelman, 2011) and HEBLP|A (Liu and Chen, 2017) and two

non-parametric genomic prediction methods including RF and

LightGBM were used in this study.

rrBLUP is one of the first methods for genomic prediction and

has been taken as a baseline model (Meuwissen et al., 2001). The

formula of rrBLUP is written as the following:

y = m + Zu + e

in which y is the vector of the phenotype; m is the vector of mean

value; Z is the genotype matrix; u is the vector of additive effects of

the causal loci following N(0, Is2
u) where s2

u is the additive genetic

variance; e is the vector of residual error following N(0, Is2
e ). The

BLUP solution for u is written as û = ZT(ZZT + lI)−1(y − m̂ ) where
l = s2

e
s2
u
. The ridge parameter l is computed on the tenfold cross-

validated partial likelihood that minimized the residuals between

predicted and observed phenotypes within the training population.

HEBLP|A is highly efficient in computation due to its

estimation of heritability via Haseman-Elston regression (Liu and

Chen, 2017). HEBLP|A and rrBLUP have similar model, but are

different in the strategy of computing l. HEBLP|A uses IBS-based

Haseman-Elston (HE) to estimate s2
u and then l = 1−s2

u
s2
u
.

RF is one of the most popular and powerful machine learning

algorithms and has already been applied to a wide variety of

genomic problems (Ogutu et al., 2011). RF uses bootstrap sample

of the training population to build B decision trees and then
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averages the output of the ensemble of B trees to predict

candidate individuals. The formula is as follows:

f̂ B(x) =
1
Bo

B

i=1
T(x,yi)

in which yi is the ith RF trees.

LightGBM, a very popular machine learning algorithm, was

developed by Microsoft in 2017 and has been widely used in dealing

with extremely large data with ultra-high efficiency (Ke et al., 2017).

LightGBMuses a gradient-based one-side sampling (GOSS) and exclusive

feature bundling (EFB) to reduce computational time. The basic process

of the LightGBM is described as follows (Mienye and Sun, 2022):
1. Merge mutually exclusive features xi based on training

population S = (xi, yi) using the EFB.

2. Initialize Q0(x) = argmincon
i L(yi, c) where L(y, c) is the

loss function.

3. For t = 1,…, T :
i. Compute the absolute values of gradients:

ri =
dL(yi,Q(xi))

dQ(xi)

h i
Q(x)=Qt−1(x)

ii. Resample the training population using the GOSS:

D = A + B where A is samples with larger

gradients and B is samples with small gradients.

iii. Calculate information gain values.

iv. Obtain a new decision tree Qt(x)
0
on D.

v. Update Qt(x) = Qt−1(x) + Qt(x)
;.
4. Output: q̂ (x) = QT(x).
For RF and LightGBM methods, we utilized “randomForest” and

“LightGBM” function in R package with the default parameters. The

correlation coefficient between the phenotypes and the predicted

genotypic values was considered as the prediction accuracy. 10

replications were used to evaluate the prediction accuracy of genomic

prediction methods.
Genomic prediction of yield of all
crossing combinations

The 360 inbred lines generated 64620 crossing combinations in

total. We utilized 2077 hybrids with the phenotypic and genotypic

data to predict the yield performance of 64620 crossing

combinations via HEBLP|A under additive model.
Results

Phylogenetic tree analysis of the 360
maize inbred lines

As was demonstrated in the phylogenetic tree, the 360 maize

inbred lines fell into three groups including temperate germplasm (90

inbred lines), tropical germplasm (106 inbred lines), and temp-tropic

germplasm (164 inbred lines) (Figure 1). The temperate group contains

temperate inbred lines from North China such as Zheng58, Chang7-2,
frontiersin.org
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Mo17, Dan340, PH6WC, PH4CV, and Jing724 and those from

Southwest China such as Y9614 and 4011. Most of the inbred lines

in the tropical group have mixed genetic background of Suwan,

Tuxpeno, and CIMMTY, with the parent lines of main hybrids in

Southwest China QR723, WG646, ZNC442, Xian21A, Rekangbai67,

XZ50612, and 7031 being examples. As for temp-tropic group, most

inbred lines such as SCML0849, CL11, R18, GH35, F19, SH1070, Q1

come from PB inbred lines and improved Reid inbred lines.
Frontiers in Plant Science 04
Evaluation of genomic prediction for the 11
yield-related traits in maize hybrids

The SNP heritability of the 11 yield-related traits of 2077

hybrids was estimated via GCTA analysis under the additive

model and ranged from 0.058 for grain thickness to 0.883 for row

number per ear (Figure 2). The result indicated that most traits were

mainly controlled by additive effects.
FIGURE 1

Phylogenetic tree for 360 maize inbred lines using 45425 SNP markers. Temperate germplasm (red), Temp-Tropic germplasm (purple), and Tropic
germplasm (green).
FIGURE 2

SNP-based heritability estimation of 11 traits in maize.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1441555
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiang et al. 10.3389/fpls.2024.1441555
Evaluation of genomic prediction for the 11 yield-related traits

was performed via rrBLUP, HEBLP|A, RF, and LightGBM (Table 1)

with the size of training population and candidate population being

1800 and 277 respectively. The prediction accuracies ranged from

0.232 to 0.833 across traits and models. The row number per ear

showed the highest prediction accuracy (average value across all

methods being 0.796) and grain thickness had the lowest prediction

accuracy (average value cross all methods being 0.302). The Pearson’s

correlation coefficient between heritability and average prediction

accuracy was significant (R = 0:929 and P < 0:001), indicating that

the heritability influenced prediction accuracy to a great extent, and

the result was consistent with previous researches (Daetwyler et al.,

2008; Liu and Chen, 2018). Among the four methods, rrBLUP and

HEBLP|A have similar prediction accuracy in all the 11 traits (for

example, rrrBLUP = 0:833 ± 0:007 and rHEBLPjA = 0:825 ± 0:007 in row

number per ear), and so do RF and LightGBM (for example, rRF =

0:752 ± 0:008 and rLightGBM = 0:772 ± 0:008 in row number per ear).

The parametric methods (rrBLUP and HEBLP|A) outperformed non-

parametric methods (RF and LightGBM) in 8 traits (Row number per

ear, Ear length, Ear diameter, Grain number per row, Grain length,

Grain width, Hundred grain weight, and Weight per unit volume),

and the latter outperformed the former only in grain thickness, which

may be mainly controlled by non-additive effects such as dominance,

epistasis and genotype-by-environment interaction. Both two

categories of methods had similar predictive accuracy in 2 traits

(Cob diameter and Yield).
Prediction of GEBVs of yield for all
crossing combinations

GEBVs for yield of the 64620 crosses generated by the 360

inbred lines were obtained via 2077 hybrids with phenotypic and

genotypic values under additive model via HEBLP|A and were
Frontiers in Plant Science 05
sorted in descending order. The average GEBV of all crosses was

341.50 for yield, and that of the top 200 crosses, the top 5% (3231

ones) and the top 10% (6462 ones) was 558.35, 491.78 and 469.20

respectively. If breeders use the crosses of the best predictive

accuracy in cultivation (the top 10% for example), a significant

genetic gain (469:20 − 341:50 = 127:7) can be expected.

To evaluate the general combining ability (GCA) of an inbred line,

its mean GEBV of the 359 crosses was obtained by crossing the

remaining 359 ones with it, and consequently there were 44 inbred

lines with mean GEBVs over 400kg, among which some most popular

inbred lines in Southwest China were found, such as ZNC442, QR273,

YA8201, Xian21A, Rekangbai67, XZ50612, and F19. There are 29

tropic inbred lines (proportion is 65.9%) and 11 temp-tropic ones

(proportion is 25%) among the 44 inbred lines, indicating that inbred

lines with tropic and temp-tropic germplasm play an important role in

the maize hybrid breeding of Southwest China. In contrast, the mean

GEBVs of some pure temperate inbred lines introduced from North

China such as 478, Zheng58, Chang7-2, Dan340, 91227, M54, and

NH60 were quite low, but their improved version demonstrated high

GCA when tropic germplasm was added. For example, comparing the

inbred line 91227 with LX2715, its improved version via introducing

tropic germplasm, we found a significant increase of the mean GEBV

from 297.2kg to 349.3kg. Therefore, tropic or temp-tropic germplasms

can help pure temperate inbred lines from North China to adapt to

ecological environment, reducing their defects in Southwest China such

as low resistance to diseases and pests when they are used in maize

breeding. Generally speaking, most of the local temperate inbred lines

from Southwest China contain a certain proportion of tropic

germplasm through long-term improvement. In addition, the result

of some representative inbred lines in Southwest China including

PH6WC (temperate), GH35, SCML0849, and NG5 (temp-tropic),

and WG646, ZNC442, XZ50612, QR273, and XL8242 (tropic) has

showed that tropic inbred lines have better performance than

temperate and temp-tropic ones (Figure 3). In particular, the mean
TABLE 1 Comparison of genomic predictability among rrBLUP, HEBLP|A, RF, and LightGBM for 11 yield related traits of maize based on
10 simulations.

Trait Training Candidate rrBLUP HEBLP|A RF LightGBM

Row number per ear 1800 277 0:833 ± 0:007 0:825 ± 0:007 0:752 ± 0:008 0:772 ± 0:008

Ear length 1800 277 0:627 ± 0:026 0:628 ± 0:025 0:584 ± 0:020 0:585 ± 0:024

Ear diameter 1800 277 0:749 ± 0:004 0:727 ± 0:006 0:693 ± 0:007 0:712 ± 0:006

Cob diameter 1800 277 0:679 ± 0:013 0:653 ± 0:016 0:641 ± 0:010 0:650 ± 0:010

Grain number per row 1800 277 0:561 ± 0:012 0:561 ± 0:013 0:509 ± 0:020 0:495 ± 0:015

Grain length 1800 277 0:677 ± 0:009 0:670 ± 0:009 0:599 ± 0:010 0:613 ± 0:010

Grain width 1800 277 0:767 ± 0:009 0:769 ± 0:009 0:675 ± 0:009 0:706 ± 0:007

Grain thickness 1800 277 0:250 ± 0:045 0:232 ± 0:042 0:382 ± 0:055 0:342 ± 0:062

Hundred grain weight 1800 277 0:742 ± 0:011 0:726 ± 0:013 0:649 ± 0:06 0:683 ± 0:010

Weight per
unit volume

1800 276 0:783 ± 0:008 0:763 ± 0:009 0:714 ± 0:012 0:747 ± 0:007

Yield 1800 264 0:680 ± 0:006 0:653 ± 0:007 0:650 ± 0:012 0:650 ± 0:007
The correlation coefficient between the phenotypes and the predicted genotypic values was considered as the prediction accuracy. The values after ± represent the corresponding standard error.
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GEBV of the 359 crosses corresponding to XL8242 (a newest tropic

inbred line cultivated by our unit) ranked the first among the 360

inbred lines and has been used to breed some hybrids

successfully (Table 2).

We constructed six heterotic patterns with three germplasms

(Figure 4) and the results showed that the mean GEBV of Tropic ×

Tropic, Tropic × Temp-Tropic, Tropic × Temp, Temp-Tropic ×

Temp-Tropic, Temp-Tropic × Temp and Temp × Temp is 391:9 ±

45:0, 366:4 ± 46:5, 353:4 ± 45:6, 327:0 ± 42:2, 312:6 ± 41:8, and

290:1 ± 41:6 respectively (Figure 5). Among the 5% top crosses, 21%

areTropic ×Tropicmode and66.4%areTemperate (orTemp-Tropic)

× Tropicmode, indicating that Temperate (or Temp-Tropic) × Tropic

mode is a major heterotic pattern. There are some approved

commercial varieties among the 5% top crosses including Youdi899,

Chuanqing9, Yayu68, Rongyuqingzhu1, Shidi6, Qixiangqingzhu6,

Rongkefengzan, Nonghua606, Chuandan99, and Ronghe99

(Table 2). Take Youdi899 for example, deriving from SCML0849
Frontiers in Plant Science 06
and XL8242, it ranked 184 in all crosses and had an excellent

performance in Southwest China (Figure 6). In 2020-2022 years’

national spring maize cultivar regional trials (middle and high

altitude region) in Southwest China, its mean yield of two years is

814.3kg and the production increased by 14.8% compared with the

control variety. In 2021-2022 years’ autonomous production test, its

mean yield was 783.1kg and the production increased by 11.6%

compared with the control variety. After the identification of field

inoculationdiseases, this varietywashighly resistant tonorthernmaize

leaf blight and southern maize leaf blight, moderately resistant to ear

rot, maize stalk rot, grey leaf spot, southernmaize rust, and susceptible

to northern maize leaf blight. Tropic × Tropic mode account for

relative high proportion because Jinghong City of Yunnan Province,

the place where the training population of maize was planted, belongs

to tropic-subtropic region, and the result conforms well to practical

breeding. In the future, we will further investigate heterotic mode of

maize in other regions of Southwest China (including middle and low
TABLE 2 Basic information of the maize varieties from 5% top crosses based on genomic prediction of yield.

Predictive rank Name of variety Approval number Male parent Female parent Heterotic pattern

184 Youdi899 National test20231073 SCML0849 XL8242 Tropic × Temp-Tropic

249 Chuanqing9 Sichuan test20222061 LX2715 XL8242 Tropic × Temp-Tropic

1294 Yayu68 Yunnan test201105 F06 YA8201 Tropic × Temp-Tropic

1352 Rongyuqingzhu1 National test20180178 SCML5409 Xian21A Tropic × Temp-Tropic

1752 Shidi6 Yunnan test2022102 Y9614 XB_320 Tropic × Temp

2010 Qixiangqingzhu6 Yunnan test2023161 XB_267 XL8242 Tropic × Temp-Tropic

2139 Rongkefengzan Yunnan test2022086 NG0715 XL8242 Tropic × Temp

2255 Nonghua606 Guangxi test2017004 Y0921 ZNC442 Tropic × Temp-Tropic

2520 Chuandan99 National test20210096 ZNC442 SCML0849 Tropic × Temp-Tropic

2525 Ronghe99 National test20220514 SCML0849 XL2142 Tropic × Temp-Tropic
FIGURE 3

The GEBV distribution of the 359 crosses corresponding the representative inbred lines in Southwest China. Zheng58 (temperate line from North
China) was taken as control inbred line. Temperate inbred line in Southwest China (PH6WC), temp-tropic inbred lines in Southwest China (GH35,
SCML0849, and NG5), and tropic inbred lines in Southwest China (WG646, ZNC442, XZ50612, QR273, and XL8242).
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FIGURE 5

Average yield of different heterotic groups based on genomic prediction. The lowercase letters (a, b, c, d, and e) have significant difference.
FIGURE 6

Phenotype of maize variety Youdi899. (A) Plant architecture. (B) Ear.
FIGURE 4

Heterotic pattern in maize hybrid breeding of Southwest China based on genomic prediction of yield (kg/mu).
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altitude region and middle and high altitude region) via

genomic prediction.
Discussion

It is critical for modern plant breeding to predict superior

individuals with high accuracy (Heffner et al., 2009; Voss-Fels

et al., 2019). When there is a large number of inbred lines in the

process of maize breeding, it is difficult to identify superior hybrid

crosses from
N*(N−1)

2 crosses (N represents number of inbred lines)

via conventional breeding methods because it is time consuming

and too expensive. Being a useful technique to select superior hybrid

crosses, genomic prediction has been successfully applied to maize

breeding currently (Albrecht et al., 2011; Zhao et al., 2012;

Riedelsheimer et al., 2012; Technow et al., 2014; Li et al., 2020;

Wang et al., 2020; Luo et al., 2023).

To our knowledge, this is the first study about a large-scale

application of genomic prediction in Southwest China’s maize

hybrid breeding. We evaluated the genomic prediction accuracies

of 11 yield-related traits in an F1 population with 2077 F1 maize

hybrids and found that the predictive accuracies of most traits

except grain thickness were higher than 55%. It is indicated that

genomic prediction is a promising tool in maize breeding programs.

Comparison of four methods demonstrated that parametric ones

(rrBLUP and HEBLP|A) outperformed non-parametric ones (RF

and LightGBM) in 8 out of 11 traits, which is consistent with

previous studies that parametric methods outperformed machine-

learning methods when the traits were mainly controlled by

additive effects (Abdollahi-Arpanahi et al., 2020; Alves et al.,

2020; Yu et al., 2023).

Increasing yield is the most important objective in hybrid maize

production (Li et al., 2011; Peng et al., 2011; Tian et al., 2024), but it

is difficult to improve yield trait via phenotypic selection or

conventional MAS because it is a complex trait controlled by a

large number of quantitative trait loci (QTL) with small effects

(Ndlovu et al., 2022). In this study, the predictive accuracy of yield

was about 65% when four genomic prediction methods were

evaluated with 2077 maize crosses. According to the prediction of

the yield performance of all 64620 crosses, one parent of the top 5%

crosses has at least a tropic or temp-tropic inbred lines, and 86.4%

of those top 5% have at least a tropic inbred line, which is highly

consistent with practical breeding. It is indicated that tropic inbred

lines play an important role in selecting superior hybrids in

Southwest China.

With serious increase of diseases and pests of maize at present,

it is more and more difficult for Reid × Suwan, the conventional

heterotic pattern of Southwest China (Ni et al., 1996; Pan et al.,

2020) to tackle the problem. Therefore, we proposed a new heterotic

pattern (Reid+ × Suwan+) in which Reid+ represents the

introgression from tropical germplasm or other temperate

germplasm to Reid inbred lines, and Suwan+ represents the

introgression from other tropical germplasm to Suwan inbred

lines. It will become a major heterotic pattern of Southwest China

in the future.
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Navarro, J. A. R., Wilcox, M., Burgueńo, J., Romay, C., Swarts, K., Trachsel, S., et al.
(2017). A study of allelic diversity underlying flowering-time adaptation in maize
landraces. Nat. Genet. 49, 476–480. doi: 10.1038/ng.3784

Ndlovu, N., Spillane, C., McKeown, P. C., Cairns, J. E., Das, B., and Gowda, M.
(2022). Genome−wide association studies of grain yield and quality traits under
optimum and low−nitrogen stress in tropical maize (Zea mays L.). Theor. Appl.
Genet. 135, 4351–4370. doi: 10.1007/s00122-022-04224-7

Ni, X., Liu, L., and Lei, B. (1996). Study on the selection of maize inbred line S37
suited to mountain area maize breeding. J. Sichuan Agric. Univ. 14, 366–370.
doi: 10.16036/j.issn.1000-2650.1996.03.011

Ogutu, J. O., Piepho, H. P., and Schulz-Streeck, T. (2011). A comparison of random
forests, boosting and support vector machines for genomic selection. BMC Proc. 5, S11.
doi: 10.1186/1753-6561-5-S3-S11

Pan, G. T., Yang, K. C., Li, W. C., Huang, Y. B., Gao, S. B., Lan, H., et al. (2020). A
review of the research and application of heterotic groups and patterns of maize
breeding in Southwest China. J . Maize Sci . 28, 1–8. doi : 10.13597/
j.cnki.maize.science.20200101

Peng, B., Li, Y., Wang, Y., Liu, C., Liu, Z., Tan, W., et al. (2011). QTL analysis for yield
components and kernel-related traits in maize across multi-environments. Theor. Appl.
Genet. 122, 1305–1320. doi: 10.1007/s00122-011-1532-9

Prasanna, B. M., Pixley, K., Warburton, M. L., and Xie, C. X. (2010). Molecular
marker-assisted breeding options for maize improvement in Asia.Mol. Breed. 26, 339–
356. doi: 10.1007/s11032-009-9387-3

Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice,
R., et al. (2012). Genomic and metabolic prediction of complex heterotic traits in hybrid
maize. Nat. Genet. 44, 217–220. doi: 10.1038/ng.1033

Stevens, R. (2008). Prospects for using marker-assisted breeding to improve maize
production in Africa. J. Sci. Food Agric. 88, 745–755. doi: 10.1002/jsfa.3154

Technow, F., Schrag, T. A., Schipprack, W., Bauer, E., Simianer, H., and Melchinger,
A. E. (2014). Genome properties and prospects of genomic prediction of hybrid
performance in a breeding program of maize. Genetics 197, 1343–1355. doi: 10.1534/
genetics.114.165860

Tian, J., Wang, C., Chen, F., Qin, W., Yang, H., Zhao, S., et al. (2024). Maize smart-
canopy architecture enhances yield at high densities. Nature. 632, 576-584.
doi: 10.1038/s41586-024-07669-6

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy
Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Voss-Fels, K. P., Cooper, M., and Hayes, B. J. (2019). Accelerating crop genetic gains
with genomic selection. Theor. Appl. Genet. 132, 669–686. doi: 10.1007/s00122-018-
3270-8

Wang, X., Zhang, Z., Xu, Y., Li, P., Zhang, X., and Xu, C. (2020). Using genomic data
to improve the estimation of general combining ability based on sparse partial diallel
cross designs in maize. Crop J. 8, 819–829. doi: 10.1016/j.cj.2020.04.012
frontiersin.org

https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1007/s00122-011-1587-7
https://doi.org/10.1016/j.molp.2024.03.007
https://doi.org/10.1016/j.molp.2024.03.007
https://doi.org/10.1093/jas/skaa179
https://doi.org/10.1534/genetics.118.301298
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.1007/s11032-011-9644-0
https://doi.org/10.1111/pbi.13170
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1007/s00122-018-3068-8
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1007/s11032-014-0071-x
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.3835/plantgenome2010.12.0029
https://doi.org/10.2135/cropsci2008.08.0512
https://doi.org/10.1007/s00122-009-1256-2
https://doi.org/10.1007/s00122-009-1256-2
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1093/molbev/msv150
https://doi.org/10.1007/s11032-019-0946-y
https://doi.org/10.1016/j.cj.2020.04.006
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1007/s00122-010-1485-4
https://doi.org/10.1007/s00122-017-2887-3
https://doi.org/10.1038/s41437-018-0099-5
https://doi.org/10.1038/s41437-018-0099-5
https://doi.org/10.1007/s00299-023-03069-8
https://doi.org/10.1093/nar/gks540
https://doi.org/10.1016/j.cj.2023.09.009
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1146/annurev-animal-031412-103705
https://doi.org/10.1146/annurev-animal-031412-103705
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1534/g3.118.200740
https://doi.org/10.1038/ng.3784
https://doi.org/10.1007/s00122-022-04224-7
https://doi.org/10.16036/j.issn.1000-2650.1996.03.011
https://doi.org/10.1186/1753-6561-5-S3-S11
https://doi.org/10.13597/j.cnki.maize.science.20200101
https://doi.org/10.13597/j.cnki.maize.science.20200101
https://doi.org/10.1007/s00122-011-1532-9
https://doi.org/10.1007/s11032-009-9387-3
https://doi.org/10.1038/ng.1033
https://doi.org/10.1002/jsfa.3154
https://doi.org/10.1534/genetics.114.165860
https://doi.org/10.1534/genetics.114.165860
https://doi.org/10.1038/s41586-024-07669-6
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1007/s00122-018-3270-8
https://doi.org/10.1007/s00122-018-3270-8
https://doi.org/10.1016/j.cj.2020.04.012
https://doi.org/10.3389/fpls.2024.1441555
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiang et al. 10.3389/fpls.2024.1441555
Xiao, Y., Jiang, S., Cheng, Q., Wang, X., Yan, J., Zhang, R., et al. (2021). The genetic
mechanism of heterosis utilization in maize improvement. Genome Biol. 22, 148.
doi: 10.1186/s13059-021-02370-7

Xu, S., Zhu, D., and Zhang, Q. (2014). Predicting hybrid performance in rice using
genomic best linear unbiased prediction. PNAS 111, 12456–12461. doi: 10.1073/
pnas.1413750111

Yan, J., Xu, Y., Cheng, Q., Jiang, S., Wang, Q., Xiao, Y., et al. (2021). LightGBM:
accelerated genomically designed crop breeding through ensemble learning. Genome
Biol. 22, 271. doi: 10.1186/s13059-021-02492-y

Yang, X., Gao, S., Xu, S., Zhang, Z., Prasanna, B. M., Li, L., et al. (2011a).
Characterization of a global germplasm collection and its potential utilization for
analysis of complex quantitative traits in maize. Mol. Breed. 28, 511–526. doi: 10.1007/
s11032-010-9500-7
Frontiers in Plant Science 10
Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011b). GCTA: a tool for
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82. doi: 10.1016/
j.ajhg.2010.11.011

Yu, G., Cui, Y., Jiao, Y., Zhou, K., Wang, X., Yang, W., et al. (2023). Comparison of
sequencing-based and array-based genotyping platforms for genomic prediction of
maize hybrid performance. Crop J. 11, 490–498. doi: 10.1016/j.cj.2022.09.004

Zhang, X., Zhang, H., Li, L., Lan, H., Ren, Z., Liu, D., et al. (2016). Characterizing the
population structure and genetic diversity of maize breeding germplasm in Southwest
China using genome-wide SNP markers. BMC Genomics 17, 697. doi: 10.1186/s12864-
016-3041-3

Zhao, Y., Gowda, M., Liu, W., Würschum, T., Maurer, H. P., Longin, F. H., et al.
(2012). Accuracy of genomic selection in European maize elite breeding populations.
Theor. Appl. Genet. 124, 769–776. doi: 10.1007/s00122-011-1745-y
frontiersin.org

https://doi.org/10.1186/s13059-021-02370-7
https://doi.org/10.1073/pnas.1413750111
https://doi.org/10.1073/pnas.1413750111
https://doi.org/10.1186/s13059-021-02492-y
https://doi.org/10.1007/s11032-010-9500-7
https://doi.org/10.1007/s11032-010-9500-7
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.cj.2022.09.004
https://doi.org/10.1186/s12864-016-3041-3
https://doi.org/10.1186/s12864-016-3041-3
https://doi.org/10.1007/s00122-011-1745-y
https://doi.org/10.3389/fpls.2024.1441555
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Genomic prediction of yield-related traits and genome-based establishment of heterotic pattern in maize hybrid breeding of Southwest China
	Introduction
	Materials and methods
	Phenotypic data collection of maize
	Genotypic data collection of maize inbred lines
	Construction of phylogenetic tree
	Genotyping of maize hybrids
	Estimation of SNP heritability
	Evaluation of genomic prediction of 11 yield-related traits
	Genomic prediction of yield of all crossing combinations

	Results
	Phylogenetic tree analysis of the 360 maize inbred lines
	Evaluation of genomic prediction for the 11 yield-related traits in maize hybrids
	Prediction of GEBVs of yield for all crossing combinations

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


