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Introduction: Magnolia grandiflora L. (southern magnolia) is native to the

southeastern coastal areas of the United States, from North Carolina to eastern

Texas (USDA Cold Hardiness Zone 8). It is currently widely cultivated in Zones 5-

10 in the U.S. and in southern Yangtze River regions in China. Limited studies have

examined the effects of climate change and human activities on the geographical

distribution and adaptability of M. grandiflora during its introduction to China.

Methods: We selected 127 occurrence points in the U.S. and 87 occurrence

points in China, along with 43 environmental variables, to predict suitable habitat

areas for M. grandiflora using present climate data (1970-2000) and projected

future climate data (2050-2070) based on a complete niche ensemble model

(EM) using the Biomod2 package. We also predicted the niche change of M.

grandiflora in both countries using the 'ecospat' package in R.

Results: The ensemblemodels demonstrated high reliability, with an AUC of 0.993

and TSS of 0.932. Solar radiation in July, human impact index, and precipitation of

the wettest month were identified as the most critical variables influencing M.

grandiflora distribution. The species shows a similar trend of distribution expansion

under climate change scenarios in both countries, with predicted expansions

towards the northwest and northeast, and contractions in southern regions.

Discussion: Our study emphasizes a practical framework for predicting suitable

habitats and migration of Magnoliaceae species under climate change scenarios.

These findings provide valuable insights. for species conservation, introduction,

management strategies, and sustainable utilization of M. grandiflora.
KEYWORDS

biomod2, introduced species, niche shifts, potential geographic distribution,
southern magnolia
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1440610/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1440610/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1440610/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1440610/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1440610/full
https://orcid.org/0009-0004-8930-0399
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1440610&domain=pdf&date_stamp=2024-10-22
mailto:donglin@uga.edu
https://doi.org/10.3389/fpls.2024.1440610
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1440610
https://www.frontiersin.org/journals/plant-science


Zhang et al. 10.3389/fpls.2024.1440610
1 Introduction

Over the past 100 years, global climate change and human activities

have provided a fertile condition for non-native species to be

introduced. The impact of climate change on biodiversity and the

development of strategies for conservation have become a serious

global issue for the international community. The global climate has

experienced significant changes characterized by warming (Craparo

et al., 2015). However, there is still a lack of comprehensive

understanding of how many introduced plants responding to climate

change. Ornamental plants have been domesticated and introduced for

thousands of years (Corlett and Westcott, 2013; Pearson and Dawson,

2005; Walck et al., 2011). Species introduction depends on the

availability of suitable geographic areas and environmental

conditions (Lawler et al., 2009). Long-term field introduction trials

have been the most reliable approach to identify suitable areas for

woody ornamental plants (Zhang H. N. et al., 2019; Zhang K. et al.,

2019). It requires significant resources and observations of several

growth periods of plants. Therefore, the prediction of potential

distribution pattern changes and ecological niche shifts of plants can

be used to explore the potential geographic distribution and ecological

niche evolution of plants effectively, which is critical for the study of

ecological adaptations and introductions of plants to cultivation. Global

climate change and human activities usually provide favorable

conditions for the migration and cultivation of species and the

distribution range of ornamental plants may increase (Feng et al.,

2024; Wu H.-Y. et al., 2024; Wu K. et al., 2024; Zhang et al., 2024).

Recent studies aimed to systematically elucidate how environmental

variables affect the potential distribution patterns of plants and the

transformation of their bioclimatic ecological niches under the pressure

of global climate change and human activity (Broennimann et al., 2006;

Trew and Maclean, 2021).

Species distribution models (SDMs) serve as an effective way for

investigating the relationship between species and environmental

variables and for predicting their potential suitable habitats. These

models offered a scientific foundation for species conservation and

biodiversity protection. Combining environmental variables with

species distribution data, SDMs are extensively applied in research

on species range shifts under climate change scenarios,

conservation efforts, and the prediction of species cultivation

ranges in new areas (Booth, 2018; Franklin, 2013; Guisan et al.,

2013). The theoretical framework of SDMs is grounded in ecology,

geography, and statistics, aiming to predict the spatial distribution

of species using known occurrence records and environmental

variables (Decocq et al., 2023; Schulze, 2000). However, numerous

distribution prediction models have been developed and applied,

each with different algorithms and focuses. Consequently,

employing various model techniques for the same species can

yield divergent results, and a single model may underestimate M.

grandifloras’ potential distribution range. Ensemble models (EMs),

which combine predictions from qualified single models, have

significantly enhanced the accuracy and performance of modeling

predictions. One significant issue is that different species require
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different methods to achieve optimal results, and using the same

method for disparate questions is not ideal, particularly in the

context of species distribution models (Qiao et al., 2015; Ramasamy

et al., 2022). The ability of EMs to accurately predict the cultivation

distribution of woody plants remains uncertain, necessitating

further research to validate model results and assess the impact of

varying environmental variables (Anifowose et al., 2015; Farooq

et al., 2021; Shahhosseini et al., 2020). A recent study in Shandong

Province, China, attributed the decline of the seagrass system to

human activity and climate change. Yang et al. (2023) utilized EMs

to predict suitable areas for eelgrass (Zostera marina) and

implement conservation efforts, demonstrating superior

performance of the EM approach compared to single model.

Similarly, Kaky and Gilbert (2017) applied EMs to predict the

distribution of 114 Egyptian medicinal plants, finding that MaxEnt

and Random Forest (RF) outperformed support vector machine

(SVM) and classification and regression tree (CART) models.

Additionally, Hamid et al. (2019) employed the Biomod2 software

package to simulate the distribution of Himalayan birch under

climate change, revealing strong robustness in the integrated model.

Climate change is a primary factor influencing species

distribution that interacts with habitats of M. grandiflora, which

is intricately associated with variables such as soil characteristics,

land use, human activities, and topography (Li et al., 2013), all of

which were pivotal for fulfilling the ecological niche requirements of

species (Cramer et al., 2022; Saha et al., 2023). Some researchers,

like Velazco et al. (2017), elucidated that the incorporation of both

soil and climatic variables as dominated variables in distribution

models significantly enhances model accuracy, in stark contrast to

models that solely rely on climate prediction variables. At present,

there exists a lack of consensus regarding the relationship between

dynamic niche shifts of native and introduced species and

environmental variables, thereby underscoring the imperative

need for further exploration of this dynamic niche status

(Atwater et al., 2018; Early and Sax, 2014; Richardson and Pysěk,

2012). The climatic niche of a species consisted of the fundamental

niche, depicting the optimal environmental conditions a species can

inhabit, unaffected by factors like competition and predation

(Peterson et al., 2017), alongside the realized niche, which is a

restricted subset of the fundamental niche due to limiting variables

(Araújo et al., 2013; Pulliam, 2000). Certain scholars advocated for

niche shift based on an ecological niche expansion index exceeding

10% (Soberón and Arroyo-Peña, 2017), suggesting that during the

transition of niche shift from native to introduced areas (Anderson,

2013),M. grandifloras predominantly occupied the introduced area

that were not included in the native area (Bates et al., 2020;

Petitpierre et al., 2012; Torres et al., 2018). Conversely, other

researchers have emphasized the use of the unfilled niche index

to analyze whether an introduced area possesses analogous climate

conditions not currently occupied by M. grandiflora in its native

range due to environmental constraints and limiting variables. This

approach provides critical insights into the optimal conditions for

species survival (Ashby et al., 2017; Polidori et al., 2018; Walker and
frontiersin.or
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Valentine, 1984). This analysis holds significant importance in

comprehending the ecological adaptability of ornamental woody

plants and in informing strategies related to their introduction

and cultivation.

Southern magnolia is a member of the Magnolia family, which

originates from the coastal areas of the southeastern US. It can reach

a height of 8–30 m and is widely used as an ornamental woody

plant, with an elegant and majestic architecture, dense leaves, and

large white fragrant flowers. M. grandiflora is an aristocratic

broadleaf evergreen that began to be cultivated in the United

States in 1734 due to its significant landscape value (Dirr, 1998).

The native range of M. grandiflora extends from eastern North

Carolina, south along the Atlantic Coast to the Peace River in

central Florida, then westward through roughly the southern half of

Georgia, Alabama, and Mississippi, and across Louisiana into

southeast (Little, 1979; Sokkar et al., 2014). It is widely cultivated

around the world, especially in the southern area of the Yangtze

River in China (Greller, 1989; Li et al., 2015), which is the most

successful ornamental woody plant in Magnoliaceae that have been

introduced from the US to China (Vastag et al., 2020). The

introduction of M. grandiflora is essentially a dynamic process of

species dispersal and distribution (Gruhn and White, 2011; Hoyle

et al., 2017). Its potential geographic distribution is highly

dependent on its adaptation to the new environmental conditions

(Berger et al., 2007). Consequently, it is imperative to investigate

how M. grandiflora adapts to climatic shifts and to assess its

adaptability and distribution during introduction and cultivation

in China. Some researchers have explored the ecological niche

alterations and potential distribution of cultivated M. grandiflora

(Farag and Al-Mahdy, 2012; Wang, 2006), analyzing its potential

expansion range by comparing the climatic environments of

introduced areas (China) with its native habitat (USA). Such

analyses are critical for devising effective prevention and control

strategies by predicting spatiotemporal diffusion characteristics and

ecological niche shifts (Mitchell and Power, 2003). Current research

on M. grandiflora primarily concentrated on ecological

characteristics (Li et al., 2013), physiological responses to drought

stress (Sukumaran et al., 2020), medicinal value (Lee, 2011; Xu et al.,

2024), landscape design, and economic value (Ali et al., 2022).

However, there is a lack of analysis on suitable cultivation areas for

M. grandiflora and research on its niche shifts. At present, there is a

lack of research addressing potential distribution pattern changes

and niche shifts ofM. grandiflora between its native and introduced

regions (Knox et al., 2012). There are only references to the

expansion of M. grandiflora in North Carolina Piedmont forest;

more studies focused on biogeographic patterns between bacterial

phyllosphere communities ofM. grandiflora at present (Gruhn and

White, 2011; Stone and Jackson, 2016; Wang et al., 2022). To fill this

gap, we established an ensemble model utilizing environmental

variables such as bioclimate, topography, soil, NDVI, and human

activities. Our aim is to predict suitable distribution areas of M.

grandiflora and evaluate the dynamic ecological niche between its

native of the USA and introduced areas of China, exploring the

existence of niche shifts and their primary influencing variables.

Based on our research findings, we propose a scientifically informed

strategy for the conservation and introduction of M. grandiflora.
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2 Materials and methods

2.1 Occurrence data of M. grandiflora

To obtain comprehensive geographical distribution

information of M. grandiflora in the USA and China, we

employed three methods. First is field investigation. From 2019 to

2023, we carried out field surveys of natural populations in the USA,

documenting the latitude and longitude of each plot and habitat

characteristics. In China, we also collected distribution data from

some cultivated M. grandiflora with health and vigorous growth.

Second are species occurrence databases. We extracted distribution

points of M. grandiflora from various species distribution websites,

including Global Biodiversity Information Facility (GBIF), iplant

(www.iplant.cn), SouthEast Regional Network of Expertise and

Collections (SERNEC, https://sernecportal.org/portal/index.php),

the Forest Research Institute NSII (China National Specimen

Information Infrastructure), and China Virtual Herbarium

(CVH). Third are scientific articles. We conducted searches for

M. grandiflora with Latin name in the Web of Science (WOS;

https://www.webofscience.com/) and China National Knowledge

Infrastructure (CNKI; https://www.cnki.net/) databases, retaining

literature with precise records of field distribution locations.

In ensuring the accuracy and timeliness of M. grandiflora

distribution points that we collected, we focused on two

dimensions: spatial and temporal. Spatially, the collected species

distribution points had to correspond to specific villages or streets.

Regarding the temporal scale, we restricted our analysis to species

distribution points that were collected in the year 2000 or later. We

converted specific locations into latitude and longitude using

Google Earth. Adhering to these criteria, we obtained a total of

236 occurrence points for M. grandiflora, comprising 134

occurrence points in the USA and 102 occurrence points in

China. However, to address spatial autocorrelation among the

collected distribution points, we initially utilized ENM tools to

ensure that only one valid species distribution point existed within

each environmental variable grid of 2.5 arcmin (~5 km) (Warren

et al., 2010). Subsequently, we established a buffer zone with a radius

of 150 km around each point using ArcGIS 10.3.0 (Greaves et al.,

2006). These measures were implemented to enhance the

robustness of the statistical analysis. The final dataset for

subsequent analysis included 127 distribution points of M.

grandiflora in the USA (56 natural occurrence points and 71

cultivated occurrence points) and 87 occurrence points in China

(Figure 1). We downloaded administrative boundary maps of China

and the USA from http://www.gadm.org/country.
2.2 Selection and comparison of
environmental variables

Based on previous research, habitat characteristics of M.

grandiflora and expert recommendations for the Magnoliaceae

(Delcourt and Delcourt, 1977; Quarterman and Keever, 1962;

Wang et al., 2022; White, 1987), we selected 43 environmental
frontiersin.org
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variables, including bioclimatic variables, topography, soil, NDVI,

anthropogenic activities, and other environmental variables, to

construct an ecological dataset (Supplementary Table S1).

Consistent with previous studies of vegetation dynamics (Li

et al., 2019; Yang et al., 2021), we employed predictions from

general circulation models (GCM) under three future greenhouse

gas emission scenarios, SSP1-2.6, SSP.3-7.0, and SSP5-8.5 scenarios

to assess the influence of climate change on species distribution. We

opted for the BCC-CSM2-MR model, which is extensively utilized

in the Middle East Asia region and exhibits superior simulation

capabilities for the East Asian climate, particularly temperature, in

comparison to other climate models (Chen et al., 2022; Wu, 2020).

Climate factor raster data were acquired from the WorldClim

database (www.worldclim.org) which interpolates the monthly

average values of 30 standard years of bioclimatic variables from

1970 to 2000 to generate global climate raster data (2.5 arcmin). We

utilized ArcGIS 10.3.0 to 19 bioclimatic variable layers by the extent

of China (Wertz & Wilczyński, 2022). The solar radiation index

(SRAD) was also obtained from theWorldClim database (Gunawan

et al., 2021). The potential evapotranspiration (PET) was derived

from the Global-AI_PET_v3 database, based on the third edition of

the Global Aridity Index and Potential Evapotranspiration (Zomer

et al., 2022). The Penman–Monteith reference evapotranspiration

(ET0) equation, based on the Food and Agriculture Organization

(FAO), was used to provide global high-resolution hydroclimatic

monthly and annual average data (1970–2000). The digital
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elevation model (DEM) data were provided by the International

Science Data Service Platform of the Chinese Academy of

Sciences (ISDSP, http://datamirror.csdb.cn/ (Han et al., 2018),

from which slope and aspect data were generated by ArcGIS

10.3.0. Soil variables included five variables related to soil physical

and chemical properties and classification: organic carbon density,

sand, silt, nitrogen, and pH water, sourced from SoilGrids (https://

soilgrids.org/ (Hengl et al., 2014; Hengl et al., 2017) Considering the

actual length of M. grandiflora root growth, we selected the

arithmetic mean of the top 5 layers (30–60 cm) of soil profiles

relevant to M. grandiflora growth for modeling. The normalized

difference vegetation index (NDVI) was obtained from MODIS/

Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid (2020)

(Ramıŕez-Cuesta et al., 2021). Human footprint (HFP) and human

influence index (HII) were obtained from the internet (http://

sedac.ciesin.columbia.edu/wildareas/) (Luo et al., 2016), indicating

cumulative human pressure on the environment. The resolution

and coordinate system of environmental variables were

standardized and unified using the Resample function in ArcGIS

10.3.0, with a resolution of 2.5 arcmin. Due to the high

autocorrelation with bioclimatic variables, which may lead to

overfitting of SDMs, we successfully extracted precise

environmental values at species distribution points from the

environmental raster data using ArcGIS 10.3.0 (WGS_1984). We

used Pearson correlation analysis and VIF to select variables that

were less correlated with other variables (∣P∣<0.8, VIF<10) and
FIGURE 1

Spatial distribution of occurrence points of M. grandiflora in China and the USA. (A) Occurrence points (87 points) in China; (B) occurrence points
(127 points) in the USA. Red is the cultivated distribution points, and green is the natural distribution points. (C) The M. grandiflora observed during
the field survey is found in the USA.
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statistically significant (Pradhan, 2016). Finally, 20 variables

were retained.
2.3 Model evaluation and selection

We used Biomod2 package in RStudio 4.2.1 to apply 10 model

algorithms, GLM, GBM, GAM, CTA, ANN, SRE, FDA, MARS, RF,

and MaxEnt, to predict the potential distribution range of M.

grandiflora in the USA based on its native distribution data and

global environmental variables. Pseudo-absence points were

generated using a “random” method to create 1,000 background

points required for species distribution modeling. For each model,

parameters were randomly selected with 75% of the distribution

records used as the training datasets and the remaining 25% as the

testing datasets. The data were divided into training and testing sets

five times, with modeling repeated 10 times. The true skill statistics

(TSS) and receiver operating characteristic (ROC) curve were

considered key variables for assessing the accuracy of the models.

Based on the area under the ROC curve (AUC) value, model

performance was categorized as excellent (AUC > 0.9), good (0.8–

0.9), fair (0.7–0.8), or poor (0.6–0.7). Additionally, the TSS was used

to evaluate the model’s performance, with models classified as

excellent (TSS > 0.8), good (0.6-0.8), fair (0.4–0.6), poor (0.2–0.4),

or unacceptable (TSS < 0.2). Therefore, we selected excellent models

with AUC and TSS values both > 0.9 as candidate models (Nhu

et al., 2020). After evaluating the accuracy of the 10 models, we

identified three models, MARS, MaxEnt, and RF, with average TSS

and ROC values exceeding 0.95. Subsequently, we decided to use

these three models to construct an ensemble model (EM) for

predicting the potential suitable of M. grandiflora in native and

introduced areas in 2050 and 2070.
2.4 Suitable area classification and
distribution pattern changes

For better visualization of the potential suitable habitats and

distribution pattern changes of M. grandiflora, we processed the

output ASCII grids from the “biomod2” package using the natural

break method in the Reclassify function of ArcGIS 10.3.0. The

suitability levels were categorized into four groups: unsuitable area

(0.0–0.2), low suitability area (0.2–0.4), moderate suitability area

(0.4–0.6), and high suitability area [0.6–1.0 (Jung et al., 2016)]. The

criteria for identifying the areas of distribution pattern change

involved using the Raster Calculator in ArcGIS 10.3.0 to subtract

and overlay the climate change scenarios of each period with the

current scenario, resulting in four categories: 0→0 unsuitable area;

0→1 expansion area; 1→0 loss area; and 1→1 stable area

(Miettinen et al., 2016).
2.5 Data analysis and niche dynamics

The conservatism of the climatic niche between the native range

(USA) and the introduced range (China) was validated using the
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“ecospat” package and the COUE scheme (Di Cola et al., 2017).

First, a minimum convex polygon containing 5,000–10,000

background points was created, and the “Wallace” package was

used to surround the distribution points of M. grandiflora in each

country (Kass et al., 2023). Then, the background point values of

each climatic variable grid were extracted, and a principal

component analysis (PCA-env) of the native and introduced

ranges was conducted. The kernel density function was used to

standardize and concentrate occurrence points and background

points, effectively reducing sampling bias (Monsarrat et al., 2019;

Palpanas et al., 2003). Based on the training threshold and

specificity threshold of the ensemble model, suitable areas (1) and

unsuitable areas (0) were determined in the basic statistical analysis.

The purpose of similarity testing and equivalency testing was to

examine, through 100 repetitions of training and calculation,

whether there were similar climates that could be occupied by M.

grandiflora in the future and whether the specific form of climate

conditions in the introduced range was equivalent to that of the

native range. The overlap of the ecological niche of M. grandiflora

in the native and introduced ranges was calculated using Schoener’s

D (Schoener, 1968) and Hellinger’s distance (I) (Warren et al.,

2011). The range of values for D and I is [0 (no overlap), 1

(complete overlap)] (Figure 2).
3 Results

3.1 Model accuracy evaluation for
simulating the potential suitable area

Based on the biomod2 platform in the R, the ensemble model

(MAXENT, RF, MARS) with AUC and TSS values exceeding 0.950

was selected. The prediction accuracy of the ensemble model

indicates that the ROC of MARS, MaxEnt, and RF are all >0.960,

and TSS are all >0.900. The average ROC is 0.993, and the average

TSS reaches 0.932, demonstrating extremely high rationality and

credibility in predicting the potential distribution of M.

grandiflora (Figure 3).
3.2 Testing for ecological
niche conservatism

This study visualized the environmental conditions between the

native habitat in the USA and the introduced habitat in China

through principal component analysis (PCA) of 20 environmental

variables. PC1 explained 17.8% of the selected variables, while PC2

explained 33.4%, with a total explanation rate of 51.2% (Figure 4E).

The first principal component axis, PC1, was positively correlated

with May solar radiation and negatively correlated with maximum

annual normalized difference vegetation index. The second

principal component axis, PC2, was negatively correlated with

precipitation in the coldest quarter and positively correlated with

water body pH. We also observed a shift in the ecological niche of

M. grandiflora towards decreasing PC1 and increasing PC2

(Figure 4F), indicating a preference for locations with lower May
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solar radiation and higher maximum annual normalized difference

vegetation index PC1 and higher water body pH and lower

precipitation in the coldest quarter PC2. The density of species

occurrence within environmental space is illustrated in Figures 4A,

B. The results suggested that the migration trend of M. grandiflora

in its native habitat was similar to that of the introduced habitat,

with a high stability value of 0.786 and a low expansion value of
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0.213. However, the ecological niche overlap between the native and

introduced habitats is low [Schoener’s D = 0.39, Hellinger’s distance

(I) = 0.467, where 0 indicates no overlap and 1 indicates complete

overlap]. According to the theory of ecological niche conservatism,

the null hypothesis is accepted when p-values are all <0.05. The

observed ecological niche overlap is outside the 95% confidence

interval, indicating that the ecological niche forms, sizes, and spatial
FIGURE 2

The technical frame of this study. It is divided mainly into data preparation and process, model construction, and output analysis.
FIGURE 3

Comparison of AUC and TSS between single and ensemble model. EM, ensemble model; MaxEnt, maximum entropy model; RF, random forest;
MARS, multivariate adaptive regression splines.
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characteristics of M. grandiflora in its native and introduced

habitats are not identical. Excluding experimental randomness,

the observed ecological niche overlap in the ecological niche

similarity test (Figure 4C) fell within the 95% confidence interval,

suggesting that there were more similar climate regions between the

native and introduced habitats. The results of the equivalence and

similarity tests (Figure 4D) indicated that although the dynamic

ecological niches of the native habitat were not identical to those of

the introduced habitat, there was a large unfilled value in the

ecological niche (0.620), indicating a shift of the ecological niche

towards climatically similar conditions between the native and

introduced habitats.
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3.3 Environmental variables’ responses to
and contribution rates on the ecological
niche of M. grandiflora

The predictive niche occupancy (PNO) curve (Figure 5)

demonstrated that between its native and introduced ranges, the

niche ofM. grandiflora was sensitive to changes in variables such as

temperature, precipitation, water pH, and solar radiation. In

contrast, variables such as topography, human activities, NDVI,

and soil texture have a smaller impact on its niche shift, as indicated

in the principal component analysis (Figure 4E), with the variables

contributing less plotted in blue. The relative importance of
FIGURE 4

Niche comparison analysis between native and introduced area. Note: The photo above shows the distribution of environmental density in the two-
dimensional space of available environments for environmental density distribution in two-dimensional available environmental space within the (A)
native range and (B) introduced range. Red tones indicate environments with lower occurrences, while yellow and green tones indicate
environmental conditions that are more commonly occupied. (C) Similarity test (p = 0.0009) and (D) equivalency test (p = 0.0198). (E) Ranking plot
of the top two principal components generated in the PCA, where red color indicates a higher contribution of the variable, and blue color indicates
a lower contribution of the variable. Upper right corner (F) indicates changes in ecological niche dynamics. Ecological niche overlap between the
native area USA and the introduced area China. Green shading indicates unfilling areas in the native area, purple indicates niche overlap, and red
indicates niche expansion in the introduced areas. The solid and dashed contour lines illustrate 100% and 50% of the available environmental space.
The direction of the solid red arrow is a shift in the center of species density, and the direction of the dashed red arrow is a shift in
environmental space.
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environmental variables in the ensemble model was indicated (from

Figure 6); July solar radiation (2,400–2,500), Human Footprint

Index (19.5–26.1), and maximum wet month precipitation

(128.2–240.0 mm) were the top 3 variables affecting its

distribution. The influence of the driest season’s mean

temperature (−10°C–29.9°C), potential evapotranspiration (8,000–

11,000), and elevation (0–250 m) was relatively weaker.
3.4 The distribution of M. grandiflora under
the current climate

The potential distribution area of M. grandiflora (Figure 7)

indicated that it is primarily distributed in eastern China. High
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suitability areas include Beijing, Tianjin, Hebei, southern Shanxi,

Henan, Shandong, southern Shaanxi, Anhui, Jiangsu, Shanghai,

eastern Sichuan, Chongqing, eastern Guizhou, Guangxi,

Guangdong, Fujian, Zhejiang, Hubei, Hunan, Jiangxi, northern

Hainan, and Taiwan. Moderate suitability areas surround these

high suitability regions and extend to northeastern Inner

Mongolia, northern Beijing, northern Hebei, southeastern

Shanxi, eastern Sichuan, western Guizhou, eastern Yunnan,

southern Guangxi, and central Guangdong. Additionally, the

western moderate suitability areas include southern and

southwestern Xinjiang and northeastern Qinghai. Low suitability

areas are found in eastern Jilin, eastern Liaoning, northern Shanxi,

northern Yunnan, northern Inner Mongolia, eastern Tibet,

and Xinjiang.
FIGURE 5

Predicted niche occupancy (PNO) curves. Blue solid lines indicate predicted niche Overlap, green solid lines indicate predicted native area niche, and
red solid lines indicate predicted introduced area niche. Peaks of overlap indicate similar climatic tolerances, and the width of the profile indicates
the specificity of climatic tolerances. Green and red solid contours represent 100% of the available environmental space for native and introduced
area, respectively. (A) Aspect, (B) mean diurnal range (Bio2), (C) mean temperature of wettest quarter (Bio8), (D) precipitation of wettest month
(Bio13), (E) precipitation of driest month (Bio14), (F) mean temperature of driest quarter (Bio9), (G) human influence index (HII), (H) maximum
normalized difference vegetation index (NDVI max), (I) precipitation of coldest quarter (Bio19), (J) organic carbon density (t-ocd), (K) potential
evapo-transpiration (pet), (L) elevation, (M) solar radiation in September (srad 9), (N) sand (t-sand), (O) minimum normalized difference vegetation
index (NDVI min), (P) nitrogen (t-nitrogen), (Q) solar radiation in May (srad 5), (R) solar radiation in July (srad 7), (S) slope; (T) pH water (t-phh2o).
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In the USA, a similar distribution pattern is observed. High

suitability areas are concentrated in Florida, eastern Texas,

Louisiana, Mississippi, Alabama, Georgia, South Carolina,

Tennessee, Arkansas, Virginia, Kentucky, southern Illinois,

southern Indiana, Missouri, Oklahoma, eastern Kansas,

Connecticut, Delaware, Maryland, Massachusetts, New Jersey,

New York, Pennsylvania, Minnesota, California, Oregon, and

Washington. Moderate suitability areas include southern Florida,

southern Maine, Connecticut, Massachusetts, Rhode Island,

northern Arkansas, southern Illinois, southern Indiana, southern

Michigan, Missouri, northern Nebraska, southern Ohio, and

northeastern Texas. Low suitability areas are found in Colorado,

Illinois, Indiana, Iowa, Minnesota, Missouri, New Mexico, Ohio,

Oklahoma, Pennsylvania, Texas, Utah, Virginia, and West Virginia.
3.5 Future changes in suitable habitat areas
of M. grandiflora

This study compared the potential distribution areas of M.

grandiflora under climate change in China and the USA. For China,

projections for 2050 indicate that low suitability areas will initially

increase, followed by a decrease, while moderate and high suitability

areas will show a continuous upward trend. By 2070, low suitability

areas are expected to first decrease and then increase, while

moderate suitability areas will continue expanding. Notably, high

suitability areas are projected to reach their peak in the 2070-

SSP585 scenario, covering 210.46×104 km2. In contrast, while the

total suitable area in China shows continuous growth by the 2070s,

the trend in 2050 is characterized by fluctuating increases.

For the USA, in 2050, low and moderate suitability areas will

first increase and then decrease, reaching their maximum extent in

the 2050-SSP370 scenario at 87.40×104 km2 and 78.39×104 km2,

respectively. Unlike the trends observed in the low and moderate

suitability areas, the high suitability area and total suitable area will

fluctuate but still show an average increase of 26.75×104 km2 and

29.41×104 km2 compared to the current suitable areas. By the 2070s,
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low and moderate suitability areas in the USA are projected to

continue increasing, reaching maximum values of 98.06×104 km2

and 87.68×104 km2, respectively, while the high suitability area and

total suitable area are expected to first increase and then decrease.

The future potential distribution trend of M. grandiflora in

China is shown in Figure 8. In 2050, the suitable area for M.

grandiflora is projected to expand from the Qinghai–Tibet Plateau

to the northwest of China, particularly in regions such as Shanxi,

Shaanxi, southeastern Gansu, eastern Qinghai, and even parts of

Xinjiang and Xizang. Additionally, there is slight diffusion into

northeastern areas, including northeastern Inner Mongolia, eastern

Heilongjiang, and the border areas of Jilin. Correspondingly, in

2050, the suitable area will expand from China Cold Hardiness

Zones 4a–8b, while the shrinking areas will primarily be in northern

China within Cold Hardiness Zones 1a–4a. The diffusion trend in

2070 mirrors that of the 2050s but is more pronounced. Across all

climate scenarios, the areas of loss are scattered across southern

China, including Hainan, Yunnan, southern Xizang, and Taiwan.

There is also a decrease in some northeastern regions, such as

northern Heilongjiang and northeastern Inner Mongolia, in 2050.

By 2070, M. grandiflora is expected to expand across Cold

Hardiness Zones 3a–10a, with shrinking areas mainly in southern

China within Zones 10b–13b.

For the USA, the future potential distribution trend of M.

grandiflora is presented in Figure 9. With global climate change,

M. grandiflora shows a migration toward northern regions, similar

to the diffusion trend observed in China. In the 2050-SSP585

scenario, there is significant expansion into states such as Iowa,

Kansas, Missouri, and Nebraska in the northwest. By the 2070s, the

expansion is even greater, especially under the 2070-SSP370

scenario, with notable growth in western regions (Colorado,

southern Nebraska, and Texas) and northern regions (Iowa,

Wisconsin, southern Michigan, central Ohio, Pennsylvania, New

York, Vermont, New Hampshire, and southern Maine). Areas of

loss primarily appear along the southeastern and western coastlines.

In 2050, the suitable area is projected to expand from USDA Cold

Hardiness Zones 5b–8b. By contrast, in 2070, the expansion will
FIGURE 6

Importance ratios of environmental factors in the ensemble model. Emca and emmean are two different algorithms in the ensemble model, the
horizontal axis is the short name of the environmental factors in turn, the vertical axis is the size of the percentage of the importance of the
environmental factors during the model run, and the box-and-line plot represents the average of 10 modeling runs.
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primarily occur within USDA Cold Hardiness Zones 3a–11a, while

the areas of loss will be concentrated in Zones 6b10a in the

southeastern USA and Zones 8a–10b along the western coastlines.

4 Discussion

Since the twentieth century, the continuous accumulation of

greenhouse gases has led to intensified global warming and rapid

decline in global biodiversity (Omann et al., 2009; Raven and

Wagner, 2021). Studies on the relationship between climate and

plants has gradually become a hot topic in global change ecology.

Understanding the changes in potential distribution and dynamic

niche of plants under climate change helps to introduce plants

reasonably and protect ecological resources (Piao et al., 2019). Our

study mainly investigated the effects of five categories

environmental variables on the distribution patterns of M.

grandiflora and the dynamic changes of its ecological niche.
Frontiers in Plant Science 10
4.1 The creativity in the process of
SDM construction

First, in order to fit the appropriate SDMs, Pearson correlation

analysis and variance inflation factor (VIF) were used to reduce

spatial autocorrelation among environmental variables (Keser et al.,

2012). In addition, a buffer zone with a radius of 150 km was

established based on GIS tools and ENM tools to prevent overfitting

and model redundancy (Hengl et al., 2018), thus improving the

accuracy of experiments in the specified study area. Subsequently,

an ensemble model was constructed using qualified single models,

greatly improving the accuracy of SDMs and better fitting the

characteristics of the target species (Hao et al., 2019).

Furthermore, to minimize errors and subjective outcomes, we

utilized 5,000–10,000 points randomly generated by the Wallace

package as the environmental variable background instead of the

entire study area (Fuller et al., 2018).
FIGURE 7

Suitable areas of M. grandiflora in China and the USA under the current climate conditions. (A) China; (B) the USA. Note: White on the map indicates
non-suitable areas, green indicates low suitable areas, orange indicates medium suitable areas, and red indicates high suitable areas.
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4.2 The limitation of a single model and
the necessity of a combination model

We used the Biomod2 package of SDM modeling for M.

grandiflora, which ensemble multiple models to enhance

prediction reliability and reduce individual model biases. This

approach is crucial for adaptive management and conservation

strategies, particularly under changing climatic conditions

(Rodriguez et al., 2024; Wu H.-Y. et al., 2024). The models used

in our study have demonstrated high reliability, with a higher AUC

and TSS, indicating the robustness of the ensemble model.
4.3 Environmental explanations for the
potential distribution of M. grandiflora

Through comparing the dynamic realized ecological niche ofM.

grandiflora, not only the predictive ability of the model for the
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distribution expansion of M. grandiflora is improved but also the

influencing variables of its realized ecological niche were verified.

Our study found that besides bioclimatic variables, temperature and

precipitation were the key limiting variables for the dynamic

ecological niche of M. grandiflora. M. grandiflora also grows in

rich, loamy, and moist soils along streams and swamps in the

Coastal Plain. It is also found in mesic upland areas where

occurrences of fire are infrequent; therefore, other environmental

variables such as solar radiation, water pH, soil texture, and NDVI

should not be ignored. The results of the ensemble model (EM)

stated that solar radiation, the human impact, precipitation,

temperatures, potential evaporation volume, altitude, etc., played

vital roles in the dispersal and spread of M. grandiflora. This is

consistent with previous research results, indicating that M.

grandiflora in the south grew in warm temperate to subtropical

climates. The frost-free period is at least 210 days, exceeding 240

days in most distribution areas. The average temperature in January

in coastal areas is 9°–12°C (49°F–54°F) in South Carolina and
FIGURE 8

The potential distribution pattern of M. grandiflora in China under future climate scenarios (in the 2050s and 2070s). (A) 2050-SSP126, (B) 2050-
SSP370, (C) 2050-SSP585, (D) 2070-SSP126, (E) 2070-SSP370, (F) 2070-SSP585. Note: White, red, gray, and blue represent non-suitable area,
expansion area, stable area, and losing area, respectively.
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Georgia and 11°C–21°C (52°F–70°F) in Florida. The average

temperature in July in coastal areas is 27°C (80°F). Annual

precipitation ranges from 1,020 mm to 1,270 mm (40–50 in.) in

the northeastern part of the distribution range and from 1,270 mm

to 1,520 mm (50–60 in.) in other areas. A small area along the Gulf

Coast receives annual precipitation of 1,520–2,030 mm (60–80 in.).

The summer is typically the wettest and the fall is the driest in the

Atlantic coastal plain region. Summer droughts are regular in the

western part of the distribution range (Area, 2011; Rao and

Davis, 1982).
4.4 Climatic niche overlap, equivalency,
and similarity

The ecological niche defines the necessary environment

conditions for the survival space of M. grandiflora. In addition to

the main influencing variables such as temperature and

precipitation, variables such as soil characteristics, solar radiation,

and topographical variables also affected the ecological niche

condition and expansion trends of M. grandiflora. Under the

background of economic globalization, human activities are more

frequent, and intentional or unintentional introduction and

cultivation promote M. grandiflora to adapt to new climatic

conditions. Although the equivalency test showed that niche
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morphology, size, and species distribution density of M.

grandiflora in China and the USA were not equivalent, the

similarity test and the higher ecological niche stability index

proved that the growth climate conditions of M. grandiflora in

China are generally similar to those in the United States (Mohamed

et al., 2009).
4.5 Recommendations for cultivation and
re-introduction of M. grandiflora

Our study found that both China and USA have more similar

temperature changes and precipitation conditions. It is reasonable

to infer that under future climate change, the potential distribution

pattern changes in this species in its native USA, and its introduced

country, China, will show similar expansion trends, including

expansion to the northwest and northeast and contraction in the

south. This suggests that M. grandiflora had much stronger cold

and drought resistance (Clark et al., 1981; Delcourt and Delcourt,

1977). First, M. grandiflora exhibits a strong dependence on solar

radiation. To mitigate excessive shading in densely vegetated areas,

selective canopy thinning and pruning should be employed. These

practices ensure that M. grandiflora receives adequate sunlight,

promoting optimal photosynthesis and growth. Second, to

safeguard the habitat of M. grandiflora, it is critical to restrict
FIGURE 9

The potential distribution pattern of M. grandiflora in the USA under future climate scenarios (in the 2050s and 2070s). (A) 2050-SSP126, (B) 2050-
SSP370, (C) 2050-SSP585, (D) 2070-SSP126, (E) 2070-SSP370, (F) 2070-SSP585. Note: White, red, gray, and blue represent non-suitable area,
expansion area, stable area, and losing area, respectively.
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nearby infrastructure development, transportation expansion, and

the use of chemical pollutants. These anthropogenic factors pose

significant risks to the natural environment of M. grandiflora, and

minimizing their impact is essential for the conservation of this

species. Third, to establish a comprehensive hydrological

monitoring system within the habitat of M. grandiflora is

imperative for tracking precipitation patterns and soil moisture

levels, where variations in rainfall may affect the water availability of

M. grandiflora.
4.6 Strengths and limitations of the study

Despite the findings of our research on the ecological niche shift

and potential distribution expansion trends of M. grandiflora and

the high credibility of the model predictions, several uncertain

variables also influenced the natural distribution pattern of this

species. These variables included natural geographical barriers,

adverse impacts of insects, species interactions, land use, model

lags, and future climate normative policies. Further investigation is

required to examine the pertinent principals.
5 Conclusions

In this paper, we aimed to clarify potential distribution changes

inM. grandiflora between its native range (USA) and its introduced

range (China) and the response of the ecological niche to

environmental variables. Three ensemble models were adopted to

predict the potential suitable habitat of M. grandiflora under three

climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) in future

periods (2050s and 2070s) and predict variation in its spatial

pattern under climate change of the twenty-first century. Our

research mainly found that (1) M. grandiflora exhibits similar

distribution and dispersal trends in both its native USA and

introduced China, with expansion towards the northeast and

northwest under climate change, while shrinking in certain

southern regions. (2) M. grandiflora is sensitive to environmental

variables such as temperature, precipitation, water pH, and solar

radiation, particularly favoring areas with lower sunshine in May

and higher NDVI. (3) The high ecological niche unfilling index and

similarity between the native and introduced regions suggest that

M. grandiflora will likely continue expanding in areas with

comparable climatic conditions. Overall, the higher ecological

niche unfilling index and the similarity between the ecological

niches of the native and introduced area indicated that M.

grandiflora should continue to expand into introduced areas with

similar climatic conditions with its native areas. The results of our

study provide valuable insights into the potential distribution

patterns and underlying factors driving the introduction of M.

grandiflora. We propose that future research should incorporate
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more field data and experimental studies on the cold resistance of

different M. grandiflora cultivars. This approach will help validate

the model predictions and provide more detailed insights into the

adaptability of M. grandiflora across various regions. In summary,

the analysis of the environmental characteristics, ecological niche

shift, and suitable areas of M. grandiflora provides scientific

references for plant protection, landscape use, and sustainable

utilization, and serves as a valuable scientific reference for the

prevention and management of biological introductions. Our

method could also be applied to study other similar species

of Magnoliaceae.
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(2020). Magnolia grandiflora L. shows better responses to drought than Magnolia×
soulangeana in urban environment. IFOREST 13, 575–583. doi: 10.3832/ifor3596-013

Velazco, S. J. E., Svenning, J.-C., Ribeiro, B. R., and Laureto, L. M. O. (2021). On
opportunities and threats to conserve the phylogenetic diversity of Neotropical palms.
Diversity Distributions 27 (3), 512–523. doi: 10.1111/ddi.13215

Walck, J., Hidayati, S., Dixon, K., Thompson, K. E. N., and Poschlod, P. (2011).
Climate change and plant regeneration from seed. Global Change Biol. 17, 2145–2161.
doi: 10.1111/j.1365-2486.2010.02368.x

Walker, T. D., and Valentine, J. W. (1984). Equilibrium models of evolutionary species
diversity and the number of empty niches. Am. Nat. 124, 887–899. doi: 10.1086/284322

Wang, R. (2006). Invasion dynamics and potential spread of the invasive alien plant
species Ageratina adenophora (Asteraceae) in China. Diversity Distrib. 12 (4), 397–408.
doi: 10.1111/j.1366-9516.2006.00250.x
frontiersin.org

https://doi.org/10.7287/peerj.preprints.26693v1
https://doi.org/10.1016/j.landurbplan.2017.03.009
https://doi.org/10.1080/19768354.2016.1210228
https://doi.org/10.1111/ecog.06547
https://doi.org/10.1016/j.wasman.2011.10.017
https://doi.org/10.1016/j.wasman.2011.10.017
https://doi.org/10.1088/1748-9326/7/3/034032
https://doi.org/10.1088/1748-9326/7/3/034032
https://doi.org/10.1890/08-0823.1
https://doi.org/10.1016/B978-0-12-375688-6.10086-6
https://doi.org/10.1007/s11427-012-4430-8
https://doi.org/10.1007/s12272-014-0476-4
https://doi.org/10.1038/srep25717
https://doi.org/10.1016/j.gecco.2016.02.004
https://doi.org/10.1038/nature01317
https://doi.org/10.1080/14786410902906959
https://doi.org/10.1098/rstb.2019.0215
https://doi.org/10.3390/ijerph17144933
https://doi.org/10.1016/j.ecolecon.2009.01.003
https://doi.org/10.1145/959060.959074
https://doi.org/10.1016/j.biocon.2004.12.006
https://doi.org/10.1111/2041-210X.12832
https://doi.org/10.1126/science.1215933
https://doi.org/10.1111/gcb.14619
https://doi.org/10.1186/s12898-018-0193-9
https://doi.org/10.7537/marsrsj080516.05
https://doi.org/10.1046/j.1461-0248.2000.00143.x
https://doi.org/10.1111/2041-210X.12397
https://doi.org/10.2307/1942384
https://doi.org/10.1007/s10340-021-01411-1
https://doi.org/10.1016/j.scitotenv.2021.149346
https://doi.org/10.1055/s-2007-971460
https://doi.org/10.1073/pnas.2002548117
https://doi.org/10.1111/j.1469-8137.2012.04292.x
https://doi.org/10.1111/j.1469-8137.2012.04292.x
https://doi.org/10.1007/s10530-023-03176-3
https://doi.org/10.22146/mot.84275
https://doi.org/10.2307/1933567
https://doi.org/10.1016/S0167-8809(00)00226-7
https://doi.org/10.3389/fpls.2020.01120
https://doi.org/10.1371/journal.pone.0175138
https://doi.org/10.1371/journal.pone.0175138
https://doi.org/10.5935/0100-4042.20140106
https://doi.org/10.1007/s00248-016-0738-4
https://doi.org/10.1186/s13717-020-00254-5
https://doi.org/10.1111/ddi.12818
https://doi.org/10.1111/geb.13272
https://doi.org/10.3832/ifor3596-013
https://doi.org/10.1111/ddi.13215
https://doi.org/10.1111/j.1365-2486.2010.02368.x
https://doi.org/10.1086/284322
https://doi.org/10.1111/j.1366-9516.2006.00250.x
https://doi.org/10.3389/fpls.2024.1440610
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1440610
Wang, W.-T., Guo, W.-Y., Jarvie, S., Serra-Diaz, J. M., and Svenning, J.-C. (2022).
Anthropogenic climate change increases vulnerability of Magnolia species more in Asia
than in the Americas. Biol. Conserv. 265, 109425. doi: 10.1016/j.biocon.2021.109425

Warren, D., Glor, R., and Turelli, M. (2010). ENMTools: A toolbox for comparative
studies of environmental niche models. Ecography 33, 607–611. doi: 10.1111/j.1600-
0587.2009.06142.x

Warren, D., Glor, R., and Turelli, M. (2011). Environmental niche equivalency versus
conservatism: quantitative approaches to niche evolution. (vol 62, pg 2868, 2008).
Evolution 65, 1215–1215. doi: 10.1111/j.1558-5646.2010.01204.x
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