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Drought stress inhibits oat growth and yield. The application of fulvic acid (FA) can

improve the drought resistance of oats, but the corresponding molecular

mechanism of FA-mediated drought resistance remains unclear. Here, we

studied the effects of FA on the drought tolerance of oat leaves through

physiological, transcriptomic, and metabolomics analyses, and identified FA-

induced genes and metabolites related to drought tolerance. Physiological

analysis showed that under drought stress, FA increased the relative water and

chlorophyll contents of oat leaves, enhanced the activity of antioxidant enzymes

(SOD, POD, PAL, CAT and 4CL), inhibited the accumulation of malondialdehyde

(MDA), hydrogen peroxide (H2O2) and dehydroascorbic acid (DHA), reduced the

degree of oxidative damage in oat leaves, improved the drought resistance of

oats, and promoted the growth of oat plants. Transcriptome and metabolite

analyses revealed 652 differentially expressed genes (DEGs) and 571 differentially

expressed metabolites (DEMs) in FA-treated oat leaves under drought stress.

These DEGs and DEMs are involved in a variety of biological processes, such as

phenylspropanoid biosynthesis and glutathione metabolism pathways.

Additionally, FA may be involved in regulating the role of DEGs and DEMs in

phenylpropanoid biosynthesis and glutathione metabolism under drought stress.

In conclusion, our results suggest that FA promotes oat growth under drought

stress by attenuating membrane lipid peroxidation and regulating the antioxidant

system, phenylpropanoid biosynthesis, and glutathione metabolism pathways in

oat leaves. This study provides new insights into the complex mechanisms by

which FA improves drought tolerance in crops.
KEYWORDS

oat, drought stress, fulvic acid, phenylpropanoid biosynthesis, glutathione metabolism
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1439747/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1439747/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1439747/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1439747/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1439747&domain=pdf&date_stamp=2024-09-19
mailto:caulih@163.com
https://doi.org/10.3389/fpls.2024.1439747
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1439747
https://www.frontiersin.org/journals/plant-science


Zhu et al. 10.3389/fpls.2024.1439747
1 Introduction

Oat (Avena nuda L.) is a globally significant food and feed

crop. Its grains are abundant in nutrients, including high levels of

b-glucan, protein, fat, and soluble dietary fiber. It exhibits

remarkable effects on blood sugar regulation and cholesterol

reduction, making it an important medicinal crop (Alemayehu

et al., 2023). With the increasing focus on nutrition and dietary

health, there has been a gradual rise in market demand for high-

quality oat raw materials (Singh et al., 2022). Therefore, the

development of the oat industry contributes to agricultural

growth and farmers’ income and holds great significance in

addressing issues related to residents’ imbalanced nutritional

intake. China is the primary origin of large-grain naked oats,

with a relatively concentrated planting area primarily located in

arid and semi-arid regions such as North and Northwest China.

These areas are characterized by harsh natural conditions, and as a

result of uneven precipitation distribution and the escalating

occurrence, frequency, and intensity of droughts attributed to

global warming, drought has emerged as the predominant limiting

factor for oat production (Tian et al., 2022; Zhang et al., 2022;

Salih et al., 2023). Drought and water scarcity triggers a cascade of

physiological and biochemical responses in plant morphology

(Wang et al., 2022a). For example, drought stress induces the

excessive accumulation of reactive oxygen species (ROS), resulting

in oxidative damage to cell membranes and chlorophyll

degradation, reduced photosynthetic efficiency, and inhibition of

crop growth (Muhammad et al., 2021; Peng et al., 2022; Hu et al.,

2023), all of which exert a negative impact on plants. Therefore,

exploring appropriate methods to enhance the drought tolerance

of oat plants is crucial for optimizing their growth and yield (Gao

et al., 2018; Bai et al., 2021). The utilization of plant growth

regulators is regarded as a proficient and eco-friendly approach to

address this issue (Che et al., 2017; Jesmin et al., 2023).

Fulvic acid (FA) is a low-molecular-weight, highly polar active

humic substance that contains active organic functional groups and

hydrophilic free radicals (Gong et al., 2020). As a growth regulator, it

has multiple regulatory effects on plant growth and development

(Liang et al., 2024), can stimulate plant growth, enhance leaf

photosynthesis, and regulate antioxidant systems (Justi et al., 2019;

Chen et al., 2022b). Most importantly, FA is a key factor affecting

plant tolerance to abiotic stresses. For example, its strong antioxidant

activity helps maintain the homeostasis of ROS to protect plants from

the damage caused by environmental stress (Wang et al., 2019). FA

can also activate various antioxidant enzymes, such as superoxide

dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol

oxidase (PPO), to reduce oxidative stress in plants (Yu et al., 2024;

Hareem et al., 2024). Plant photosynthesis is highly sensitive to

drought stress. FA can improve net photosynthesis, increase

chlorophyll content and electron transport, and maintain

chloroplast ultrastructure, thus alleviating the adverse effects of

abiotic stress on photosynthesis (Liu et al., 2022). In addition,

studies on its molecular mechanism reveal that FA can resist

drought stress through the gene expression involved in the primary

metabolism of maize leaves, particularly photosynthesis, carbon

fixation, hormone, and osmotic metabolism pathways (Chen et al.,
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2022a). FA can also enhance the antioxidant defense ability of tea

plants under drought stress by regulating ascorbic acid metabolism,

glutathione metabolism, and flavonoid biosynthesis (Sun et al., 2020).

At present, most research focuses on the drought resistance of FA-

induced crops at the physiological level, while the molecular

mechanism of fulvic acid-mediated drought resistance in oats

remains unclear. Transcriptome analysis is commonly employed to

investigate alterations in gene expression levels under diverse biotic

and abiotic stresses, thereby enhancing our understanding of the

functionality of the gene regulatory networks and signaling pathways

in plants (Zhao et al., 2021; Jiang et al., 2023). Similarly, metabolomics

has emerged as a novel tool facilitating comprehensive component

analysis, proving valuable for identifying changes in metabolites

induced by various environmental fluctuations (Zhang et al., 2021).

Integrative transcriptomic and metabolomic analyses establish a

robust connection between gene regulation and metabolite

generation, facilitating the comprehension of plant responses to

dynamic environmental changes (Elakhdar et al., 2023; Cui et al.,

2023). Scholars have successfully applied thesemethods to study plant

physiology (Li et al., 2023a; Wang et al., 2023a; Dwivedi et al., 2023).

Sun et al. (2020) revealed a crosstalk regulation between FA and

ascorbate metabolism and flavonoids biosynthesis, contributing to

understanding plant drought tolerance. In our previous experiments,

we demonstrated the ability of foliar spraying to mitigate the

detrimental effects of drought stress on oat seedlings (Zhu et al.,

2022). However, the combined transcriptomic and metabolomic

analyses of drought tolerance in oats have rarely been reported. In

this study, we employed integrative metabolomic and transcriptomic

approaches to investigate the effects of FA on overall leaf responses

(including morphology, physiology, gene transcription, and

metabolite generation) in oat leaves under drought conditions. The

objective of the study is to investigate the physiological and molecular

mechanisms by which FA regulates oats under drought stress. Our

findings enhance the understanding of FA regulation mechanisms in

oat plants and provide valuable strategies for improving crop

drought tolerance.
2 Materials and methods

2.1 Plant material and
experimental treatments

The drought-sensitive oat variety ‘Bayou 9’ was used in this

investigation, characterized by a fertility period of approximately 80

to 90 days. Thirty seeds were sown into plastic pots of 25 centimeters

in diameter and 18 centimeters in depth, each containing roughly 3

kilograms of mixed soil (soil, vermiculite, peat soil in a volume ratio

of 1:1:1). By the third leaf stage, each pot was thinned to 20 seedlings.

The seedlings were grown in a controlled greenhouse at Inner

Mongolia Agricultural University (Hohhot, China) at a

temperature of 20 ± 2°C, under a photoperiod of 16 hours of light

and 8 hours of darkness, with a light intensity of 2000 lux. All pots

were at 75% water prior to the jointing stage; water content was

maintained by weighing every two days and applying water as

needed. Drought stress (water content maintained at 45%) was
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applied to the seedlings at the jointing stage, and the stress persisted

until maturity.

Three treatments were implemented, each with three replicates

(pots): (1) spraying distilled water and watering to 75% field capacity

(CK); (2) spraying distilled water and exposed to drought stress (DS);

and (3) spraying FA and exposed to drought stress (DF). Sprinkle FA

once during the plant’s early jointing, heading, and filling stages, at a

rate of 15 ml per pot. The FA concentration (600 mg/L) used in this

investigation was based on our previous research (Zhu et al., 2022).

After 7 days of FA treatment (7 days based on the previous research

of the research group) (Li et al., 2019), flag leaf samples were

collected, quickly frozen in liquid nitrogen, and stored at -80°C for

future measurements.

2.2 Growth analysis

The flag leaf, penultimate leaf, and third to last leaf of the oat

plant were selected as the study objects. The length and width of the

leaves were measured with a ruler. The leaf area was calculated

based on the length–width coefficient method:

leaf area = leaf length� leaf width� 0:73

where 0.73 is an empirical coefficient. The chlorophyll content

of the flag leaves was determined using a chlorophyll meter (SPAD-

502, Konica Minolta, Tokyo, Japan). Dry matter quality was

estimated by taking the flag leaf, penultimate leaf, and third of 20

oat plants were put into paper bags, and then put into oven at 105°C

for 20 min and subsequently dried at 80°C for 48 hours to constant

weight. The relative water content (RWC) of leaves was determined

by the drying and weighing method (Farooq et al., 2009). Briefly, the

fresh weight (W1) of oat flag leaves was weighed and the leaves were

then placed on a water surface for 12 h to obtain the saturation

weight (WS). Finally, the leaves were dried at 85°C to a constant

weight (W2). The RWC of the oat leaves was calculated as follows:

RWC ( % ) = (W1 −W2)=(WS −W2)� 100
2.3 Measurements of
physiological characterization

Malondialdehyde (MDA) content was determined by

thiobarbituric acid (TBA) colorimetric method. superoxide dismutase

(SOD), peroxidase (POD), catalase (CAT), phenylalanine aminolyase

(PAL) activities, hydrogen peroxide (H2O2), 4-coumaroyl coenzyme A

ligase (4CL), and dehydroascorbic acid (DHA) were all measured by

enzyme-linked immunosorbent assay kit instruction (Keshun

Biotechnology Co., Ltd., Shanghai, China).
2.4 RNA extraction, cDNA library
construction, and
transcriptome sequencing

Total RNA was isolated using the mirVanaTM miRNA

isolation kit, following to the manufacturer ‘s instructions. The
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Tru Seq Stranded mRNA LT Sample Prep Kit was used to create the

sequencing library, following to the manufacturer ‘s instructions.

The Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA)

was used to determine the library size and purity of the sample (1 mL).
Transcriptome sequencing was carried out by OE Biotechnology Co.,

Ltd. (Shanghai, China). Trimmomatic software was used to handle

raw data, perform quality control, remove the adaptor, and filter to

obtain clean reads (Bolger et al., 2014). To get the reference genes,

clean reads were aligned to the reference genome using hisat2 (Kim

et al., 2015). All sequencing readings were uploaded to the National

Center for Biotechnology Information (SRA accession

number: PRJNA1111847).
2.5 Gene annotation, differential
expression, and enrichment analyses

The gene function was annotated based on the following

databases: Gene Ontology (GO) (http://www.geneontology.org/)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://

www.genome.jp/kegg/). Cufflinks software was utilized to calculate

the fragments per kilobase of transcript per million mapped reads

(FPKM) value for each gene, while htseq-count was employed to

obtain the read counts of each gene. Differentially expressed genes

(DEGs) were identified using the DESeq R package by estimating

size factors and performing a negative binomial test. Significantly

differential expressions were determined by applying the thresholds

p-value ≤ 0.05 and |log2FC| ≥ 1. Hierarchical cluster analysis was

conducted on DEGs to explore patterns in gene expression. GO and

KEGG pathway enrichment analyses were performed on the DEGs

us ing R sof tware vers ion 3 .6 .2 wi th employ ing the

hypergeometric distribution.
2.6 Metabolite extraction

The samples (80 mg) were meticulously transferred to a 1.5 mL

Eppendorf tube, followed by the addition of two small steel balls. An

internal standard solution of L-2-chlorophenylalanine (0.3 mg/mL)

dissolved in methanol was added at a volume of 20 mL, and each

sample received amixture of methanol and water (7/3, v/v) at a volume

of 1 mL. Subsequently, the samples were placed at −20°C for 2 min.

The entire sample was then subjected to ultrasonication in an ice-water

bath for 30 min and subsequently cooled in a refrigerator at −20°C for

20 min. After centrifugation at 4°C (13,000 rpm) for 10 min,

supernatant aliquots of 150 mL were collected from each tube using a

crystal syringe and filtered through a microfilter with a pore size of

0.22 mm before being transferred to LC vials. These vials were stored at

−80°C until liquid chromatography-mass spectrometry (LC-MS)

analysis was performed. A quality control (QC) sample was prepared

by pooling all individual samples into one mixed sample.

LC-MS analysis was conducted using a UHPLC system

(Vanquish, Thermo Fisher Scientific, Waltham, MA, USA)

coupled to a Q Exactive HFX mass spectrometer (Orbitrap MS,

Thermo Fisher Scientific) with a UPLC BEH Amide column (2.1

mm × 100 mm, 1.7 mm). The mobile phase consisted of 25 mmol/L
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ammonium acetate and 25 mmol/L ammonia hydroxide in water

(pH = 9.75) (A) and acetonitrile (B). Gradient elution was employed

for the analysis as follows: 0–0.5 min, 95% B; 0.5–7.0 min, 95%–65%

B; 7.0–8.0 min, 65%–40% B; 8.0–9.0 min, 40% B; 9.0–9.1 min, 40%–

95% B; 9.1–12.0 min, 95% B. The column temperature was

maintained at a constant value of 30°C throughout the analysis

period, while the auto-sampler temperature was set at −4°C and the

injection volume used was fixed at exactly 2 mL. MS spectra were

obtained in information-dependent acquisition mode using

Xcalibur (Thermo Fisher Scientific) and a QE HFX mass

spectrometer equipped with an electrospray ionization source.

Measurements were made under the following conditions: sheath

gas flow rate of 50 Arb, auxiliary gas flow rate of 10 Arb, capillary

temperature of 320°C, full MS resolution set at 6000 resolving

power, MS/MS resolution set at 7,500 resolving power with collision

energy values in the range 10–60 under normalized collision energy

mode depending on specific requirements during the data

acquisition process, and positive or negative spray voltage (3.5 kV

or −3.2 kV, respectively).
2.7 Data preprocessing and
statistical analysis

The raw data were preprocessed and normalized using the

metabolomics processing software Progenesis QI v3.0 (Nonlinear

Dynamics, Newcastle, UK). The Human Metabolome Database

(HMDB), Lipidmaps (v2.3), METLIN, and PMDB database were

utilized for the qualitative analysis. The selected data were scored

according to the qualitative results of the compound with a standard

score of 36 points, and data with a score below 36 points were

deleted. The resulting positive and negative ion data were combined

into a data matrix table. First, unsupervised principal component

analysis (PCA) was used for multivariate statistical analysis to

observe the overall distribution among the oat samples and the

stability of the whole analysis process. Supervised partial least

squares-discriminant analysis (PLS-DA) and orthogonal analysis.

Partial least squares analysis (OPLS-DA) was used to distinguish

overall differences in metabolic profiles between groups and to find

inter-group differences. Differential metabolites. Student’s t-test and

fold change analysis were employed. To compare metabolites

between the two groups . The method of combining

multidimensional analysis and one-dimensional analysis was

adopted. The following thresholds were used for the analysis: VIP

value of the first principal component of the OPLS-DA model > 1;

FC > 1; and t-test p-value < 0.05. Quasi-screening was adopted for

differential metabolites between groups. Functional annotation and

pathway analyses of differential metabolites were performed using

KEGG database enrichment analysis.
2.8 Real-time quantitative reverse
transcription PCR analysis

To verify the reliability of the DEGs from the sequencing results,

eight DEGs were selected for internal q-PCR. The specific primers are
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reported in Supplementary Table 1, with the oat actin gene employed as

the internal reference gene. The RNA was reverse transcribed into

cDNA using TransScript All-in-One First-Strand cDNA Synthesis

SuperMIX for q-PCR (All-in-One Gold). q-PCR was performed on

an ABI9700 system using the dye method. The reaction system,

described in Supplementary Table 2, was executed under

the following conditions: 94°C for 30 s; 40 cycles of 94°C for 5 s; and

60°C for 30 s. The temperature was slowly increased from 60°C to 97°C,

and the fluorescence signal was collected five times per °C. Each sample

was replicated three times, with sterile water used as the control. The

relative expression of the genes was calculated with the 2-DDCt algorithm.
3 Results

3.1 Morphological and physiological
responses of the oat plant induced by FA
under drought stress

We investigated the morphological and physiological changes

in FA-treated leaves under drought conditions to confirm the

positive effects of FA in alleviating drought stress in oat leaves.

Under drought stress, the oat plants exhibited a significant

reduction in height, accompanied by a decrease in leaf count. The

lower leaves displayed green and yellow discoloration and curling,

while the upper leaves showed scorching at the edges. Additionally,

there was a notable decline in spikelet numbers. The number of

dead leaves, the length of dead leaves, and the degree of yellowing all

exhibited a significant reduction in FA-treated leaves under drought

stress in comparison to the control group. There was also an

observed increase in the number of spikelets (Figure 1A). The leaf

area and dry matter quality of the oat leaves were significantly

reduced under drought stress, while the application of FA mitigated

the detrimental effects of drought stress on these parameters

(Figures 1B, C). Under drought stress, the chlorophyll content

and RWC declined by 23.29% and 47.48%, respectively, compared

to the control, while the application of FA resulted in a significant

recovery of chlorophyll content and RWC by 24.5% and 23.33%,

respectively (Figures 1D, E). These results indicate that FA alleviates

the negative effects of drought on oat leaves and promotes

plant growth.

MDA and H2O2 levels were selected as markers of oxidative

damage and ROS accumulation. Drought stress resulted in a

significant enhancement in the levels of H2O2 and MDA in the

oat leaves, while the application of FA effectively mitigated

the accumulation of H2O2 and MDA (Figures 2A, B). We

estimated the levels of antioxidative enzymes in the oat leaves

under different treatments. The changes in these enzymatic

antioxidants exhibited a similar variation trend (Figures 2C-G).

Under water-deficit conditions, the activities of the antioxidative

enzymes (SOD, POD, PAL, CAT, and 4CL) significantly increased

in oat leaves, and FA application was able to further improve the

levels of SOD, POD, PAL, CAT, and 4CL in the oat leaves. Ascorbic

acid is one of the most abundant water-soluble antioxidants and can

be used as a ROS scavenger directly against oxidative stress.

Drought stress led to an increase in dehydroascorbic acid content
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in oat leaves, while fulvic acid application decreased its content

(Figures 2H). These results suggest that the application of FA can

enhance antioxidant defense activity and decrease excessive ROS.
3.2 Leaf transcriptome profiles in response
to different treatments

3.2.1 Transcriptome sequencing analysis
RNA-seq analysis was performed on three biological replicates

of leaf samples under CK, DS, and DF treatments. Nine cDNA

libraries were prepared and then paired-end sequenced. The raw

reads ranged from 44.26 to 49.06 million. After removing low-

quality reads, clean reads ranged between 44.16 and 48.96 million.

In our libraries, the percentage of clean reads was greater than 99%,

and the Q30 values were greater than 90.77%. The mean GC

content was determined as 55.14% (Supplementary Table 3). The

transcriptome sequencing results exhibit high quality and are

suitable for the subsequent analysis.

Pearson’s correlation coefficient analysis of the three replicates

indicated that the sequencing data were of high quality and met the

requirements for further analyses (Figure 3A). Based on the thresholds

of adjusted |log2Fold Change| > 1 and false discovery rate (FDR) of

<0.05, a total of 2126, 2786, and 652 DEGs were screened in DS-vs-CK

(1138 upregulated and 988 downregulated), DF-vs-CK (1532

upregulated and 1254 downregulated), and DF-vs-DS groups (475

upregulated and 177 downregulated)groups, respectively (Figure 3B).
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There were more upregulated genes than downregulated genes in the

seedlings following the DS and DF treatments, and more genes were

differentially regulated by drought alone than by the DF treatment.

Among the DEGs, 150 transcripts were commonly induced by the

CK, DS, and DF treatments. Moreover, we identified 225 common

DEGs between the DF-vs-DS and DS-vs-CK groups. These genes are

likely to be involved in the alleviation of drought stress in oats through

the action of FA (Figure 3C). The gene expression trend verified by q-

PCR was similar to that determined by RNA-seq (Supplementary

Figure 1), indicating that the data obtained by transcriptome analysis

were highly reliable.

3.2.2 GO and KEGG enrichments of DEGs
To further understand the functions and the related biological

processes of the DEGs, GO enrichment analyses were conducted.

The results are presented in Figures 4A, B. The DEGs were classified

into biological processes, cellular components, and molecular

functions. In the biological process of DS-vs-CK, the differential

genes were mainly enriched in the defense response and flavonoid

biosynthetic process. In the cellular component, the most enriched

DEGs were the integral component of the membrane and the

chloroplast thylakoid membrane. The molecular function mainly

included DNA-binding transcription factor activity and peroxidase

activity. (Figure 4A). These terms have been reported vital for

drought stress tolerance in plants. The most differentially enriched

genes of DF-vs-DS in biological processes were the defense

response, cell wall organization, and the abscisic acid-activated
FIGURE 1

Effects of fulvic acid on the morphology and physiology of oat (Avena sativa L.) under drought stress. CK was the control, DS was exposed to
drought stress, and DF was exposed to drought stress and was treated with fulvic acid. (A) growth condition. (B) chlorophyll content. (C) leaf area.
(D) dry weight. (E) relative water content. The columns represent the means and the error bars represent ± SD of three replicates. Columns in the
same panel and capped with the same lower case letter are not significantly different P > 0.05 according to Duncan’s multiple range tests.
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signaling pathway. The DEGs enriched in cellular components were

the nucleus and extracellular region. DNA-binding transcription

factor activity and sequence-specific DNA binding were the main

types of genes with molecular function enrichment (Figure 4B).

Thus, genes encoding functionally diverse proteins contribute to the
Frontiers in Plant Science 06
FA-mediated response of oat plants to drought stress, and DF

treatment uniquely and differentially regulates genes for

multiple functions.

To identify the main pathways by which FA contributes to

drought tolerance, the DEGs were subjected to KEGG pathway
FIGURE 3

The correlation among samples and the contrast between groups of differentially expressed genes. (A) Heat map of correlation coefficient between
samples. (B) The total number of differentially expressed genes (DEGs) and upregulated and downregulated DEGs under different treatments. (C) Venn
diagram of DEGs. CK, Normal moisture treatment; DS, drought treatment; DF, Fulvic acid + drought treatment.
FIGURE 2

Effects of Fulvic acid on (A) MDA content, (B) H2O2 content, (C) SOD activity, (D) POD activity, (E) CAT activity, (F) PAL activity in oat,(G) 4CL activity,
and (H) DHA content (Avena sativa L.) leaf under drought stress. CK was the control, DS was exposed to drought stress, and DF was exposed to
drought stress and was treated with fulvic acid. The bars represent the means ± SD of three replicates. Different letters indicate significant
differences at P < 0.05 according to Duncan’s multiple range tests.
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enrichment analysis. Figures 4C, D depicts the scatter plot of

enrichment analysis combined with the number of DEGs-

identified significant pathways. In total, 785 (DS-vs-CK) and 150

(DF-vs-DS) DEGs were mapped to 108 and 67 KEGG pathways,

respectively (Supplementary Table 4). The photosynthesis-antenna

proteins, phenylpropanoid biosynthesis, photosynthesis, ascorbate

and aldarate metabolism, and glutathione metabolism pathways

were enriched in the DS-vs-CK group (Figure 4C). There were more

upregulated genes in the pathway of photosynthesis-antenna

protein and photosynthesis than downregulated genes, while the
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genes in the pathway of phenylpropanoid biosynthesis, ascorbate

and aldarate metabolism, and glutathione metabolism showed an

opposite trend. This indicates that the photosynthesis of oat leaves

in the drought treatment group was weakened, and some secondary

metabolites and their biosynthetic pathways were activated to

enhance the drought tolerance of oat (Supplementary Table 5).

Phenylpropanoid biosynthesis and glutathione metabolism

pathways were significantly enriched in the DF-vs-DS group

(Figure 4D), and the number of upregulated genes was greater

than that of downregulated genes (Supplementary Table 5). This
FIGURE 4

Top 20 enriched GO terms and KEGG pathways from DEGs. (A) GO terms of DEGs in DS-vs-CK. (B) GO terms of DEGs in DF-vs-DS. (C) KEGG
pathway analysis of DEGs in DS-vs-CK. (D) KEGG pathway analysis of DEGs in DF-vs-DS.
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suggests that FA improved the antioxidant defense system and

drought resistance of plants, mainly by promoting the expression of

phenylpropanoid biosynthesis and glutathione metabolism.

Photosynthesis significantly affected the expression of genes

encoding key enzymes in the photosynthesis pathway, including

photosystem II, photosystem I, photosynthetic electron transport,

and F-type ATPase (Supplementary Figure 2). Compared with CK,

the genes related to photosynthesis were downregulated under

drought stress, with the exception of PetH(ferredoxin–NADP

+reductases). Similarly, 25 expressed genes related to the light-

harvesting chlorophyll (LHC) protein complex in photosynthetic

antenna proteins were downregulated. However, these same genes

—encoding PsbS and Lhcb1—were upregulated by FA under

drought stress.
3.3 Leaf metabolome profiles in response
to different treatments

The dataset employed in this study is complex as the difference

between groups is relatively small while the difference within groups

is relatively large. Thus, to obtain more reliable differential

metabolites between the control groups, OPLS-DA was used to

analyze the data collected from the oat leaf samples. In the OPLS-
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DA score diagram, the separation of two different treatment

samples was obvious, and the intra-group clustering was also

evident, indicating that there were different metabolites between

groups (Figure 5A). The heatmap visualized distinct hierarchical

clustering of metabolites obtained in all leaf samples, suggesting that

these metabolites have different expression patterns in response to

the CK, DS, and DF treatments (Figure 5B). These findings

confirmed that the reproducibility among the biological samples

was sufficient for further analyses.

The significant differences in the relative metabolite content

were screened using VIP >1 and p-value <0.05 (t-test results). In

total, 8054 DEMs were detected in all leaf samples and were mainly

classified into benzene and substituted derivatives (289), carboxylic

acids and derivatives (633), fatty acyls (181), flavonoids (224),

glycerophospholipids (322), organooxygen compounds (660),

polyketides (261), prenol lipids (806), steroids and steroid

derivatives (264), and others (3414) (Figure 6A; Supplementary

Table 6). There were 724, 571, and 700 DEGs screened in DS-vs-CK

(433 upregulated and 291 downregulated), DF-vs-DS (329

upregulated and 242 downregulated), and DF-vs-CK groups (448

upregulated and 252 downregulated), respectively (Figure 6B).

Therefore, the differences in metabolite expression induced by FA

in oats changed significantly under drought stress. Overlapping

analysis showed that 132 metabolites commonly responded to DS-
FIGURE 5

Overview of widely targeted metabolome analysis of leaves responsive to CK, DS, and DF treatments. (A) OPLS-DA score map. (B) Heatmap
visualization of the metabolites. The transition from blue to red indicates a gradient of expression abundance for metabolites, ranging from low to
high; the redder the color, the higher the expression abundance of differential metabolites.
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vs-CK, DF-vs-DS, and DF-vs-CK (Figure 6C). Interestingly, in the

132 DEMs, fatty acyls , flavonoids, isoflavonoids, and

glycerophospholipids were highly accumulated, indicating that FA

could improve the drought resistance of oats by regulating the

accumulation of lipids and inducing the change of antioxidants

(Figure 6D; Supplementary Table 7).
3.4 Integrated analysis of the RNA-seq and
metabolome data of oat leaves

The DEGs and DAMs from the same group were mapped onto

the KEGG pathway database to elucidate the associations between

genes and metabolites. A total of 50 and 29 pathways were enriched

in DS-vs-CK and DF-vs-DS, respectively, in which genes related to

phenylpropanoid biosynthesis and glutathione metabolism pathways

were significantly enriched in both control groups, and two metabolic

pathways were also enriched in the metabolome (Figure 7;

Supplementary Table 8). Moreover, these two pathways are
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important for the antioxidant system. Therefore, we focused on the

phenylpropanoid biosynthesis and glutathione metabolism pathways.

In the phenylpropanoid biosynthesis pathway, two genes encoding

phenylalanine ammonia-lyase (PAL) and 4-coumarate-CoA ligase

(4CL) were upregulated, four genes encoding b-glucosidase were

upregulated and one gene was downregulated, nine genes encoding

peroxidase (POD) were upregulated and seven genes were

downregulated, and the metabolites p-coumaric acid and ferulic acid

were upregulated under drought stress. These results indicate that the

phenylpropanoid biosynthesis pathway experienced significant

changes under drought stress, and the aforementioned genes and

metabolites played an important role in protecting oats from drought

stress. FA also significantly affected the phenylpropanoid biosynthesis

pathway. Most genes were still upregulated under FA, such as PAL,

4CL, b-glucosidase, and POD. The expression patterns of metabolites p-

coumaric acid and ferulic acid were opposite to those under the

drought treatment, both of which were downregulated while

sinapitol was upregulated. These results indicated that FA could

improve the drought resistance of oats by promoting the expression
FIGURE 6

(A) Category of the DAMs. (B) Number of differential metabolites between different control groups (C) Venn diagram illustrating the number of DAMs
in DS-vs-CK, DF-vs-DS, and DF-vs-CK groups. (D) Heat map analysis of common DEMs in DS-vs-CK, DF-vs-DS, and DF-vs-CK groups.
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of genes related to the phenylpropanoid biosynthesis pathway and

regulating metabolites (Figure 8A). In the glutathione metabolism

pathway, thirteen genes encoding GST were significantly upregulated,

the metabolite dehydroascorbic acid was upregulated, and L-glutamate

was downregulated under drought stress. FA application increased the

expression of six genes encoding GST and the level of L-glutamate and

decreased G6PD and dehydroascorbic acid. These results indicate that

FA treatment induced relatively higher expression of glutathione

metabolism-related genes and L-glutamate biosynthesis than

drought (Figure 8B).

Network correlation analysis was conducted on the DEGs

and DAMs in these two pathways. In phenylpropanoid

biosynthesis, p-Coumaric acid (C00811), and ferulic acid

(C01494) exhibited a negative correlation with the genes encoding

4CL, PAL, and b-glucosidase, a positive correlation with four genes

encoding POD, and a negative correlation with three genes. Sinapyl

alcohol (C02325) showed an opposite expression pattern with p-

Coumaric acid (C00811) and ferulic acid (C01494) (Figure 8C). In

glutathione metabolism, L-glutamate (C00025) exhibited a positive

correlation with genes encoding GST and a negative correlation
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with genes encoding G6PD . The expression pattern of

dehydroascorbic acid (C05422) was opposite to that of L-

Glutamate (C00025) (Figure 8D). These findings further

confirmed that fulvic acid induced DEGs and DAMs were mainly

concentrated in phenylpropanoid biosynthesis and glutathione

metabolism pathways, and the differential genes were highly

correlated with corresponding metabolites, indicating their

importance in FA mediated drought stress response in plant.
4 Discussion

Under adverse conditions, FA can promote crop growth and

increase yield (Chen et al., 2022b; Jesmin et al., 2023). When plants

are subjected to drought stress, the water content in the body

decreases and growth is delayed, resulting in a decrease in yield. In

contrast, spraying FA can significantly improve plant growth

(Shokhmgar et al., 2023). In the present study, under drought

stress, spraying with FA was observed to reduce the number of

dead oat leaves, deepen the green color of the leaves, and increase
FIGURE 7

Differential enrichment pathways for metabolites and genes. (A), DS-vs-CK, (B), DF-vs-DS, The horizontal axis represents the number of differentially
enriched metabolites and genes in the pathway, and the vertical axis represents the KEGG pathway name. The meta represents the metabolome,
and the gene represents the transcriptome.
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the number of spikelets (Figures 1A-C). The low molecular weight

of FA enables it to penetrate through the pores of the membrane

and promote nutrient entry into the cells by forming complexes

with cations to increase the leaf area of oat leaves and promote the

accumulation of dry matter (Bocanegra et al., 2006; Lalas et al.,

2018). As the most important and effective pigment for

photosynthesis, chlorophyll can reflect the plant’s ability to

assimilate substances to a certain extent, and its content is an

important factor in determining the plant’s photosynthetic capacity

and substance production (Walker et al., 2018). Leaf RWC reflects

the degree of soil aridity as well as the plant’s ability to retain water,

and is most relevant to crop drought tolerance (Utsumi et al., 2019).

(Figures 1D, E). Consistent with this, the expression levels of genes
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involved in chlorophyll synthesis were changed by FA

(Supplementary Figure 3). FA decreased the expression levels of

genes involved in chlorophyll degradation (SGR, NOL, and PAO)

and increased the expression levels of genes involved in chlorophyll

biogenesis (CHLH and CAO). This indicates that the occurrence of

severe cellular water deficit caused by drought-affected chlorophyll

synthesis, Which accelerated the decomposition rate of the original

chlorophyll and consequently decreased in chlorophyll content

(Javadi et al., 2017; Li et al., 2024). In contrast, FA increases

chlorophyll content by improving the water retention capacity of

oat leaves, allowing the leaves to absorb more light energy,

mitigating chlorophyll degradation, and promoting chlorophyll

synthesis (Nikoogoftar-Sedghi et al., 2024; Li et al., 2024). This
FIGURE 8

The expression of important pathway genes and metabolites in oat leaves under CK, DS and FA treatments. (A) Expression profiles of the genes and
metabolites involved in phenylpropanoid biosynthesis. (B) Expression profiles of the genes and metabolites involved in glutathione metabolism. The
rectangular patterns represent the genes or metabolites, and the heatmap at the corresponding place depicts the differential expression of each
identified gene or metabolite, which ranges from green or blue (low) to red (high). (C) The related networks of DEGs and DAMs in Phenylpropanoid
biosynthesis. (D) The related networks of DEGs and DAMs participating in glutathione metabolism and dam. In the related network diagram, blue
squares represent metabolites, yellow squares represent genes, red lines indicate positive correlation, blue lines indicate negative correlation, and
the thickness of the lines represents the strength of the correlation.
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result further supports the expression of antenna proteins,

particularly LHCB1 (Supplementary Figure 2), whose genes are

involved in the regulation of light capture in photosystem II

(Bielczynski et al., 2020). FA may alleviate stress injury by

regulating the light-capture protein of oat plants under drought

stress. In wheat, the overexpression of LHC in chloroplast tissue

enhances stress tolerance (Chen et al., 2023). The up-regulation of

the photosynthesis-related protein PsbR further confirmed the role

of FA in increasing photosynthetic efficiency of oat plants under

drought stress (Wang et al., 2019) (Supplementary Figure 2). In

conclusion, FA can enhance the drought tolerance and growth of

oats by increasing chlorophyll, antenna protein, and photosynthetic

pathway-related gene expression.

Elevated levels of H2O2 in plant tissues under drought stress

may lead to oxidative stress, and the excessive accumulation of ROS

leads to an increase in MDA, a key indicator of oxidative damage to

cell membrane integrity (Begović et al., 2018). In this study, we

found that H2O2 and MDA increased significantly under drought

stress, but spraying FA inhibited this phenomenon. This indicates

that drought stress led to the dehydration and large accumulation of

H2O2 and MDA in the oat leaves, which ultimately led to the

oxidative damage and growth retardation of leaves, while FA

mitigated the oxidative damage of cell membranes by direct

scavenging of H2O2 (Figures 2A, B) (Irani et al., 2021). The

antioxidant enzyme defense system is another important

mechanism for plants to manage drought stress, protecting the

cell membrane from oxidative damage (Wang et al., 2023b). FA is a

broad-spectrum plant growth regulator with pleiotropic effects on a

wide range of unfavorable environmental factors (Sun et al., 2020;

Liang et al., 2024). In our study, a significant increase in antioxidant

enzyme activities was observed under water deficit conditions, and

antioxidant enzyme activities were further increased by FA

treatment (Figures 2C-G). This indicates that FA exerted free

radical detoxification and cell membrane structure repair and

protection effects on plant seedlings, This could maintain the
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stability of the intracellular environment, effectively alleviating the

oxidative damage caused by drought stress, and enhancing the

drought resistance of plant seedlings. Similar results were observed

in cabbage seedlings under calcium nitrate stress (Wu et al., 2023).

The phenylpropanoid biosynthesis pathway not only affects plant

growth and development but also stress responses. Dong and Lin

(2021) found that the plant phenylpropanoid metabolic pathway,

especially lignin synthesis, has an important regulatory function in

plant responses to biotic and abiotic stresses. Phenylpropanes are a

large class of plant secondary metabolites. In the phenylpropanoid

biosynthesis pathway, phenylalanine is deaminated by PAL to

produce cinnamic acid, which is then converted to p-coumaric

acid. Finally, p-coumaric acid is converted to p-coumaroyl

coenzyme A catalyzed by 4-coumaroyl coenzyme A ligase (4CL),

and p-coumarin and p-coumarol coenzyme A are ultimately

formed into lignin through various metabolic pathways (Deng

and Lu, 2017). In this study, we found that PAL genes were

upregulated following the spraying of FA under drought stress,

indicating that the biosynthesis of coumaric acid and ferulic acid

should be higher (Chen et al., 2021). Interestingly, this study found

that the levels of metabolites on coumaric acid and ferulic acid

decreased under the action of FA, and more lignin synthase genes

were also upregulated, such as 4CL. Therefore, it is speculated that

more p-coumaric acid and ferulic acid may be converted into lignin

monomer sinapyl alcohol under the catalysis of 4CL, which

promotes the synthesis of lignin (Zhang et al., 2023). The increase

in sinapyl alcohol in this study also confirms this phenomenon.

Peroxidase (POD) is a multi-functional enzyme. It is involved in

several different plant physiological processes, including stress

resistance, oxidation, and the polymerization of lignin monomers

after transportation to the cell wall (Lee et al., 2021). Under stress,

plants enhance stress resistance by up-regulating the expression of

genes encoding POD (Fei et al., 2020; Li et al., 2021). Research has

shown that POD is a hub gene related to lignin biosynthesis (Yang

et al., 2023). In this study, the upregulated expression of the POD
FIGURE 9

Mechanism of fulvic acid regulating drought resistance of oats.
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gene further indicates that FA can promote lignin synthesis. Lignin

is an important cell-wall component, and the increase in the lignin

level contributes to the fixation of the cell wall (Shah et al., 2023).

Plant lignification has been reported to improve stress resistance

(Chun et al., 2019) and drought (Gu et al., 2020). Therefore, it is

speculated that FA can help plants increase the thickness and

strength of cell walls by promoting lignin synthesis, which

controls water losses, reduces the wilting degree of plants, and

enhances the drought resistance of oats (Ibrahim et al., 2019). The

changes in PAL and POD activities in the physiological indexes

further confirmed the possibility of lignin accumulation in plants.

Glutathione metabolism is known to be involved in the

maintenance of cellular redox homeostasis under drought stress.

This adaptive mechanism repairs oxidative damage by utilizing a

variety of reactive oxygen scavengers (antioxidants) and redox

reactions (Raihan et al., 2023; Wang et al., 2023c). Glutathione

metabolism-related genes and metabolites regulate cellular redox

homeostasis during abiotic stress (Yang et al., 2022; Horváth et al.,

2023; Ali et al., 2024). For example, the overexpression of

glutathione metabolism-related genes and proteins, including

GST and G6PDH, improved drought tolerance in transgenic

plants (Wang et al., 2016; Wei et al., 2020). The overexpression of

GST activates its antioxidant-related transcripts, reduces ROS

accumulation, and enhances plant drought resistance (Nerva

et al., 2022; Niu et al., 2024). In this study, the genes encoding

GST were all upregulated after spraying FA under drought stress,

suggesting that FA may improve the scavenging capacity of ROS in

oats under drought stress by increasing the expression of GST. This

is similar to the results of a previous study on tea plants (Sun et al.,

2020). The pentose phosphate pathway produces of NADPH, which

promotes the production of reduced glutathione and thus maintains

cellular redox homeostasis (Sharkey, 2021). G6PDH, as the rate-

limiting enzyme in the pentose phosphate pathway (PPP), plays a

key role in maintaining redox homeostasis (Li et al., 2023b). Under

drought and cold stress, G6PDH maintains cellular redox

homeostasis by increasing NADPH/NADP+ levels (Landi et al.,

2016; Zhang et al., 2020). The expression of G6PDH can control the

rate of increase of ROS and improve stress tolerance (Jiang et al.,

2022). In this study, we found that the expression of the gene

encoding G6PDH was downregulated after spraying with FA under

drought stress. This suggests that glutathione reduction in FA-

treated oat plants does not strictly depend on the positive PPP

response to replenish NADPH for drought resistance. In contrast,

Sun et al. (2020) showed that FA may enhance the ROS scavenging

capacity of tea plants under moderate to severe drought stress by

increasing the expression of G6PDH and the biosynthesis of the

reduced form of glutathione, This differs from our results, possibly

due to the differences in the species or the degree of stress employed

in the experiments. Ascorbic acid is a powerful antioxidant that

neutralizes free radicals and reduces oxidants, but in this process,

ascorbic acid itself is oxidized to dehydroascorbic acid and loses its

antioxidant function (Njus et al., 2020). Glutathione is a tripeptide

that is able to reduce dehydroascorbic acid and turn it back into

ascorbic acid, allowing it to continues to play an antioxidant role
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(Foyer and Kunert, 2024). In this study, the level of dehydroascorbic

acid decreased after spraying FA under drought stress, and the

results were consistent with the physiological level. This may be

because the FA treatment accelerated the reduction process of

glutathione and converted it back to ascorbic acid, which

enhanced the antioxidant effect and alleviated the oxidative

damage caused by drought stress to oats (Kim et al., 2020). As a

ubiquitous amino acid, glutamate is involved in the synthesis of a

wide range of precursors and plant resistance-related proteins or

non-protein amino acids (Forde and Roberts, 2014). The exogenous

application of glutamate is reported to enhances salt tolerance in

lettuce (Franzoni et al., 2022). Glutamate treatment under drought

stress significantly increases the proline content in the phloem and

xylem of oilseed rape (La et al., 2020). Proline synthesis occurs in

plants under two pathways, namely, through the glutamate and

ornithine pathways. Among them, glutamate is directly or indirectly

involved in altering certain physiological metabolisms (e.g., carbon

and nitrogen metabolism) in plants by regulating the expression of

related genes and the activities of key enzymes, which helps plants

to grow under stress and enhances their adaptability to various

adversities (Goto et al., 2020; Teixeira et al., 2020). In this study, FA

treatment under drought stress increased the level of the metabolite

glutamate. It is hypothesized that FA may promote proline

synthesis and enhance drought resistance primarily by increasing

the glutamate pathway.
5 Conclusion

This study indicates that FA improves drought tolerance and

promotes the growth of oats through physiology and gene and

metabolite expression under water-deficit conditions. FA reduces

cell membrane damage and ROS accumulation, alleviates drought

stress, and promotes oat growth by increasing chlorophyll content

and enhancing antioxidant defense activity. It also improves the

drought resistance of oats by inducing the expression of genes in

phenylpropanoid biosynthesis, glutathione metabolism, and

metabolite accumulation (Figure 9). Our findings revealed a new

direction and theoretical basis for the future research on the use of

FA technology to improve crop drought resistance.
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