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Introduction: Cotton, being a crucial cash crop globally, faces significant

challenges due to multiple diseases that adversely affect its quality and yield.

To identify such diseases is very important for the implementation of effective

management strategies for sustainable agriculture. Image recognition plays an

important role for the timely and accurate identification of diseases in cotton

plants as it allows farmers to implement effective interventions and optimize

resource allocation. Additionally, deep learning has begun as a powerful

technique for to detect diseases in crops using images. Hence, the significance

of this work lies in its potential to mitigate the impact of these diseases, which

cause significant damage to the cotton and decrease fibre quality and promote

sustainable agricultural practices.

Methods: This paper investigates the role of deep transfer learning techniques

such as EfficientNet models, Xception, ResNet models, Inception, VGG,

DenseNet, MobileNet, and InceptionResNet for cotton plant disease detection.

A complete dataset of infected cotton plants having diseases like Bacterial Blight,

Target Spot, Powdery Mildew, Aphids, and Army Worm along with the healthy

ones is used. After pre-processing the images of the dataset, their region of

interest is obtained by applying feature extraction techniques such as the

generation of the biggest contour, identification of extreme points, cropping of

relevant regions, and segmenting the objects using adaptive thresholding.

Results and Discussion: During experimentation, it is found that the

EfficientNetB3 model outperforms in accuracy, loss, as well as root mean

square error by obtaining 99.96%, 0.149, and 0.386 respectively. However,

other models also show the good performance in terms of precision, recall,

and F1 score, with high scores close to 0.98 or 1.00, except for VGG19. The

findings of the paper emphasize the prospective of deep transfer learning as a
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viable technique for cotton plant disease diagnosis by providing a cost-effective

and efficient solution for crop diseasemonitoring andmanagement. This strategy

can also help to improve agricultural practices by ensuring sustainable cotton

farming and increased crop output.
KEYWORDS

cotton disease, agriculture, deep learning, bacterial blight, powdery mildew,
contour features
1 Introduction

Cotton plants are significantly impacted by pests, bacteria or

fungal infections which leads to reduced yields and contributes to

economic challenges, particularly within the agricultural sector.

These diseases pose a serious threat, adversely affecting the

development, growth, and overall health of cotton plants. Aphids,

Army Worm, Bacterial Blight, Powdery Mildew, and Target Spot

are among the most common diseases affecting cotton plants.

Aphids are caused by sap-sucking insects that weaken the plant

by draining essential nutrients. ArmyWorm, a pest caused by larvae

of Spodoptera moths, results in severe leaf defoliation and damage

to buds. Bacterial Blight, triggered by Xanthomonas axonopodis pv.

malvacearum, leads to leaf lesions and reduced fiber quality.

Powdery Mildew, caused by fungi like Erysiphe, appears as white

powdery patches on leaves, hindering photosynthesis. Target Spot,

caused by Corynespora cassiicola, creates brown circular lesions,

reducing yield. Each disease significantly impacts crop health and

productivity (Arthy et al., 2024) (Figure 1 shows the leaf of cotton

plant being damaged by bacterial blight). These diseases cause

significant damage to the crops and decrease its fibre quality as

well as throws farmers who deal with the cotton plants in a financial

loss. Hence, it is very important to timely, efficiently, and precisely

identify such diseased cotton plants (Bhatti et al., 2020). Various

traditional techniques are available such as laboratory testing,
02
visually inspecting, etc but they have certain limitations also.

Examining any disease on the cotton plant visually is mostly

prone to errors as it is completely based on the skill or expertise

of a human being (Caldeira et al., 2021).

In fact, to differentiate symptoms caused by these infections

from those caused by other factors, such as dietary deficits or

environmental stress, can be also difficult. Likewise, laboratory

testing is more objective, thereby it is time-consuming and

expensive. Moreover, collecting, transporting, and processing

under specialized facilities samples can also cause delays in

diagnosis and disease management (Zhu et al., 2022).

In these years, deep learning techniques have proven to be as

a viable strategy for classifying image-based disease in a multiple

fields like plant pathology. By using neural networks, especially

convolutional neural networks (CNNs) (Ferentinos, 2018), deep

learning models can automatically pull-out hierarchical

information from digital images of diseased cotton plant parts

like leaves and stems. This image-based approach can learn

discriminative features, handle large datasets, and generalize

well to previously unseen data. We may accomplish precise

and efficient classification of cotton plant diseases using deep

learning models trained on labeled datasets of cotton plant

pictures, providing farmers, agronomists, and researchers with

timely and trustworthy information for disease management

methods (Bera and Kumar, 2023; Montalbo, 2022).

Numerous research endeavors have focused on leveraging deep

learning methodologies to address the challenge of identifying and

classifying diseases affecting cotton plants. Kumar et al. (2022)

integrated Convolutional Neural Networks (CNNs) into a mobile

application designed to assist farmers to identify and recommend

cotton diseases and suitable pesticides respectively. They achieved

this by converting the TensorFlow Tflite model (Google AI Edge,

2024) into a Core ML model (Apple Developer, 2024) for seamless

integration with iOS apps. Similarly, Memon et al. (2022) proposed

a meta-Deep Learning model using a dataset of 2,385 images of both

healthy and diseased cotton leaves. They expanded the dataset to

enhance the performance of model which resulted in a notable

accuracy rate of 98.53%, surpassing other models tested on the

Cotton Dataset. Rajasekar et al. (2021) addressed the challenge of

detecting cotton plant diseases by developing a hybrid network

combining ResNet and Xception models. Their approach
FIGURE 1

Cotton plant leaf damaged by bacterial blight. The red bounding box
highlights the area affected by bacterial blight on the leaf.
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outperformed existing techniques, with ResNet-50 achieving a

training accuracy (0.95) and a validation accuracy (0.98), along

with a training loss (0.33) and a validation loss (0.5). In another

study, Naeem et al. (2023) detected, identified, as well as diagnosed

cotton leaf diseases using the Root Mean Square Propagation

(RMSprop) as well as Adaptive Moment Estimation (ADAM)

optimizers. Apart from this, they combined Inception and VGG-

16 as feature extractors which resulted in the highest mean

accuracy, with the CNN achieving an overall accuracy of 98%.

Kalaiselvi and Narmatha (2023) worked on 400 images of cotton

plant disease and segmented them using fuzzy rough C-means

(FRCM) clustering technique combined with CNN for

classification. The researchers demonstrated a remarkable 99%

accuracy in diagnosing diseases like Bacterial Blight and

Cercospora Leaf Spot. Meanwhile, (Odukoya et al. (2023))

utilized image processing techniques, including watershed

segmentation, Edge Detection, Support Vector Machine as well as

K-Means Clustering, to detect fungal infections in cotton plants.

Arathi and Dulhare (2023) leveraged the DenseNet-121 pre-trained

model for enhanced disease classification in cotton leaves, achieving

a classification accuracy of 91%. Gülmez (2023) focused on

analyzing leaf images to determine plant health, employing the

Grey Wolf Optimization technique to identify the most efficient

model architecture. Hyder and Talpur (2024) reported a high

accuracy rate of 95% using deep transfer learning techniques on a

dataset of over 10,000 images of cotton plants. Their model’s

effectiveness stemmed from its training on a large-scale dataset.

Kukadiya et al. (2024) used a hybrid model combining VGG16 +

InceptionV3 to early detect diseases in cotton leaf. By optimizing

hyperparameters such as number of epochs and learning rate using

stochastic gradient descent (SGD), their ensemble model achieved

superior performance with 98% as training accuracy and 95%

testing accuracy. Similarly, Mohmmad et al. (2024) worked on

the identification of five different cotton crop diseases which

includes Aphids, Bacterial Blight, Curly Leaves, Powdery Mildew,

and Verticillium Wilt—along with a healthy class. They had dataset

of 1,200 images of cotton leaves and were applied on VGG-16,

MobileNet, VGG-19, and custom CNN models for classification.

These efforts underscore the potential of deep learning in accurately

identifying and classifying diseases in cotton leaves, offering

effective solutions for agricultural management.

Although the models have demonstrated strong performance, they

also face several limitations. One major issue is the use of relatively

small or homogenous datasets, which can constrain the generalization

and robustness of the models. This limitation is particularly evident

when some models achieve high accuracy while others exhibit lower

accuracy, as they may be prone to overfitting due to insufficient data

diversity. Furthermore, despite some models showing promising

results, there is a notable lack of comprehensive comparative analysis

between different meta-architectures and optimization strategies.

Addressing these gaps could provide valuable insights into model

performance and guide the development of more robust and

generalizable solutions (Memon et al., 2022; Gülmez, 2023; Naeem

et al., 2023; Hyder and Talpur, 2024; Mohmmad et al., 2024).

Hence, the motivation for using proposed models stems from

cotton’s pivotal role in global agriculture and the economy. Diseases
Frontiers in Plant Science 03
such as Aphids, Target Spot (a fungal disease), Army Worm, Bacterial

Blight, and Powdery Mildew can cause substantial crop losses if not

detected early. An automated deep learning-based system offers a more

efficient, accurate, and scalable approach to early disease detection. This

not only helps safeguard crop yields but also reduces economic losses

and promotes sustainability in cotton farming. Apart from this, our

work will also try to work on the challenges faced by the existing

researchers by conducting comparisons which could provide valuable

insights into the most effective approaches for cotton disease detection.

Additionally, datasets will also be expanded to encompass a broader

range of disease stages, cotton varieties and regularization techniques

etc will be used to enhance the execution of model.

In this paper, an automated approach was built that can predict

and categorize five types of plant diseases such as Army Worm,

Aphids, Bacterial Blight, Target Spot, and Powdery Mildew by

evaluating cotton plants alongside healthy ones.

This research has made significant contributions toward

achieving this objective:

Comprehensive Image Preprocessing Pipeline: One of the

limitations of many existing studies is the use of small or

homogeneous datasets, which can hinder model generalization.

The paper introduces a robust preprocessing pipeline for

handling the COTTON PLANT DISEASE (CPD) dataset, which

includes 36,000 images (Dhamodharan, 2023). The preprocessing

steps involve removing noise and converting images to grayscale,

which enhances the clarity and quality of the data for subsequent

analysis. It graphically presents the pre-processed data to reveal

patterns and characteristics within the dataset, aiding in a more

informed extraction of regions of interest.

Advanced Region Extraction Techniques: The challenge is

highlighted regarding the susceptibility of models to overfitting,

particularly when there is limited diversity in the data. The paper

develops techniques for extracting significant regions of interest from

the images by generating the largest contour and identifying extreme

points, ensuring that key features are accurately captured. These

techniques are employed to further refine the regions of interest,

enhancing the precision of the data used for model training and

evaluation. Besides this, it will also minimize the risk of overfitting, as

the models are trained on well-defined and precise data.

Application and Evaluation of Deep Transfer Learning Models:

The study applies a diverse set of advanced transfer learning models

- InceptionV3, EfficientNetB3, Xception, ResNet152V2, VGG19,

DenseNet169, MobileNetV2, ResNet50V2, EfficientNetB0, as well

as InceptionResNetV2, to classify images of healthy leaves and

various diseases such as Aphids, Target Spot, Army Worm,

Bacterial Blight, and Powdery Mildew. The performance of these

models is rigorously evaluated using multiple metrics including F1

score, accuracy, loss, recall, and precision, all computed through the

confusion matrix values. This comprehensive evaluation allows for

a detailed comparison of model performance.

Selection of Optimal Model: Based on the evaluation metrics, this

work identifies and selects the most effective model to classify cotton

plant diseases. This selection is guided by an analysis of the models’

performance metrics, ensuring that the chosen model delivers the

highest accuracy and reliability. Moreover, the performance of the

optimal model has also been compared based on multiple attributes
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such as dataset, classes, techniques, and accuracy of the existing work

which were not reported in some of the previous papers.

The structure of the manuscript is as followed: Section 1 has

been already mentioned as an introduction part, which gives us

information about the contribution of the researcher’s in the area of

detecting cotton plant disease, Section 2 informs us about the

methodology that has been used to develop the model for cotton

plant disease detection and classification followed by Section 3

where results are analyzed and discussed. Further, the real time

implications, improvements as well as the future scope of this

research are presented in Section 4 while as the whole paper is at

the end summarized and concluded in Section 5.
2 Research methodology

This section focuses on the process of developing a model to

identify and classify diseases in cotton plants. The model uses

images of the plants and applies several image processing

techniques, as well as deep learning classifiers. Apart from this,

the novelty of this work lies in the implementation of advanced

preprocessing techniques for the Cotton Plant Disease (CPD)

dataset. These techniques include comprehensive noise removal,

conversion of images to grayscale, and the graphical representation

of data to discern underlying patterns. Key preprocessing steps

involve extracting Regions of Interest (ROIs) by calculating various

image characteristics, identifying the largest contour, locating
Frontiers in Plant Science 04
extreme points, and applying cropping and adaptive thresholding.

These refined ROIs are subsequently used as inputs for the deep

learning models, thereby enhancing the ability of the model to

detect as well as classify plant diseases with improved accuracy.

Figure 2 displays the structure of the proposed model.

A pseudo code (Algorithm 1) in disease detection in cotton plants

using deep learning techniques has also been mentioned. It outlines

the flow of steps involved in training various advanced CNN models

for classifying images of healthy and diseased cotton leaves. Let D be

the CPD dataset containing N = 36000   images of healthy leaves and

diseased leaves labeled as Aphids, Target Spot, ArmyWorm, Bacterial

Blight, Powdery Mildew, and healthy leaves of cotton plant.
D = (Xi ,  yi)f gNi=1 where Xi is the ith  image and yi  is its

corresponding label.

For each image Xi in D:

Apply preprocessing functions:

Xpreprocessed
i = Preprocess(Xi)

For each preprocessed image Xpreprocessed
i :

Calculate image features:
FIGURE 2

Proposed system to detect cotton plant diseases.
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Fron
featuresi = CalculateFeatures(Xpreprocessed
i )

Apply thresholding techniques to segment the image and

identify regions of interest:

ROIi = ExtractROI(Xpreprocessed
i )

Split the dataset into training Dtrain   and testing Dtest

sets.

Initialize a list of deep transfer learning models M

For each model m in M:

Load pre-trained model architecture

modelm = LoadPretrainedModel(m)

Add classification layers:

modelm = AddClassificationLayers(modelm)

Compile the model:

modelm :compile(optimizer,loss,  metrics)

Train the model on Dtrain:

modelm :fit(Dtrain)

Evaluate the model on Dtest :

metricsm = Evaluate(modelm ,  Dtest)

Choose the good-performing model based on the

evaluation metrics.
ALGORITHM 1
Algorithmic flow of cotton plant disease detection and classification using
Deep Transfer Learning Models.

In summary, the proposed system demonstrates a well-

structured approach to use advanced image preprocessing

techniques and deep transfer learning models for the detection of

cotton plant diseases. The application of these methods ensures

improved accuracy, minimizing the risks of overfitting and

maximizing model performance. Thus, the subsequent section

will detail utilized in this study, highlighting its significance in the

context of cotton plant disease detection.
2.1 Dataset

The data for the detection and classification of diseases in cotton

leaves have been taken from the Cotton Plant Disease database

(Dhamodharan, 2023). It is a dataset hosted on the Kaggle platform,

which is a popular online community for data scientists and
tiers in Plant Science 05
machine learning practitioners. The dataset focuses on diseases

affecting cotton plants which include Army Worm, Aphids, Target

spot, Powdery Mildew, and Bacterial Blight. It also includes healthy

leaf dataset for comparison with the diseased plant. Figure 3

represents some samples of disease affected cotton leaves which

have been taken from the dataset.

The dataset mainly focuses on the disease which occurs only on

leaves, and it does not have any reference images for diseases on

stem, buds, flowers and boll. It is intended to aid researchers,

scientists, and agricultural experts in studying and understanding

different diseases that commonly affect cotton crops. By providing

access to this dataset, the aim is to enable the development of

machine learning models and data-driven approaches to help

diagnose and manage cotton plant diseases effectively.
2.2 Data pre-processing

In computer vision and image analysis tasks, pre-processing of

cotton leaves images is a critical step for improving the quality of the

images and facilitate subsequent analyses. OpenCV, a widely used

library in computer vision, is employed due to its rich collection of

functions and tools tailored for such tasks (Kotian et al., 2022). In the

preprocessing phase for cotton leaf image analysis, the images are first

converted to grayscale to simplify processing and reduce

computational complexity (Figure 4). The grayscale conversion is

achieved using the following mathematical formula:

Igray = 0:299:IR + 0:587:IG + 0:114:IB (1)

where IR, IG, and IB represent the intensity values of the red,

green, and blue channels of a pixel, respectively. The coefficients

(0.299, 0.587, and 0.114) are derived from the luminance contribution

of each color channel in the human visual system. This formula

converts the RGB image into a single-channel grayscale image,

effectively reducing its dimensionality while retaining the essential

visual information necessary for further analysis.

Following the grayscale conversion, Gaussian blurring is

applied using a Gaussian kernel to create a smoothed version of

the image. This step reduces high-frequency noise and artifacts,

enhancing the overall clarity of the image and making it easier to

identify relevant features during subsequent analyses. The Gaussian

blurring operation is mathematically represented by the

convolution of the image with a Gaussian kernel:

Iblurred   (x, y) = o
k

i=−k
ok

j=−k   I(x + i, y + j) :G(i, j) (2)

where G(i, j) represents the Gaussian kernel function centered

at (i, j) and k is the kernel radius. This convolution operation

smooths the image, aiding in noise reduction and improving

feature detection.

The combination of grayscale conversion and Gaussian blurring

contributes to the overall goal of preparing the images for analysing it

further and classifying the tasks in a computationally efficient manner.
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2.3 Feature extraction

After examining the dataset and its quality, the next main step is

to extract region of interest from each image so that the model can

be trained well in future. In this paper, Contour feature extraction

has been used which is a fundamental technique in image

processing and computer vision used to capture essential shape

and boundary information of objects within an image. Contour

features are characteristics derived from the contours of regions of

interest or object within an image. Contours represent the

boundaries of connected components with the same intensity or

color. By extracting contour features, we can quantitatively describe

the shape and characteristics of these objects, providing valuable

information for various image analysis tasks.

In this paper, we have calculated various parameters of an image

such as width, area, aspect ratio, height, maximum and minimum
Frontiers in Plant Science 06
value location, mean intensity, extreme right and leftmost, bottom

and topmost values etc. in Table 1. The area is calculated from the

height and width of the object’s bounding rectangle, with height and

width derived from the bounding rectangle function. The perimeter

measures the distance around the object, and epsilon represents an

approximation accuracy for contour approximation. Aspect ratio is

the proportion between the width and height of the object, while

extent is the ratio of the object’s area to the area of its bounding

rectangle. The equivalent diameter corresponds to the diameter of a

circle with the same area as the object. Minimum and maximum

values, along with their locations, are obtained using specific

OpenCV functions, and the mean color of the object is computed

from pixel values. The extreme leftmost point is the farthest left

coordinate of the contour. These parameters help in detailed shape

analysis and characterization of objects in images. The extreme

rightmost point of an object is the contour point with the maximum
FIGURE 3

Samples of cotton plant disease image dataset.
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x-coordinate value, representing the farthest point to the right.

Similarly, the extreme topmost point is the contour point with the

minimum y-coordinate value, which is the highest point on the

object. The extreme bottommost point is the contour point with the

maximum y-coordinate, marking the lowest part of the object.

These points are useful for understanding the spatial boundaries of

an object in image analysis and can be obtained using contour

analysis functions in OpenCV.

After computing the characteristics of an image using contour

features, the next steps involve several image processing techniques

for further analysis and extraction of regions of interest (ROIs) as

shown in Figure 5.

First, the biggest contour, representing the most prominent

object in the image, is identified. This can be achieved by finding the

contour with the largest area among all detected contours. In the

second step, the extreme points of this biggest contour are generated

in the form of a continuous curve around the object. Later, the

images are cropped within the boundary of those curves to isolate it

from the rest of the features.

In the next phase, adaptive thresholding is applied to the

cropped image to adjust the threshold value for each pixel in the

image based on its local neighbourhood to enhance the quality of an

image. In addition to this, it also improves the segmentation of the
Frontiers in Plant Science 07
object from the background, most particularly in those cases where

there is a variation in the lighting conditions or uneven

illumination. Finally, the last step is obtaining the region of

interest for which another contour detection technique is applied.

This contour delineates the boundary of the main object, which

can be further utilized for shape analysis, feature extraction, or

object recognition tasks. The combination of all these techniques

provides a systematic approach to extract and analyse specific

regions in the form of features from the original image, for

providing more accurate image analysis and computer vision

tasks. Later the dataset has been split into training and validation

in 80:20 based on which the performance of the applied models has

been examined.
2.4 Applied deep learning classifiers

This section provides a concise overview of the many deep

learning classifiers that have been used for the detection and

classification of cotton plant diseases. Additionally, the section

also defines the hyperparameters used to build model during

training it with the cotton plant disease dataset, as presented

in Table 2.
TABLE 1 Characteristics of cotton plant disease image dataset.

Parameters Formulae Aphids
Powdery
Mildew

Healthy
Target
Spot

Army
Worm

Bacterial
Blight

Area height ∗width 1.0 4.0 0.5 2.0 1.0 343.5

Height cv2:boundingRect(cnt) 1 2 2 3 1 20

Width cv2:boundingRect(cnt) 1 5 2 3 1 31

Perimeter ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((x2 − x1)

2 + (y2 − y1   )
2

q
0.0 10.0 3.41 6.82 0.0 87.35

Epsilon 0:1 ∗ cv2 ∗ arclength(cnt ;True) 0.0 1.0 0.34 0.68 0.0 8.73

Aspect ratio width
height

1.0 2.5 1 1.0 1.0 1.55

Extent objectarea
boundingrectanglearea

0.0 0.4 0.12 0.22 0.0 0.55

Equivalent diameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ∗ contourarea

p

r
0.0 2.25 0.79 1.59 0.0 20.91

Minimum Value cv2:min () 129.0 128.0 128.0 129.0 129.0 128.0

Maximum Value cv2:max() 129.0 132.0 139.0 138.0 129.0 168.0

Minimum value location cv2:minMaxLo() (2081, 2301) (127, 269) (666, 663) (312, 418) (327, 480) (130, 179)

Maximum Value Location cv2:MaxminLo() (2081, 2301) (124, 269) (667, 662) (311, 418) (327, 480) (122, 183)

Mean color cv2:mean() 129.0 129.8 132.0 133.0 129.0 147.90

Extreme leftmost point tuple(cnt(cnt½: ; : ; 0� : argmin()½0�) (2081, 2301) (123, 268) (666, 662) (311, 417) (327, 480) (111, 193)

Extreme rightmost point tuple(cnt(cnt½: ; : ; 0� : argmax()½0�) (2081, 2301) (127, 269) (667, 662) (313, 419) (327, 480) (141, 191)

Extreme topmost point tuple(cnt(cnt½: ; : ; 1� : argmin()½0�) (2081, 2301) (123, 268) (666, 662) (311, 417) (327, 480) (121, 174)

Extreme bottommost tuple(cnt(cnt½: ; : ; 1� : argmax()½0�) (2081, 2301) (123, 269) (666, 663) (311, 419) (327, 480) (111, 193)
The parameters shown include key geometric and color properties calculated for each contour detected in the image classes (Aphids, Powdery Mildew, Healthy, Target Spot, Army Worm, and
Bacterial Blight). These values aid in object classification by capturing contour dimensions (area, height, width, perimeter, etc.) and color characteristics (mean, min/max values), contributing to
the feature extraction used for model training and validation. Bold values present the best values computed by the model.
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EfficientNet is a family of CNNs that significantly improve the

efficiency of deep learning models through a combination of model

scaling, depthwise separable convolutions, and a compound scaling

method (Tan, 2019). EfficientNet employs a novel approach to

balance network depth, width, and resolution, to achieve

performance on various benchmarks during the maintenance of

computational efficiency. The key innovation of EfficientNet lies in

its compound scaling method, which uniformly scales all

dimensions of the network, leading to a better trade-off between

accuracy and computational cost. This architecture has been

particularly effective in a range of computer vision tasks due to its

ability to deliver high performance with less parameter compared to

traditional deep learning models.

In paper two versions of EfficientNet model i.e. EfficientNetB0

and EfficientNetB3 have been used (Babu and Jeyakrishnan, 2022;

Sun et al., 2022). EfficientNetB0 is a convolutional neural network

architecture made up of a stem convolution and a base architecture

with repeating building blocks that allows it to successfully extract

features in a hierarchical order. Custom dense layers are added to

adapt it for cotton plant disease detection, followed by an output

layer with a softmax activation function to match the number of

classes. Transfer learning allows the use of already trained weights

from ImageNet as well as data augmentation techniques and

appropriate optimisation approaches to improve the model’s
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performance during training. By leveraging EfficientNetB0 and

fine-tuning hyperparameters, one can achieve robust and accurate

cotton plant disease detection and classification (Sun et al., 2022).

On the contrary, EfficientNetB3 is a type of CNN that provides

promising results to detect as well as classify cotton plant diseases.

The architecture has a balancing width, depth, resolution, and

compound scaling approach, for optimizing the performance.

This model comprises of multiple blocks of depthwise separable

convolutions, which split channel-wise and spatial convolutions for

reducing the computational complexity. These blocks enable the

model to learn hierarchical features at different scales, crucial for

identifying disease-related patterns in cotton plant images. For

multi-class classification, the architecture includes a global

average pooling layer and fully connected layers, along with

softmax activation. The model focuses on achieving accurate and

efficient detection along with the classification of multiple diseases

in cotton plant images in order to empower agricultural

applications for identifying diseases at their earliest stages and

improving crop management.

DenseNet is a convolutional neural network architecture

characterized by its dense connectivity pattern (He et al., 2016).

Unlike traditional networks where each layer receives input from

the previous layer, DenseNet works in a feed forward fashion by

connecting each layer to every other layer. This dense connectivity
FIGURE 4

Pre-processing of cotton plant images.
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improves gradient flow, reduces the risk of vanishing gradients, and

encourages feature reuse, leading to more efficient training and

better performance. DenseNet models are known for their reduced

number of parameters compared to other deep networks while

maintaining high accuracy, making them effective for a variety of

image recognition tasks. In this research, its variant has been used

which is DenseNet169 (Akbar et al., 2023; Huang et al. 2017). It
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presents an effective solution for detecting and classifying cotton

plant diseases. The architecture is characterized by promoting

strong feature reuse, densely connected layers, and gradient flow

across the network, leading to better parameter efficiency and

performance. A comprehensive dataset comprising of images of

both healthy and diseased cotton plants is gathered and categorized

with corresponding disease classifications, specifically for the
FIGURE 5

Obtaining region of interest from the images using feature extraction techniques (A) Aphids (B) Army Worm (C) Bacterial Blight (D) Powdery Mildew
(E) Target Spot (F) Healthy Leaves.
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purpose of detecting and classifying cotton plant diseases.

DenseNet-169’s distinctive dense blocks, each with 32 growth rate

feature maps, facilitate the extraction of intricate and disease-

specific features from the input images. Between dense blocks,

transition blocks with convolutional layers and average pooling

help manage computational complexity while maintaining relevant

information flow.

Xception, short for “Extreme Inception,” is designed to enhance

existing convolutional networks by employing depthwise separable

convolutions (Rai and Pahuja, 2024). This architecture effectively

combines spatial and channel-wise filtering, resulting in improved

computational efficiency and performance. The model is based on the

idea of Inceptionmodules, but instead of using regular convolutions, it

employs depthwise separable convolutions. This technique

significantly decreases the number of parameters as well as

computational complexity. Xception is made up of several

depthwise separable convolution blocks, each containing residual

connections for improved gradient flow and information propagation.

MobileNetV2 has an architecture that is lightweight and built

for efficient and quick performance on mobile and embedded

devices (Verma and Singh, 2022). The usage of inverted residual

blocks, which are designed to balance computational efficiency and

model correctness, is a significant component of MobileNetV2.

These blocks use stride in the depthwise separable convolution

followed by a pointwise convolution with expansion and squeeze-

and-excitement operations to improve how features are represented

and how information flows. MobileNetV2 also uses linear

bottlenecks to reduce computing costs while preserving

performance. The architecture is designed to strike a balance

between model size, speed, as well as accuracy, which makes it

well-suited for the applications and environments in real time with

limited number of resources.

ResNet (Residual Networks), revolutionized deep learning with

its introduction of residual blocks, which help mitigate the

vanishing gradient problem in very deep networks (He et al.,

2016). ResNet allows for the training of extremely deep networks

by introducing shortcut connections that skip one or more layers.

These residual connections enable gradients to flow more effectively

through the network during backpropagation, which significantly

improves training efficiency and model performance. ResNet
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architectures are known for their remarkable ability to achieve

high accuracy on various image recognition tasks and have set new

benchmarks in computer vision competitions, making them a

fundamental building block in modern deep learning.

The extended version of ResNet is ResNet50V2V2 and

ResNet152V2 (Ahad et al., 2023; Kumar et al., 2023). The

architecture of ResNet50V2 consists of 50 layers, comprising

multiple stacked residual blocks with increasing complexity. The

first few layers could perform initial feature extraction from input

images of healthy and diseased cotton plants. The subsequent layers

would progressively learn more abstract and intricate disease-

related features. The network’s final layers would include dense

layers for classification, with softmax activation to produce the

probabilities for different disease classes. Similarly, another

extended version of ResNet152V2. It is an extension of the

ResNet architecture with 152 layers, showcasing deeper and more

powerful representations. The architecture begins with initial

convolutional layers to extract low-level features from input

images of healthy and diseased cotton plants. Then, a series of

residual blocks with increasing complexity would be stacked on top

of each other, enabling the network to learn hierarchical and

abstract disease-related features. The residual connections within

each block facilitate the smooth flow of information and alleviate

the vanishing gradient problem which allows for effective training

of very deep networks. Towards the end of the network, global

average pooling would be employed to reduce spatial dimensions,

and dense layers with softmax activation would perform the final

classification into different disease classes.

VGG models are characterized by their simplicity and

uniformity (Simonyan and Zisserman, 2014). The VGG network

design emphasizes the use of small 3x3 convolutional filters and 2x2

max-pooling layers, which contribute to a deep architecture while

keeping the model design straightforward. VGG networks,

particularly VGG16 and VGG19, have become widely used due to

their high performance in classifying images and their ability to

serve as powerful feature extractors for various transfer learning

applications. Their straightforward architecture and high accuracy

make them a popular choice in the deep learning community.

In this paper, VGG19 is being used (Peyal et al., 2022). The

architecture has a deep convolutional neural network that can be

adapted for the detection and classification of cotton plant diseases.

VGG19 consists of 19 layers, including multiple convolutional and

max-pooling layers. The architecture follows a simple and uniform

design, where each layer contains 3x3 convolutional filters, followed by

ReLU activations to introduce non-linearity. Max-pooling layers are

used for downsampling and reducing spatial dimensions. Towards the

end of the network, fully connected layers are employed for

classification, with softmax activation to predict the probabilities of

different disease classes. To adapt VGG19 for cotton plant disease

detection, the final dense layers would be modified to match the

number of disease classes. By training the model on a diverse dataset of

cotton plant images, VGG19 would aim to accurately detect and

classify various cotton plant diseases, aiding in early disease

identification and effective crop management in agriculture.

Inception networks employ the “Inception module” for feature

extraction which considers features at different scales and comprise
TABLE 2 Hyperparameters used in deep learning models.

Hyperparameter Value

Learning_Rate 0.001

Batch_size 32

Number of Epochs 10

Optimize Adam

Dropout 0.5

Activation Function ReLU and Sigmoid

Kernel Size 3x3

Loss Categorical_crossentropy

Image_size 224 x 224
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several convolutional filters of different sizes in the same layer. It

also enables model to obtain multiple forms of representation of

feature, which is advantageous. Inception networks are incredibly

popular due to their high effective and computational ability in

image classification as well as other computer vision application.

InceptionV3 model is a deep convolutional neural network and it

has been found to be useful for the detection and classification of

diseases affecting cotton plant (Mary et al., 2022). It is an

improvement of the others previously created by Google Research

such as Inception and InceptionV2 and aims at achieving a good

level of accuracy in addition to ensuring efficient use of

computations through its implementation. There are several

inception modules, which are convolutional blocks with multiple

branches of different kernel size to make it able to capture features

of different scales. The same concept exists in InceptionV3 where

factorization has been performed to split them into more compact

convolutions. For detecting the cotton plant diseases, the last dense

layers of InceptionV3 can be trained according to the specific

diseases class to help in the agricultural applications & improving

crop management.

Hybrid (InceptionResNetV2) incorporates concepts from both the

Inception and ResNet models (Sadiq et al., 2023). The architecture

incorporates residual connections as well as inception modules via

ResNet and the inception family, respectively. InceptionResNetV2 is

made up of deep convolutional layers followed by inception blocks with

several branches and varying kernel sizes for feature extraction.

Furthermore, residual blocks are used to ensure that information

flows smoothly across the network, to allow for the effective training

of very deepmodels. InceptionResNetV2 is well-known for its excellent

accuracy and is extensively used in classification of images, detecting

objects, and segmentation-like applications in computer vision.

However, due to its complex nature, it may necessitate significant

computer resources for computation.

In addition to this, Table 3 provides a comparison of various

applied models by detailing their total number of parameters which

includes the breakdown of trainable and non-trainable parameters.
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This information helps to understand the computational complexity

and potential performance of each model during training and

validation. Here, VGG19 has the highest number of parameters at

143.67 million, all of which are trainable, indicating a highly complex

model but potentially more prone to overfitting. ResNet152V2

follows with over 60 million parameters, emphasizing its depth and

strong learning capacity. In contrast, models like MobileNetV2 and

EfficientNetB0 have significantly fewer parameters (3.53 million and

5.27 million, respectively), making them more efficient for real-time

applications, though possibly sacrificing some accuracy due to

reduced complexity. Xception, InceptionV3, and DenseNet169

strike a balance between complexity and performance, with

substantial parameter counts but remains computationally feasible.
2.5 Performance metrics

Performance metrics are used to examine the quality and the

performance of the models for any data. These metrics provide

quantitative measures that assess how well a model performs its

intended task, such as classification or regression. The selection of

performance measures is based upon the specific scenario and the

objectives of the analysis. Here are the metrics that have been used to

evaluate the performance of the models (Latif et al., 2021; Elaraby et al.,

2022; Kinger et al., 2022; Nalini and Rama, 2022; Kanna et al., 2023):

Accuracy is a broad measure of how well a model performs in

correctly identifying positive and negative examples. If the accuracy

is having greater value, it suggests that the classification done is very

precise while as Loss is a mathematical function that measures the

difference between the predicted values of a model as well as the

actual values in the training data. Similarly, Root Mean Square

Error is defined as the square root of the mean of the squared

residuals, which are the differences between the predicted values as

well as the true values. Moving to another set of parameters,

Precision provides information related to the ability of the model

for avoiding false positives. It means that informs the correctly

identification of positive instances without generating large number

of incorrectly positive predictions. Recall is used for examining the

ability of model to identify accurately the positive classes. In short,

recall, enables to identify all positive instances and avoids false

negatives whereas F1 Score is a performance metric that considers

both precision and recall, giving a balanced measure of how

accurate a classification model is.

3 Results

The section of this research paper serves as the focal point

where empirical findings are presented, unveiling the outcomes of

rigorous investigations and data analysis. After framing and

executing the objectives and methodology of our study in the

preceding sections, we now turn our attention to the fundamental

outcomes that emerged from our investigation. In this section, we

have presented a concise and informative analysis of the applied

deep transfer learning models based on different performance

measures as mentioned in section (2.5) for both training as well

as validation dataset.
TABLE 3 Summary of the applied models.

Models
Total

Parameters
Trainable
Parameters

Non-
Trainable
Parameters

EfficientNetB0 5270571 5228548 42023

DenseNet169 14307880 14149480 158400

Xception 22910480 22855952 54528

MobileNetV2 3538984 3504872 34112

ResNet50V2 25613800 25561512 52288

ResNet152V2 60419944 60348520 71424

Vgg19 143667240 143667240 0

InceptionV3 23851784 23819784 32000

EfficientNetB3 12320919 12244549 76370

InceptionResNetV2 55873736 55823848 49888
Bold values present the best values computed by the model.
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Initially we conducted a complete evaluation of various applied

deep learning models for the whole cotton plant disease dataset. To

calculate the efficacy of each model, we rigorously measured three

critical performance metrics: accuracy, loss, and root mean square

error across both the training as well as validation datasets.

Employing a ten-epoch training regimen, we obtained valuable

insights into the learning dynamics and convergence patterns of

each model, as shown in Table 4. Such detailed assessment enables

us to make informed decisions about model selection, parameter

tuning, and potential avenues for further improvement.

Among the models examined during training phase, DenseNet169

demonstrated remarkable accuracy by achieving 99.86% and similarly,

EfficientNetB0, EfficientNetB3, MobileNetV2, Xception, ResNet50V2,

InceptionV3, and InceptionResNetV2 also exhibited the high accuracy

rates of 99.81%, 99.81%, 99.45%, 99.70%, 99.76%, 99.55%, and 99.50%

respectively and also surpasses 99% benchmark. Likewise, for

validation phase, the top accuracy has been obtained by

EfficientNetB3 with 99.96% closely followed by InceptionResNetV2

having accuracy of 99.95%. Similarly, EfficientNetB0, Xception,

MobileNetV2, ResNet50V2, and InceptionV3 maintained accuracy

levels within the range of 99% to 100%, which signifies their strong

generalization capabilities. However, a notable exception was

ResNet152V2 and VGG19, which exhibited displayed relatively lower

accuracies where their values dropped to 98.49%, 76.97% during the

training phase and 97.94%, 74.13% during validation phases,

respectively. These results suggest that the layers of the ResNet152V2

and VGG19 model may not have been effectively trained and are

struggling to capture essential patterns in both the training as well as

validation datasets.

Moving to the loss values, they represent the discrepancy

between predicted and actual outputs, indicating how well the

models fit the data. Notably, DenseNet169 showcased the lowest

loss during both training (0.189) and EfficientNetB3 during

validation phase (0.149), which implies a superior fit to the

dataset. On the other hand, VGG19 had significantly higher

losses, reaching 0.930 during training and 0.961 during validation,
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indicating poorer model performance in capturing the

data patterns.

Furthermore, the RMSE values which assess the average

magnitude of errors in our predictions, has been also computed.

On assaying, it has been found that EfficientNetB3 demonstrated

the lowest RMSE (0.386) during validation, reflecting its ability to

make precise predictions on continuous data. In contrast, VGG19

exhibited the highest RMSE values as compared to the other

models, both during training (0.964) and validation (0.980),

indicating less precise predictions.

Besides this, the accuracy and loss performance of the models

are also examined based on their curves that have been generated

during both training as well as validation phases in Figure 6.

From the analysis of the training and validation process

depicted in the figure, it is evident that epoch 10 yielded the

lowest training and validation loss values across all the models,

indicating that the models achieved their good performance in

terms of minimizing the difference between actual and predicted

values at this epoch. This suggests that after 10 epochs of training,

the models converged to a state of optimized loss values. However,

when examining the accuracy metric, a more diverse pattern

emerges. Different models reached their peak accuracy scores at

various epochs during the training process. EfficientNetB0 attained

its highest accuracy at epoch 2, DenseNet169 at epoch 3, Xception

at epoch 7, ResNet50V2 at epoch 5, ResNet152V2 at epoch 6,

InceptionV3 at epoch 6, InceptionResNetV2 at epoch 4, VGG19 at

epoch 9, MobileNetV2 at epoch 10, and EfficientNetB3 at epoch 5.

After examining the models for the whole dataset, they have

been also evaluated for the different classes of the dataset such as

Aphids, Healthy Leaves, ArmyWorm, Powdery Mildew, Bacterial

Blight, and Target Spot as mentioned in Table 5 (The table provides

a comprehensive overview of the results, showing that for the Aphids

class, the top performance in training was achieved by DenseNet169,

while EfficientNetB0 delivered the best result during validation).

In Table 5, for Aphids class, EfficientNetB0, DenseNet169, Xception,

EfficientNetB3, and MobileNet V2 achieved high accuracies during
TABLE 4 Execution of applied techniques for CPD dataset.

Techniques
Training Validation

Accuracy RMSE Loss Accuracy Loss RMSE

EfficientNetB0 99.81 0.461 0.213 99.16 0.198 0.444

DenseNet169 99.86 0.434 0.189 98.88 0.201 0.448

Xception 99.70 0.451 0.204 99.16 0.197 0.443

MobileNet V2 99.45 0.457 0.209 99.80 0.175 0.418

ResNet50 V2 99.76 0.496 0.247 99.87 0.189 0.434

ResNet152 V2 98.49 0.563 0.317 97.94 0.298 0.545

VGG19 76.97 0.964 0.930 74.13 0.961 0.980

Inception V3 99.55 0.473 0.224 99.58 0.211 0.459

EfficientNetB3 99.81 0.435 0.190 99.96 0.149 0.386

Hybrid (InceptionResNet V2) 99.50 0.533 0.285 99.95 0.221 0.470
Bold values present the best values computed by the model.
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training, with values ranging from 99.19% to 99.49%. However, during

validation, their accuracies varied, with EfficientNetB0, Xception,

MobileNetV2, ResNet50V2, InceptionV3, EfficientNetB3, and

InceptionResNetV2 maintaining accuracies above 99%, while

DenseNet169 lower accuracy at 98.16%. However, VGG19 exhibited

significantly lower accuracy values of 76.49% and 74.79% during training

and validation, respectively, indicating challenges in capturing important
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features associated with aphids in the dataset. Regarding the loss and

RMSE metrics, models such as DenseNet169 and MobileNetV2

demonstrated lower values for training as well as validation phase

respectively, while as VGG19 and ResNet152 V2 exhibited higher

values which suggest improvement in their prediction.

For ArmyWorm class, all the models except DenseNet169 and

VGG19 have computed the accuracies above 97% for training
FIGURE 6

Analysis of techniques based on their graphical curves.
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TABLE 5 Evaluation of techniques for different classes of CPD dataset.

Techniques Class
Training Validation

Accuracy Loss RMSE Accuracy Loss RMSE

EfficientNetB0

Aphids

99.19 0.213 0.461 99.75 0.199 0.446

ResNet50 V2 99.16 0.247 0.496 99.16 0.499 0.706

Xception 99.46 0.204 0.451 99.59 0.469 0.684

MobileNet V2 99.49 0.209 0.457 99.16 0.159 0.398

VGG19 76.49 0.930 0.964 74.79 0.489 0.699

ResNet152 V2 98.49 0.317 0.563 97.56 0.526 0.725

DenseNet169 99.49 0.189 0.434 98.16 0.496 0.704

Inception V3 99.46 0.224 0.473 99.13 0.486 0.697

EfficientNetB3 99.49 0.190 0.435 99.00 0.599 0.773

Hybrid(InceptionResNetV2) 99.16 0.285 0.533 99.59 0.498 0.705

EfficientNetB0

Army Worm

98.49 0.493 0.702 99.49 0.149 0.386

DenseNet169 97.59 0.499 0.706 98.46 0.246 0.495

Xception 98.46 0.224 0.473 99.49 0.149 0.386

MobileNet  V2 98.77 0.469 0.684 99.16 0.119 0.344

ResNet50  V2 98.49 0.497 0.704 99.49 0.149 0.386

ResNet152 V2 98.20 0.597 0.772 97.76 0.246 0.495

VGG19 78.78 0.490 0.700 74.49 0.949 0.974

Inception  V3 98.89 0.264 0.513 99.52 0.246 0.495

EfficientNetB3 98.15 0.620 0.787 99.49 0.149 0.386

Hybrid(InceptionResNetV2) 98.50 0.345 0.587 99.00 0.248 0.497

EfficientNetB0

Bacterial blight

98.49 0.429 0.654 99.49 0.149 0.386

DenseNet169 97.59 0.459 0.677 98.46 0.246 0.495

Xception 99.46 0.250 0.498 99.59 0.149 0.386

MobileNet V2 99.77 0.446 0.667 99.16 0.119 0.344

ResNet152 V2 99.20 0.578 0.760 97.49 0.246 0.495

ResNet50 V2 99.49 0.426 0.652 99.46 0.149 0.386

Inception V3 99.89 0.249 0.498 99.49 0.246 0.495

VGG19 79.78 0.459 0.677 74.56 0.949 0.974

EfficientNetB3 99.15 0.682 0.825 99.59 0.139 0.386

Hybrid(InceptionResNetV2) 99.50 0.370 0.608 99.00 0.248 0.497

EfficientNetB0

Target Spot

98.81 0.493 0.702 99.59 0.499 0.706

DenseNet169 97.86 0.469 0.684 98.46 0.466 0.682

Xception 98.70 0.764 0.874 98.16 0.596 0.772

MobileNet V2 98.45 0.199 0.446 98.49 0.769 0.876

ResNet50 V2 98.76 0.497 0.704 98.46 0.599 0.773

ResNet152 V2 98.49 0.497 0.704 96.59 0.206 0.453

VGG19 78.97 0.990 0.994 74.82 0.469 0.684

Inception V3 98.55 0.464 0.681 99.42 0.296 0.544

(Continued)
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phase, while as during validation phase these same models

excluding ResNet152V2 have obtained the accuracies above 98%.

On analysing, it has been observed that IncpetionV3 model has the

highest validation accuracy of 99.52% while as VGG 19 once again

has the lowest accuracy value of 74.49%. Similarly for the loss and

root mean square error value, Xception model computed the lowest

value of 0.224 and 0.473 respectively during validation phase, and

on the contrary, MobileNetV2 obtained the good loss and RMSE

score for validation dataset with 0.119 and 0.344 respectively.

Similarly, the models have been also computed for the other

classes of the cotton plant disease dataset such as Powdery Mildew,

Bacterial Blight, Healthy leaves, and Target Spot using the same

metrics. On analyzing the performance of models for these classes, it

has been observed that in case of Bacterial Blight, InceptionV3; Target

Spot,EfficientNetB0 and InceptionResNetV2; Powdery Mildew,

EfficientNetB0 and (MobileNetV2 and InceptionResNetV2); and

Healthy Leaves, InceptionResNetV2 and DenseNet169 computed

the good accuracies, loss, and RMSE score values respectively. On

the other hand, during validation phase the highest accuracy, root

mean square error, and loss scores have been generated by
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EfficientNetB3 for Bacterial Blight, EfficientNetB0 and

ResNet50V2V2 for Target Spot, Xception and InceptionResNetV2

for Powdery Mildew, and EfficientNetB0 and InceptionResNetV2for

Healthy leaves.

After examining the models such as EfficientNetB0,

EfficientNetB3, ResNet50V2, ResNet152V2, InceptionV3,

InceptionResNetV2, VGG19, Xception, MobileNetV2, and

DenseNet169 for their accuracies, loss, and RMSE scores during

training and validation phase, the goal is to evaluate their

performance for different set of metrics i.e. recall, precision, and

F1 score. Hence, to assess the effectiveness of these models, Figure 7

shows a widely used evaluation tool known as the confusion matrix.

We have generated the confusion matrix of 6x6 i.e. 6 rows and 6

columns which signifies the 6 difference classes of cotton disease

plants i.e. Aphids, Powdery Mildew, Army Worm, Target spot,

Bacterial Blight, as well as Healthy leaves. The matrix contains

information about the number of samples that are classified as

belonging to class i but are predicted as class j by the model. The

diagonal elements (i.e., the elements with i=j) of the confusion

matrix represent the true positive values for each class. These values
TABLE 5 Continued

Techniques Class
Training Validation

Accuracy Loss RMSE Accuracy Loss RMSE

EfficientNetB3 98.81 0.490 0.700 98.23 0.469 0.684

Hybrid(InceptionResNetV2) 98.50 0.195 0.441 98.49 0.498 0.705

EfficientNetB0

Powdery Mildew

98.59 0.449 0.670 99.49 0.159 0.398

VGG19 78.00 0.948 0.973 74.56 0.599 0.773

Xception 98.46 0.720 0.848 99.69 0.146 0.382

MobileNet V2 98.49 0.149 0.386 99.16 0.499 0.706

ResNet50 V2 98.15 0.448 0.669 99.46 0.489 0.699

DenseNet169 97.49 0.446 0.667 98.46 0.216 0.464

ResNet152 V2 98.00 0.446 0.667 97.49 0.486 0.697

EfficientNetB3 98.46 0.416 0.644 99.59 0.489 0.699

Inception V3 98.49 0.476 0.689 99.49 0.466 0.682

Hybrid(InceptionResNetV2) 98.49 0.149 0.386 99.00 0.008 0.089

EfficientNetB0

Healthy Leaves

99.49 0.249 0.498 99.49 0.159 0.398

DenseNet169 99.46 0.146 0.382 98.46 0.216 0.464

Xception 99.46 0.276 0.525 98.49 0.146 0.382

MobileNet V2 99.75 0.219 0.467 98.00 0.499 0.706

EfficientNetB3 99.00 0.150 0.387 98.59 0.489 0.699

VGG19 76.79 0.955 0.977 74.56 0.599 0.773

ResNet152 V2 98.76 0.376 0.613 96.79 0.486 0.697

Inception V3 99.16 0.279 0.528 99.49 0.466 0.682

ResNet50 V2 99.49 0.246 0.495 98.49 0.489 0.699

Hybrid(InceptionResNetV2) 99.76 0.200 0.447 98.00 0.008 0.089
Bold values present the best values computed by the model.
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show how many samples have been correctly categorized for each

disease class. Simply put, these instances demonstrate when the

model accurately identified a sample as belonging to a specific

disease class.

Conversely, the off-diagonal elements, where i ≠ j, correspond

to the false positive values. These elements signify the number of

misclassifications made by the model, where it predicted a sample as

a particular disease class when it belonged to a different one. On the

contrary, in case of true negative and false negative, they are

calculated by summing up all the samples that are correctly

classified for all classes other than the specific class being

considered and the instances where samples that belong to a

specific class are incorrectly predicted as other classes respectively

(Wikipedia, 2024).

Hence, analyzing the diagonal sequence of the confusion matrix

allows us to measure the model’s accuracy for each disease class

individually. Higher values along the diagonal indicate that the

model is performing well in correctly identifying samples for those
Frontiers in Plant Science 16
disease classes, while lower values may indicate areas where the

model needs improvement. High performance was observed for

most models, but certain models, such as VGG19, showed weaker

performance with lower precision and recall values.

Based on the values of confusion matrix, other parameters

except accuracy and loss of the applied deep transfer learning

models have been computed for the complete cotton plant disease

dataset as shown in Table 6.

Looking at the results, we can observe that most of the models such

as EfficientNetB0, DenseNet169, Xception, MobileNetV2, ResNet50

V2, ResNet152 V2, Inception V3, EfficientNetB3, and Hybrid

(InceptionResNetV2) have achieved excellent performance, with high

precision, recall, and F1 scores close to 0.98 or 1.00. It means that these

models have demonstrated outstanding capabilities in accurately

classifying images into their respective categories, with minimal

misclassifications. However, VGG19 seems to lag the other models,

with noticeably lower precision, recall, and F1 scores of around 0.78

and 0.74 respectively. This suggests that VGG19 might struggle with

certain classes and is relatively less accurate in its predictions on

comparing to the other models.

Likewise, the execution of the models has been also assayed for

the different classes of the dataset based on the same performance

metrics as discussed earlier and their results are graphically

represented in Figure 8.

Upon analyzing the pattern of the graph in the figure, a clear

trend emerges, indicating that all the models have generally

demonstrated excellent precision, recall, and F1 scores for the six

different classes of the dataset, with values ranging between 0.92 to

1.00, except for the VGG19 model. The performance of the VGG19

model varies across different classes, particularly for classes with

values below 0.90. Albeit, for the Aphids class, the model exhibits a

high precision of 0.94 but struggles with recall at 0.52, leading to an

F1 score of 0.67. While achieving a respectable recall of 0.85 for the

Army Worm class, the precision is relatively lower at 0.76, resulting

in an F1 score of 0.80. Similarly, the Bacterial Blight class shows a

precision of 0.51, recall of 0.60, and F1 score of 0.55, indicating

moderate performance. The model also did not perform well for the

Target Spot class with 0.60 as precision, 0.85 as recall of 0.85, and
FIGURE 7

Confusion matrix of applied deep learning techniques.
TABLE 6 Examination of classifiers for other parameters of
performance metrics.

Classifiers Precision Recall F1 score

EfficientNetB0 0.99 0.99 0.99

DenseNet169 0.99 0.99 0.99

Xception 1.00 0.98 0.99

MobileNet V2 0.98 0.98 0.98

Inception V3 0.99 0.99 0.99

ResNet152 V2 0.98 0.98 0.98

VGG19 0.78 0.74 0.74

ResNet50 V2 0.99 0.99 0.99

EfficientNetB3 0.99 0.99 0.99

Hybrid
(InceptionResNet V2)

0.99 0.99 0.99
Bold values present the best values computed by the model.
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0.71 as F1 score. For the Powdery Mildew class, the VGG19 model

demonstrates a high precision of 0.96 and an average recall of 0.77,

resulting in an F1 score of 0.85. Lastly, the Healthy Leaves class

shows good precision at 0.88 and recall at 0.83, with an F1 score of

0.85. Overall, while the model achieves high precision in some cases,

it struggles with recall for several classes, impacting the F1 score and
Frontiers in Plant Science 17
indicating room for improvement in its performance for

certain categories.

Additionally, the computational time frames of various deep

learning models have been also computed (Table 7) on applying to

the cotton plant disease dataset. As, the system used for this study

consists of a standard desktop architecture with an Intel i7
FIGURE 8

Evaluating performance of deep learning models on various classes of datasets.
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processor, 32GB of RAM, a 4GB GPU, and Windows 11 as the

operating system. Hence, the training duration of each model varies

depending on these computational requirements and the system’s

hardware configuration. It has been found that EfficientNetB0
Frontiers in Plant Science 18
obtained the longest time of 10 hours and 56 minutes, closely

followed by Inception V3 with 7 hours and 48 minutes. On the

other, VGG19 took only 2 hours for the computation of the dataset

while as moderate timings have been taken by ResNet50V2 and

MobileNetV2 with 3 hours 1 minute and 4 hours 40 minute

respectively. Apart from this, DenseNet169, Xception, and Hybrid

(InceptionResNetV2) required relatively substantial training times

which range from 6 to 8 hours. The models with complex

architecture require longer computational times as compared to

simpler architectures like VGG19.

Additionally, Table 8 presents a comparative analysis of various

studies focusing on the detection and classification of diseases

affecting cotton plants using machine learning and deep learning

techniques. Each study employs different datasets, classes of

diseases, techniques, and their outcomes. Firstly, regarding the

datasets used, researchers employ both customized datasets

specific to cotton plants and publicly available datasets like

CIFAR-10 (Canadian Institute for Advanced Research), cotton

plant disease dataset (Rajasekar et al., 2021). The classes of

diseases vary across studies, ranging from common issues like

boll rot and fungal leafspot diseases to more specific diseases such

as Cotton leaf curl virus and fusarium wilt. In terms of techniques,
TABLE 7 Computational time of models.

Models Time Frame

EfficientNetB0 10 hr 56 min

DenseNet169 8 hr 5 min

Xception 9 hr 1 min

MobileNet V2 4 hr 40 min

ResNet50 V2 3 hr 1 min

ResNet152 V2 5 hr 5 min

VGG19 2 hr

Inception V3 7 hr 48 min

EfficientNetB3 5 hr 26 min

Hybrid(InceptionResNetV2) 6 hr 2 min
Bold values present the best values computed by the model.
TABLE 8 Analysis of the current work with the existing techniques.

Author’s Name Dataset Classes Techniques Accuracy

Kumar et al. (2022)
Customized dataset of

cotton plants
boll rot and fungal leafspot diseases CNN, Tflite model, CoreML model 90%

Memon et al. (2022) Cotton dataset
Healthy, Leaf curl, Leaf spot, Verticillium

Wilt, Nutrient Deficiency, Powdery Mildow,
and Target Spot

CNN 98.53%

Singh et al. (2023) Cotton Plant Disease dataset Healthy, Blight, Soft Spots, Mottling etc.
Proposed CNN

model (CottonLeafNet)
99.39%

Rajasekar et al. (2021) CIFAR-10 dataset – ResNet50 98%

Naeem et al. (2023) Cotton Plant Disease dataset
Fusarium wilt, Cotton leaf curl virus,

bacterial blight
InceptionVGG16 98%

Kalaiselvi and
Narmatha (2023)

Self captured dataset
Anthracnose, Bacterial blight, Cercospora

leaf spot and Alternaria
fuzzy rough C-means + CNN 99%

Odukoya et al. (2023)
Fungal leaves captured using

Digital camera
Healthy and unhealthy leaves

K Means and Support
vector Machine

99.05%

Arathi and Dulhare (2023) Cotton Plant disease dataset
Cotton leaf curl virus, bacterial blight,

fusarium wilt
DenseNet121 91%

Hyder and Talpur (2024)

Cotton leaf disease dataset
Fussarium wilt, Bacterial blight, healthy

leaves, and Curly virus

Proposed ML model 98.5%

Kukadiya et al. (2024)
Ensemble learning model (VGG16

+ InceptionV3)
95%

Thivya Lakshmi
et al. (2024)

Real time image data of
cotton leaves

Unhealthy and healthy leaves Proposed CNN (CoNet) 96%

Mohmmad et al. (2024) Cotton Plant disease dataset
Aphids, Bacterial Blight, Curly Leaves,
Powdery Mildew, and Verticillium Wilt.

VGG19 97.08%

Our Study Cotton Plant disease dataset
Army Worm, Aphids, Target spot,

Powdery Mildew, and Bacterial Blight

Noise Removal, Contour Feature,
Adaptive

Thresholding, EfficientNetB3
99.96%
Bold values present the best values computed by the model.
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convolutional neural networks (CNN) are the most used, with

variants like Tflite model, CoreML model (Kumar et al., 2022),

and custom architectures like CottonLeafNet (Singh et al., 2023)

and CoNet (Thivya Lakshmi et al., 2024) proposed in some studies.

Additionally, models like ResNet50, InceptionVGG16, and

DenseNet121 are also employed which showcase the diversity in

model architectures. The outcomes, measured primarily in terms of

accuracy, vary across studies i.e. from 90% to 99.96%. Notably, the

highest accuracy is achieved by the current technique used in this

paper i.e. the EfficientNetB3 architecture on a dataset encompassing

Army Worm, Aphids, Target spot, Powdery Mildew, and

Bacterial Blight.
4 Discussion

The potential of deep learning techniques for detecting and

classifying cotton plant diseases presents a promising avenue for

addressing agricultural challenges on a global scale. However,

realizing this potential requires careful consideration of various

feasibility factors. Access to high-quality, labelled datasets is

paramount, as it forms the foundation for training effective

models, although obtaining such data may prove challenging,

particularly for rare or localized diseases (Malar et al., 2021).

Moreover, while deep learning models have demonstrated

remarkable performance in image classification tasks, hence, to

ensure their ability in detecting subtle symptoms and adapt to

diverse environmental conditions remains critical. This necessitates

robust model design and optimization strategies to enhance

performance across different agricultural settings. Additionally,

deep learning provides detailed insights into the severity as well

as location of diseases within a field. By precisely mapping the

distribution of diseases, farmers can adopt site-specific management

practices, such as adjusted irrigation, targeted pesticide application,

and optimized resource allocation. Moreover, the automation

inherent as well as scalability of the deep learning models can

also enable to efficiently monitor large agricultural areas using

platforms like drones or satellites (Annabel et al. 2019). However,

challenges such as the availability of diverse and representative

datasets, the generalization of models to different environmental

conditions, and the seamless integration of deep learning solutions

into existing agricultural workflows require careful consideration

and ongoing research to fully harness the potential of this

technology in combating cotton plant diseases.

Apart from this, there are also several new improvements that

can be done to enhance the current research and its practical

applications. These improvements include (Askr et al., 2024;

Woźniak and Ijaz, 2024):
Fron
• To enhance the performance of deep learning techniques

for identifying and classifying cotton plant diseases,

advanced optimization techniques such as learning rate

scheduling, early stopping, and regularization methods

should be fine-tuned.

• Integration of Multi-Modal Data where incorporation of

additional data modalities such as spectral imaging,
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hyperspectral imaging, or thermal imaging alongside

visual images can provide complementary information for

disease detection. Fusion of multi-modal data can enhance

the model’s ability to capture subtle disease symptoms and

improve overall diagnostic accuracy.

• Explainable AI Techniques such as attention mechanisms,

saliency maps, or feature visualization methods can help to

interpret the decisions made by deep learning models. In

fact, providing explanations for model predictions can

increase trust and transparency in the disease detection

system to facilitate better decision-making by end-users.

• Active Learning Strategies can optimize the data labelling

process by selecting the most informative samples for

annotation. By iteratively training the model on a small

set of labelled data and actively acquiring labels for the most

uncertain samples, the efficiency of the disease detection

system can be enhanced while reducing labelling costs.

• Those models should be developed that are robust to

environmental variability, such as changes in lighting

conditions, camera angles, or plant growth stages, is

crucial for real-world deployment. Adapting the models

to diverse environmental conditions through data

augmentation and domain adaptation techniques can

ensure consistent performance in field settings.

• Design of scalable and deployable solutions that can be

easily integrated into existing agricultural systems is

essential for widespread adoption. Developing lightweight

models optimized for edge devices, cloud-based solutions

for centralized monitoring, and user-friendly interfaces for

farmers can facilitate the practical implementation of

disease detection technologies.
However, in the future work, there is significant scope to

expand the current research on disease detection in cotton plants

using deep learning techniques. It includes (Naga et al., 2024;

Woźniak and Ijaz, 2024):
• Extension of the current applied models to handle a broader

range of diseases and abnormalities that affect cotton plants.

By incorporating additional classes into the classification

system, the AI based system can provide more

comprehensive insights for farmers and agronomists.

• To explore advanced transfer learning strategies to leverage

pre-trained models effectively. Fine-tuning existing models

or combining multiple models through ensemble

techniques could enhance the overall performance and

robustness of the disease detection system.

• Implementing more advanced data augmentation methods

for increasing the size and diversity of the training dataset as

it improves the ability of the model to work on unseen data

with a good accuracy.

• To incorporate techniques such as model visualization or

attention mechanisms which can help users in

understanding how the model predicts the output?

• Developing a real-time monitoring system by integrating

IoT and cloud technique to provide alerts to the farmers on
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continuously analysing the images of cotton plants so that

they will be able to take decision promptly in saving the

cotton plants.

• Building mobile applications for end user interaction where

farmers can upload images of diseased plants to analyse and

review recommendations for treatment. By this way, the

system can adapt to local conditions and improve the

accuracy of detecting and classifying cotton diseases

on time.
Hence, in a nutshell it can be said that by incorporating these

new improvements and to explore these avenues for future work

into the research on disease detection in cotton plants, the field can

advance towards more accurate, interpretable and user-centric

solutions that address the challenges faced in sustainable

agriculture and contribute to increased crop productivity and

food security.
5 Conclusion

The research has shown the capability of artificial intelligence-

based learning techniques to detect diseases in the leaves of cotton

plants. The paper highlights the application of deep transfer

learning approaches for their effective role in identifying and well

as classifying various cotton plant diseases such as Target Spot,

Bacterial Blight, Aphids, Army Worm, and Powdery Mildew.

During the training of the models, it is recommended to

prioritize EfficientNetB3 due to its superior performance as it

achieved the highest accuracy of 99.96%. However, depending on

specific needs such as computational constraints or model

complexity, other models like MobileNetV2 or ResNet50V2 could

also be considered, as they offer high accuracy with potentially

lower computational overhead.

The paper, while showing promising results in detecting various

diseases in cotton plants, also faces several limitations that need to be

addressed. One major issue is the accurate generation of the region of

interest (ROI) in the images. In plant disease detection, it is crucial to

identify the specific areas affected by disease. If the ROI is not

accurately detected, the model may analyse irrelevant parts of the

image which will lead to misclassification and inaccurate predictions.

Another limitation is the tendency of models to modelling error,

particularly when training on fewer non-diverse datasets.

Additionally, the computational complexity of deep learning

models used in the paper is high, requiring substantial

computational resources for both training and validation. This can

be a bottleneck, especially when working with diverse datasets or

deploying the model in resource-constrained environments. To

mitigate these challenges, the use of optimization techniques, such

as fine-tuning model parameters, is necessary to improve

performance and reduce the risk of modeling errors. These

limitations, if unaddressed, could impact the generalizability and

robustness of the results, making it essential to refine the models and

techniques used. Apart from this, looking ahead, the future scope of

this research lies in enhancing the interpretability of deep learning
tiers in Plant Science 20
models, exploring ensemble learning techniques to boost

performance, and integrating real-time monitoring systems for

proactive disease management in agriculture. By dealing with these

challenges and incorporating new techniques, the field of disease

detection in cotton plants can evolve to facilitate more efficient and

sustainable agricultural practices. This proactive approach not only

benefits crop yield and quality but also contributes to the overall

resilience and productivity of agricultural systems.
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