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NeRF-based 3D reconstruction
pipeline for acquisition and
analysis of tomato
crop morphology
Hong-Beom Choi, Jae-Kun Park, Soo Hyun Park
and Taek Sung Lee*

Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung,
Gangwon, Republic of Korea
Recent advancements in digital phenotypic analysis have revolutionized the

morphological analysis of crops, offering new insights into genetic trait

expressions. This manuscript presents a novel 3D phenotyping pipeline utilizing

the cutting-edge Neural Radiance Fields (NeRF) technology, aimed at overcoming

the limitations of traditional 2D imaging methods. Our approach incorporates

automated RGB image acquisition through unmanned greenhouse robots,

coupled with NeRF technology for dense Point Cloud generation. This facilitates

non-destructive, accurate measurements of crop parameters such as node length,

leaf area, and fruit volume. Our results, derived from applying this methodology to

tomato crops in greenhouse conditions, demonstrate a high correlation with

traditional human growth surveys. The manuscript highlights the system’s ability to

achieve detailed morphological analysis from limited viewpoint of camera, proving

its suitability and practicality for greenhouse environments. The results displayed an

R-squared value of 0.973 and aMean Absolute Percentage Error (MAPE) of 0.089 for

inter-node length measurements, while segmented leaf point cloud and

reconstructed meshes showed an R-squared value of 0.953 and a MAPE of 0.090

for leaf area measurements. Additionally, segmented tomato fruit analysis yielded an

R-squared value of 0.96 and a MAPE of 0.135 for fruit volumemeasurements. These

metrics underscore the precision and reliability of our 3D phenotyping pipeline,

making it a highly promising tool for modern agriculture.
KEYWORDS

3D phenotyping, neural radiance fields, automated growth measurement, point cloud,

greenhouse application
1 Introduction

Digital phenotypic analysis is increasingly recognized as an essential element in the

accurate morphological analysis of crops and is becoming increasingly important in various

application areas (Tripodi et al., 2022). It goes beyond simple observations to digitalize and

quantify the crop’s genetic trait expressions. In addition, phenotypic analysis is complexly
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linked to environmental data, promoting an informed decision-

making process to optimize cultivation conditions and improve

crop yields.

Two-dimensional (2D) imaging is primarily used in computer

vision-based phenotyping studies. For example, segmentation

algorithms analyze the number of pixels within a segment to

calculate the projected area for area analysis (Fonteijn et al.,

2021). Methods, such as the convex hull method, have also been

employed to analyze the growth state of crops (Du et al., 2021).

Moreover, extracted silhouettes can regressively estimate the crop

volume (Concha-Meyer et al., 2018). Despite their usefulness, these

methods fail to capture the complete complexity of plant

morphology. When reducing 3D structures to 2D representations,

significant data that aid the comprehensive understanding of plant

health and development, such as leaf curvature, area, and overall

plant volume, can be lost.

Several methods using RGB-D cameras and key-point detection

(Vit et al., 2019) have been proposed to obtain 3D information

about crop morphology. For example, structure from motion-based

methods extract phenotyping elements of greenhouse crops from

RGB photos captured from multiple angles (Li et al., 2020; Wang

et al., 2022). Alternatively, laser scanners can obtain more precise

3D plant models (Schunck et al., 2021). Additionally, obtaining the

3D form of crops is essential for future agriculture, as it enables

phenotyping and advanced applications, such as light interception

analysis (Kang et al., 2019). However, 3D phenotyping in

greenhouse environments poses several challenges. First, even

with the light-diffusing film in greenhouses, scattered sunlight can

still create substantial noise during measurements using active 3D

imaging approaches (such as consumer-level depth cameras like

Intel RealSense L515, D435, or laser scanners) (Neupane et al., 2021;

Maeda et al., 2022; Harandi et al., 2023). Second, focusing on high-

interest positions in greenhouse crops, such as tomatoes, results in

low productivity for large and heavy measurement equipment.

Third, narrow spacing, typical of greenhouses, makes obtaining

sensor data from various angles difficult for 3D model acquisition.

The emerging neural radiance field (NeRF) technology (Gao

et al., 2022) offers a new direction for 3D phenotyping. NeRF uses a

fully connected neural network to model volumetric scene features

and render images from various viewpoints, capturing the 3D

structure of a scene. NeRF is robust and can represent complex

morphological structures with fewer and more sparsely distributed

input images, making it suitable for 3D phenotyping. The time

incurred in training NeRFs, which was previously tens of hours, has

significantly improved to just minutes with the advent of Instant-

NGP, applying hash-encoding-based positional encoding (Müller

et al., 2022). Moreover, the user-friendly Nerfstudio framework has

made the application and training of NeRF more accessible (Tancik

et al., 2023). In agriculture, many applications are underway,

including applying semantic segmentation techniques to assist

robots’ scene understanding in greenhouse (Smitt et al., 2024) or

analyzing crops with complex structures (Saeed et al., 2023).

The proposed pipeline encompasses automated RGB image

acquisition through a specialized greenhouse robot platform with
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a 6-degrees of freedom (6-DoF) robot arm. It also includes

acquiring dense point-cloud data utilizing NeRF technology,

followed by extracting detailed morphological information from

the data. A key aspect of this pipeline is adopting a forward-facing

capture technique by operating from a fixed position with a limited

field of view, which means that the crops are not captured from a

full 360-degree angles at ground level. This limitation aligns more

realistically with the practical constraints of greenhouse

environments. Despite this limitation, the approach provides the

noninvasive measurement accuracy of critical crop parameters,

such as length, leaf area, and fruit volume. The application of this

method was demonstrated through nondestructive measurements

of tomato crops in conditions mirroring actual greenhouse

environments. The morphological data obtained were then

compared with that acquired through traditional human growth

surveys, allowing for a thorough evaluation of the measurement

accuracy. The main contributions of this study are as follows:
• A system and data processing pipeline were presented to

obtain 3D crop models in greenhouse environments based

on images automatically collected by unmanned robots.

• The proposed pipeline demonstrates obtaining decent point-

cloud data of crop images from limited viewpoints,

showcasing a realistic method for greenhouse environments.

• The proposed 3D plant model was used to measure the

following: 1D information, such as stem thickness, node

length, and flower position height; 2D information, such as

leaf area; 3D information, such as fruit volume. These

measurements were compared with actual measurements

to demonstrate the suitability of the proposed pipeline for

use in growth surveys.
2 Materials and methods

2.1 Pipeline overview

A 3D phenotyping pipeline was presented; 3D point clouds

based on RGB images obtained from multiple viewpoints were

reconstructed using a robot for nondestructive constraint-

overcoming measurements in greenhouse environments. The

proposed pipeline comprises seven elements, as shown in

Figure 1: (A) Acquiring images using a 6-DoF robot from various

viewpoints. (B) Acquiring camera poses from images and

calibrating these poses to a meter scale. (C) Training NeRF based on

the acquired images and camera poses. (D) Extracting and segmenting

the point cloudbasedon the color anddepth rendering results from the

NeRF. (E) Skeletonizing to identify connections between plant organs

and to extract length information. (F) Reconstructing the surface on

the segmented leaf part of the point cloudandcalculating the area from

the obtained surface. (G) Fittingan ellipsoid to the segmented fruit part

of the point cloud and estimating the fruit volume by calculating the

ellipsoid volume.
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2.2 Image acquisition

The robot illustrated in Figure 2A was developed in a previous

study (Cho et al., 2023) and was employed to facilitate image

acquisition in the greenhouse. The base comprises a smart-farm

robot platform that controls mobility and provides power. A 6DoF

manipulator, UR-5e, with a maximum reach of 850 mm, is

mounted on top of this platform. A machine-vision camera, an

IDS U3-36L0XC, is attached to the end effector of this robot arm

and designed for photographic capture. This camera has a 4200 x

3120-pixel resolution and a frame rate of 20 frames per second. It is
Frontiers in Plant Science 03
connected to a mini-PC via USB to control the image-capturing

process. This mini-PC is connected to the robot arm through a LAN

and is equipped with integrated software to control the image-

capturing process and robot arm.

In addition, the robot arm-based image acquisition system

includes a lift unit for transporting along the Z-axis. This allows

maneuvering the robot arm to the desired crop and then vertically

to the area of interest using the lift. In the greenhouse environment

where the validation was conducted, the average distance between

crops was 40 cm, and the distance between lanes was 150 cm. As

shown in Figure 2B, the robot was deployed in the field to capture
Machine 

Vision Camera Controller

Mini-PC

Lift Unit 

Mobile Robot

Robot Arm

(A) (B)

FIGURE 2

(A) Configuration of the greenhouse unmanned robot platform. (B) Example of a robot taking measurements in a greenhouse.
(g)  Volume:

Elipsoid Fitting

(B) Calibration

(A) Image Acquisition (C) 3D Reconstruction (D) Point Cloud

(E) Length:

Skeletonization

(F) Area: 

Surface Reconstruction

Images

…

Segmentation

(G) Volume:

Elipsoid Fitting

Point Cloud 

Extraction

FIGURE 1

3D phenotyping pipeline for tomato crop analysis. The steps are as follows: (A) Image acquisition using a 6-DoF robot, (B) Camera calibration,
(C) NeRF training for 3D reconstruction, (D) Point cloud extraction and segmentation, (E) Skeletonization for inter-node length measurement,
(F) Surface reconstruction for leaf area measurement, and (G) Ellipsoid fitting for fruit volume estimation.
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images. The image acquisition process, depicted in Figure 1A,

involves capturing images from 64 different poses. These poses

are arranged on the surface of a virtual sphere with a radius of 60 cm

(the average distance between the crop and the robot arm), centered

on the target area of interest. The dome is formed by the portion of

the sphere that falls within the robot arm’s reach, creating a set of

poses that cover the necessary angles.
2.3 NeRF-based 3D reconstruction

NeRF presents a novel approach to 3D scene reconstruction by

synthesizing photorealistic images using deep learning. A fully

connected neural network is used to model volumetric scene

features, rendering complex 3D scenes from 2D image sets. NeRF

can interpolate and extrapolate new views from sparse input data,

creating highly detailed and coherent 3D reconstructions. The

underlying mechanism involves learning the color and density

distribution of light in a scene as a function of the position and

viewing direction. In NeRF, each pixel is represented as a ray. For

each ray, its position information (x, y, z), representing the 3D

coordinates in space, and direction (q, j), representing the viewing
angles, are fed into a multilayer perceptron (MLP). The MLP

outputs the RGB value and transparency (s) for that ray. This

process essentially captures the light and color information passing

through the scene and the density distribution along the rays,

providing the basis for reconstructing a 3D model from 2D

images. In other words, the NeRF model can receive a 5-

dimensional vector, including position and viewing direction, as

input and provide RGB values and depth images as output.

Preprocessing to acquire the pose information of the images

during the image-acquisition phase is essential for the NeRF to

learn and reconstruct a scene. The pose information (x, y, z, q, and
j) is obtained using structure from motion software called

COLMAP (Schonberger and Frahm, 2016). In our pipeline, the

UR-5e robot arm, which supports pose repeatability within 0.03

mm, requires running the COLMAP process only once for each set

of pre-defined robot arm’s poses. The calibration process is shown

in Figure 1B.

A marker with known physical measurements were used during

calibration. Specifically, a 30 cm by 30 cm printed marker was

placed 75 cm away from the robot arm’s base to replicate crop

measurement conditions. By capturing a single scene with this

setup, we were able to obtain the COLMAP results, which provided

the marker’s coordinates in the reconstructed scene. These

coordinates were then matched with the actual known

dimensions of the marker, allowing us to determine the scale

factor that converts the displacement output (x, y, z) from

COLMAP into a metric scale, but also enabled us to reuse the

calibrated camera poses in subsequent image captures. As a result,

there is no need to recalculate the poses using COLMAP each time,

simplifying the NeRF input process.

The Nerfacto model within the NerfStudio framework (Tancik

et al., 2023), chosen for its combination of various NeRF-related

research advantages, aligns well with the proposed 3D phenotyping

pipeline. Despite the excellent pose repeatability of the robot arm,
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Nerfacto’s camera pose refinement (Wang et al., 2021) capability is

crucial for minimizing potential noise in the results. In addition,

hash encoding (Müller et al., 2022) significantly enhances learning

speed, which enhances the overall efficiency of the pipeline. The

proposal sampler (Barron et al., 2022) in Nerfacto, which focuses

sample locations on the regions that contribute the most to the final

rendering, particularly the first surface intersection, is essential for

capturing complex crop details. This focused sampling approach is

integral to accurately depicting the intricate morphological traits for

detailed phenotypic analysis.

During training, we employed the Nerfacto model in Nerfstudio

version 0.3.4, utilizing the default training parameters. However,

because we were solely focused on point-cloud acquisition, we did

not partition the validation set, and instead, adjusted the number of

iterations to 20,000. The training was conducted on a workstation

(AMD Ryzen™ Threadripper™ PRO 5975WX, 256GB RAM,

NVIDIA RTX4090), and completed in approximately 5 minutes.

After training, NeRF’s RGB render output and depth map output

can be mapped for all camera poses included in the training set and

sampled as a point cloud. This process utilized the implementation

built into the NeRFStudio framework.
2.4 Phenotypic trait extraction

In this study, we extract phenotypic traits from point clouds

generated by an earlier pipeline, focusing on inter-node length, leaf

area, and fruit volume. We applied Laplacian-based contraction

(LBC) (Cao et al., 2010) to the point cloud to extract length

information, leading to skeletonization. Skeletonization reduces

the point cloud to a more manageable representation and

emphasizes the structural aspects of the plants. Because the

skeleton resulting from the LBC is a collection of discontinuous

points, we applied the minimum spanning tree (MST) algorithm

(Meyer et al., 2023) to create a more coherent structure. The MST

algorithm transforms the disconnected points into a graph-like

structure, effectively representing the plant’s physical structure.

Thus, the nodes in the skeleton can be aligned with the actual

nodes of the crop stem, accurately representing the plant

morphology. The final topology graph, extracted from the point

cloud, has nodes whose coordinate system corresponds to the

original point cloud. Consequently, the Euclidean distance

between two points of interest in this graph represents the

distance between the crop nodes.

Extracting leaf area and fruit volume measurements requires

preprocessing involving point-cloud segmentation. In this pipeline,

we manually carried out this segmentation using CloudCompare

(2023), as illustrated in Figure 3. Manual segmentation in

CloudCompare allows the precise separation of different

components of the point cloud, specifically distinguishing leaves,

and fruits from other parts of the plant.

To calculate the leaf area, we first performed surface

reconstruction on the segmented point cloud of the leaves. The

total area was calculated as the sum of the triangular areas forming

the mesh obtained from this reconstruction. However, accurately

reconstructing a typically thin leaf structure requires noise removal
frontiersin.org
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near the leaf surface. Our pipeline incorporates a moving least

squares (MLS) technique to address this (Alexa et al., 2001). MLS

effectively converges points near the leaf surface while preserving the

natural curvature and shape of the leaves (Boukhana et al., 2022).

Next, the ball pivoting algorithm (BPA) was employed to generate the

final mesh of the leaf. BPA works by rolling a ball of a specified radius

over points to create a mesh, adeptly bridging gaps between points

while maintaining the integrity of the leaf’s shape.

Finally, we employed ellipsoid fitting to estimate the volume of

the segmented tomato fruits. Our pipeline uses input images

captured from limited angles rather than from a full 360-degree

view, which inevitably limits the measurement of the rear part of the

tomato. However, despite this limitation, the tomato volume can be

approximated by fitting an ellipsoid to the point cloud representing

the measured portion of the tomato.
Frontiers in Plant Science 05
Ellipsoid fitting in this context is a simple but practical

approach for volume estimation when complete data coverage is

not feasible (Sari and Gofuku, 2023). By modeling the visible part of

the tomato as an ellipsoid, we extrapolate the unmeasured portion,

assuming symmetry and typical shape characteristics of tomatoes.

Fitting minimizes the size of the squared distance from the

points to the ellipsoid surface, leading to the estimation of semi-axes

a, b, and c. The optimization can be represented by minimizing the

following function:

  f (a, b, c) =o
M

i=1

x2i
a2

+
y2i
b2

+
z2i
c2

− 1

� �2

(1)

where (xi,  yi,  zi) are the coordinates of the i-th point in the

point cloud, and M is the total number of points in the point cloud.

Optimization was performed using the least-squares method.
FIGURE 3

Manual segmentation of leaves and fruits using CloudCompare. Segmentation is performed by drawing a polygon (green lines) using the clipping
tool. Afterward, a point cloud segmented with a yellow cuboid is displayed.
(A) (B)

FIGURE 4

Obtained color-image (A) and background removal (B) for leaf area calculation.
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Through the optimization, volume V of the ellipsoid fitted to the

tomato point cloud can be obtained.
2.5 Ground truth measurement

To evaluate the accuracy of the proposed pipeline, we describe

the ground-truth measurement methods conducted alongside

image capturing. The results obtained by skilled cultivators using

tape measures were used as the ground truth for measuring the
Frontiers in Plant Science 06
node length. However, considering the node extraction based on

skeletonization in our study, measurements were centered on the

point where the branches diverged as much as possible.

For the leaf area, leaves were cut, affixed to paper, and

photographed in a controlled studio environment, with the

camera positioned directly above at a distance of 40 cm, ensuring

a perpendicular angle. An example of a photographed leaf is shown

in Figure 4A. The ruler is included to facilitate the conversion

between pixel units and metric scale. Subsequently, binary

processing was applied to these images to create silhouettes of the
FIGURE 5

Front and side view appearance of point-cloud created from the input RGB images. The top and bottom two rows represent points near the
growing point and fruit cluster, respectively.
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leaves, as shown in Figure 4B. The leaf area was then determined by

calculating the pixel area of the silhouette in square centimeters

(cm2) using a scale factor obtained from 1 cm pixels on the ruler.

Finally, for volume measurement, we utilized the principle of

buoyancy, which calculates the volume of an object based on the

weight and force required to submerge it in water (Concha-Meyer

et al., 2018). The weight [g] was measured using a scale with a

resolution of 0.05 g. A glass beaker filled with water was placed on

the scale, and its tare function was used to adjust the reading to zero.

The fruit, attached to a wire, was quickly submerged in water and

positioned at the center of the beaker. The reading, which reflects the

weight of the submerged fruit and the weight when pressed down by

the wire, was recorded and represents the volume of the fruit [cm3].
Frontiers in Plant Science 07
3 Results

For validation, we measured the growth points of 16 tomato

crops at the upper parts and the fruit clusters of 16 tomato crops at

the lower parts, resulting in 32 image sets, each comprising 64 multi-

view images. From these, we measured a total of 47 inter-node

lengths, including 1 inter-node length above and 1-2 inter-node

lengths below the topmost flower cluster for each plant. In each of the

lower part image sets, we measured 2-3 leaves and 1-2 fruits. These

selections were based on factors such as size, shape, and proximity to

the robot arm to ensure diversity, resulting in measurements of 37

leaf areas and 20 fruit volumes in total. All measurements were

conducted concurrently with ground-truth measurement.
(A) (B)

FIGURE 6

(A) Skeletonization process through applying Laplacian-based contraction to point cloud and (B) applying minimum spanning tree algorithm to the
skeleton; blue and red dots indicate skeleton and nodes, respectively.
FIGURE 7

Comparison between inter-node length from NeRF and ground truth.
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Figure 5 shows the extracted point clouds, illustrating two

growth points and two fruit clusters. The front-view representation

displays a dense formation of the point cloud, as captured from the

angle at which the images were captured. However, the side view,

representing angles not captured during imaging, shows reduced

performance, especially in regions not directly imaged.

Figure 6 presents the skeletonization results performed to measure

the node-to-node lengths. In Figure 6A, the skeleton created through

LBC is overlaid on the original point-cloud data as blue dots. Figure 6B

shows the application of the MST algorithm to this skeleton; the red

dots represent nodes, and the connections between them are depicted.

A comparison between the distances measured among the red

dots and the node-to-node lengths measured manually is shown in

Figure 7. The results showed an R-squared value of 0.973 and a

mean absolute percentage error (MAPE) of 0.089, indicating a

accuracy in the skeletonization and subsequent measurements.

The error sources can be attributed to fundamental differences in

the measurement approaches; the point cloud data measure lengths

based on the central coordinates of the plant nodes, while the tape

measure records lengths over the plant’s surface. The discrepancy

between the two methods may account for the minor measurement

variations. Despite these differences, the close correlation

demonstrates the effectiveness of the skeletonization process in

accurately capturing the crop’s physical dimensions.
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Figure 8 showcases examples of the segmented leaf point cloud

and the meshes reconstructed using MLS and BPA. The top two

samples demonstrate instances with minimal error, serving as

representative examples of high accuracy, while the bottom two

samples exhibit significant discrepancies, highlighting cases with

large errors.

The variance in accuracy between these two sets of samples is

attributed to the image-capturing angle. Samples with greater errors

include leaves that were curled or rolled up, resulting in one side

not being adequately captured. This lack of complete data

led to inaccuracies in the reconstruction process. Figure 9 further

illustrates this point, with an R-squared value of 0.953 and a MAPE

of 0.090.

Figure 10 shows examples of segmented tomato fruits. Similar

to the previous examples with leaves, the top two samples represent

instances with minimal errors, whereas the bottom two samples

show substantial discrepancies. The high errors likely resulted from

the fruits being partially obscured by leaves or adjacent fruits,

leading to fewer data points being captured and, consequently,

errors in the fitting process.

In Figure 11, the results are quantified, showing an R-squared

value of 0.96 and a MAPE of 0.135. These values indicate a high

degree of accuracy in most cases, with errors primarily arising from

occluded or partially hidden portions of the fruits.
FIGURE 8

Example of leaf point cloud and surface reconstruction. A good example with a small error is at the top, and a bad example is at the bottom.
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The issues encountered, predominantly owing to obscured parts of

the fruit, suggest a potential avenue for improvement in future studies.

Addressing this challenge may involve fitting parametric geometric

models to the fruits or implementing appropriate interpolation
Frontiers in Plant Science 09
methods. Such techniques can help accurately estimate the shape

and volume of partially obscured fruits, enhancing the phenotyping

precision. This approach is beneficial in complex agricultural

environments where occlusion by leaves or other fruits is common.
FIGURE 9

Comparison of surface area from NeRF and ground truth.
FIGURE 10

Example of tomato fruit’s point cloud. A good example with a small error is at the top, and a bad example is at the bottom.
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4 Discussion

4.1 Performance

The 6-axis robotic arm mounted on the SmartFarm robotic

platform used in this study can capture images at 64 poses in

approximately 240 seconds. Due to its general-purpose design, not

specifically optimized for capturing images quickly, the image

acquisition process is relatively time-consuming. However, the

development of dedicated image acquisition hardware could

significantly enhance both image acquisition speed. For example,

implementing a system with rails capable of Z-axis movement and a

camera unit with Pan-Tilt functionality could be considered. This

system can perform multi-angle image acquisition in conjunction

with the robot’s movement on the ground. This approach will not

only reduce the time required for multi-angle image acquisition but

also lower hardware costs.
4.2 Multi-modal point cloud

If an additional camera, such as an IR or multispectral camera,

is installed parallel to the RGB camera when acquiring images, it

becomes feasible to implement a multimodal point cloud. In the

NeRF point cloud construction process mentioned above, the point

cloud is sampled by mapping the RGB image and depth image

generated as the output of NeRF. By aligning multimodal images

taken from the same angle with the generated RGB image, it is

possible to obtain a point cloud where the color from RGB is

replaced by multimodal values. Specifically Thermal imaging using

IR camera can be used to extract physiological indicators from

plants (Pradawet et al., 2023). However, when these thermal data
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are integrated into a 3D structure, enabling the point cloud to

include both morphological and physiological information, there is

potential to develop more sophisticated indicators for analyzing

plant stress or disease, which could lead to more accurate and

representative plant physiological assessments.
4.3 Limitations and future work

Our current study, while demonstrating the potential of NeRF-

based 3D reconstruction for tomato crop phenotyping, has several

limitations that need to be addressed in future research. One

limitation is that the process of extracting regions of interest from

the point cloud or node graph is currently manual. This manual

process introduces the potential for human error and limits

scalability. To enable high-throughput phenotyping, it will be

essential to incorporate additional technologies, such as AI-driven

3D segmentation (Xie et al., 2020), which could automate this process

and significantly improve efficiency.

Another limitation lies in the image acquisition process, which is

constrained by the robot’s fixed position, capturing images only from

angles within the reach of the robotic arm. While this method has

proven effective for capturing the structure of plant nodes in the upper

parts of the crops, it struggles with densely vegetated lower parts where

leaves and other foliage can obscure key details. The occlusion effects

caused by tightly packed leaves can result in sparse point clouds and

reduced accuracy in the final 3D model. The fine details of smaller

leaves are particularly prone to being smoothed out or lost during the

reconstruction process, further complicating accurate representation.

To address these challenges, one approach could involve applying

models that can efficiently process more numerous and detailed input

images (Wang et al., 2022), thereby capturing finer details and reducing
FIGURE 11

Comparison between volume from NeRF and ground truth.
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occlusion issues. Another potential solution is to integrate autonomous

navigation technologies such as SLAM (Simultaneous Localization and

Mapping). By using SLAM (Campos et al., 2021), the robot could link

image sets captured from different locations, such as combining images

taken from the opposite lane of the target crop, to provide a more

complete view.

Additionally, the current pipeline is specifically designed for

tomato crops in a greenhouse environment, with limitations in

accurately measuring fruit volumes in the lower parts of the plants.

Expanding the applicability of this pipeline will require more robust

3D data acquisition methods, possibly through enhanced image

coverage using autonomous mobility or more sophisticated

interpolation techniques, to provide comprehensive volumetric data.

Lastly, we encountered challenges related to crop movement

during image capture in real greenhouse environments. Even

slight movements of the crops during shooting introduced

noise into the 3D reconstruction results, which compromised

accuracy. To address this vulnerability, applying dynamic NeRF

(Pumarola et al., 2021) that add a time axis to the radiance fields

could allow the system to capture the geometry of moving objects.

If integrated into 3D phenotyping, this approach could enable

the system to operate robustly even in open fields where wind

and crop movement are factors, offering a promising direction for

future research.
5 Conclusion

By employing a state-of-the-art combination of NeRF technology

and autonomous robotic systems, we successfully developed a

pipeline capable of capturing comprehensive morphological crop

data from limited viewpoints. The precision of our method was

validated by the R-squared values above 0.953 and MAPE under 0.96

for length, area, and volume measurements, demonstrating its

superiority over traditional growth surveys. However, our study

identified challenges, such as occlusion and incomplete data

capture due to foliage, indicating areas for future enhancement.

Potential improvements could involve integrating parametric

geometric modeling or sophisticated interpolation methods for

more accurate shape and volume estimations of partially visible

fruits. Overall, this research proves the viability of advanced 3D

phenotyping in real-world greenhouse scenarios and paves the way

for future developments in digital agriculture to optimize crop

management and yield through precise morphological assessments.
Frontiers in Plant Science 11
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

H-BC: Conceptualization, Methodology, Software, Writing –

original draft, Writing – review & editing, Data curation. J-KP: Data

curation, Software, Writing – original draft, Investigation. SP:

Methodology, Writing – review & editing, Investigation. TL:

Conceptualization, Project administration, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Korea Institute of Planning and Evaluation for

Technology in Food, Agriculture and Forestry and the Korea Smart

Farm R&D Foundation (KosFarm) through the Smart Farm

Innovation Technology Development Program, funded by the

Ministry of Agriculture, Food and Rural Affairs, Ministry of

Science and ICT, and Rural Development Administration

(421025-04).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The reviewer TM declared a shared affiliation with the authors

to the handling editor at the time of review.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. (2001).
“Point set surfaces,” in Proceedings Visualization, 2001 VIS ‘01, San Diego, CA, USA.
(Washington, DC, United States: IEEE), 21–537. Available at: http://ieeexplore.ieee.
org/document/964489/.

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., and Hedman, P. (2022).
“Mip-neRF 360: unbounded anti-aliased neural radiance fields,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). (New Orleans, LA,
USA: IEEE), 5460–5469. Available at: https://ieeexplore.ieee.org/document/9878829/.
Boukhana, M., Ravaglia, J., Hétroy-Wheeler, F., and De Solan, B. (2022). Geometric
models for plant leaf area estimation from 3D point clouds: A comparative study.
Graph Vis. Comput. 7, 200057. doi: 10.1016/j.gvc.2022.200057

Campos, C., Elvira, R., Rodriguez, J. J. G., M. Montiel, J. M., and D. Tardos, J. (2021).
ORB-SLAM3: an accurate open-source library for visual, visual–inertial, and multimap
SLAM. IEEE Trans. Robot. 37, 1874–1890. doi: 10.1109/TRO.2021.3075644

Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. (2010). “Point Cloud
Skeletons via Laplacian Based Contraction,” in 2010 Shape Modeling International
frontiersin.org

http://ieeexplore.ieee.org/document/964489/
http://ieeexplore.ieee.org/document/964489/
https://ieeexplore.ieee.org/document/9878829/
https://doi.org/10.1016/j.gvc.2022.200057
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.3389/fpls.2024.1439086
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Choi et al. 10.3389/fpls.2024.1439086
Conference. (Aix-en-Provence, France: IEEE), 187–197. Available at: http://ieeexplore.
ieee.org/document/5521461/.

Cho, S., Kim, T., Jung, D. H., Park, S. H., Na, Y., Ihn, Y. S., et al. (2023). Plant growth
information measurement based on object detection and image fusion using a smart
farm robot. Comput. Electron Agric. 207, 107703. doi: 10.1016/j.compag.2023.107703

CloudCompare. (2023). CloudCompare. Available online at: http://www.
cloudcompare.org/ (accessed December 23, 2023).

Concha-Meyer, A., Eifert, J., Wang, H., and Sanglay, G. (2018). Volume estimation of
strawberries, mushrooms, and tomatoes with a machine vision system. Int. J. Food
Prop. 21, 1867–1874. doi: 10.1080/10942912.2018.1508156

Du, J., Fan, J., Wang, C., Lu, X., Zhang, Y., Wen, W., et al. (2021). Greenhouse-based
vegetable high-throughput phenotyping platform and trait evaluation for large-scale
lettuces. Comput. Electron Agric. 186, 106193. doi: 10.1016/j.compag.2021.106193

Fonteijn, H., Afonso, M., Lensink, D., Mooij, M., Faber, N., Vroegop, A., et al. (2021).
Automatic phenotyping of tomatoes in production greenhouses using robotics and
computer vision: from theory to practice. Agronomy 11, 1599. doi: 10.3390/
agronomy11081599

Gao, K., Gao, Y., He, H., Lu, D., Xu, L., and Li, J. (2022). NeRF: neural radiance field
in 3D vision, A comprehensive review. arXiv. Available at: http://arxiv.org/abs/2210.
00379.

Harandi, N., Vandenberghe, B., Vankerschaver, J., Depuydt, S., and Van Messem, A.
(2023). How to make sense of 3D representations for plant phenotyping: a
compendium of processing and analysis techniques. Plant Methods 19, 60.
doi: 10.1186/s13007-023-01031-z

Kang, W. H., Hwang, I., Jung, D. H., Kim, D., Kim, J., Kim, J. H., et al. (2019). Time
change in spatial distributions of light interception and photosynthetic rate of paprika
estimated by ray-tracing simulation. Prot Hortic. Plant Fact. 28, 279–285.
doi: 10.12791/KSBEC.2019.28.4.279

Li, D., Shi, G., Kong, W., Wang, S., and Chen, Y. (2020). A leaf segmentation
and phenotypic feature extraction framework for multiview stereo plant point clouds.
IEEE J. Sel Top. Appl. Earth Obs Remote Sens. 13, 2321–2336. doi: 10.1109/JSTARS.
4609443

Maeda, N., Suzuki, H., Kitajima, T., Kuwahara, A., and Yasuno, T. (2022).
Measurement of tomato leaf area using depth camera. J. Signal Process. 26, 123–126.
doi: 10.2299/jsp.26.123

Meyer, L., Gilson, A., Scholz, O., and Stamminger, M. (2023). “CherryPicker:
semantic skeletonization and topological reconstruction of cherry trees,” in 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). (Vancouver, BC, Canada: IEEE), 6244–6253. Available at: https://
ieeexplore.ieee.org/document/10208826/.

Müller, T., Evans, A., Schied, C., and Keller, A. (2022). Instant neural graphics
primitives with a multiresolution hash encoding. ACM Trans. Graph 102, 1–15.
doi: 10.1145/3528223.3530127

Neupane, C., Koirala, A., Wang, Z., and Walsh, K. B. (2021). Evaluation of depth
cameras for use in fruit localization and sizing: finding a successor to kinect v2.
Agronomy 11, 1780. doi: 10.3390/agronomy11091780
Frontiers in Plant Science 12
Pradawet, C., Khongdee, N., Pansak, W., Spreer, W., Hilger, T., and Cadisch, G.
(2023). Thermal imaging for assessment of maize water stress and yield prediction
under drought conditions. J. Agron. Crop Sci. 209, 56–70. doi: 10.1111/jac.v209.1

Pumarola, A., Corona, E., and Pons-Moll, G. (2021). “Moreno-noguer F. D-neRF:
neural radiance fields for dynamic scenes,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). (Nashville, TN, USA: IEEE), 10313–10322.
Available at: https://ieeexplore.ieee.org/document/9578753/.

Saeed, F., Sun, J., Ozias-Akins, P., Chu, Y. J., and Li, C. C. (2023). “PeanutNeRF: 3D
radiance field for peanuts,” in 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). (Vancouver, BC, Canada: IEEE), 6254–
6263. Available at: https://ieeexplore.ieee.org/document/10209004/.

Sari, Y. A., and Gofuku, A. (2023). Measuring food volume from RGB-Depth
image with point cloud conversion method using geometrical approach and robust
ellipsoid fitting algorithm. J. Food Eng. 358, 111656. doi: 10.1016/j.jfoodeng.2023.111656

Schonberger, J. L., and Frahm, J. M. (2016). “Structure-from-motion revisited,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (Las Vegas, NV,
USA: IEEE), 4104–4113. Available at: http://ieeexplore.ieee.org/document/7780814/.

Schunck, D., Magistri, F., Rosu, R. A., Cornelißen, A., Chebrolu, N., Paulus, S., et al.
(2021). Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for
phenotyping and advanced plant analysis. Agudo A editor. PloS One 16, e0256340.
doi: 10.1371/journal.pone.0256340

Smitt, C., Halstead, M., Zimmer, P., Läbe, T., Guclu, E., Stachniss, C., et al. (2024). PAg-
neRF: towards fast and efficient end-to-end panoptic 3D representations for agricultural
robotics. IEEE Robot Autom Lett. 9, 907–914. doi: 10.1109/LRA.2023.3338515

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., et al. (2023). “Nerfstudio: A
modular framework for neural radiance field development,” in ACM SIGGRAPH 2023
Conference Proceedings. New York, NY: Association for Computing Machinery.

Tripodi, P., Nicastro, N., and Pane, C. (2022). Digital applications and artificial
intelligence in agriculture toward next-generation plant phenotyping. Cammarano D
editor. Crop Pasture Sci. 74, 597–614. doi: 10.1071/CP21387

Vit, A., Shani, G., and Bar-Hillel, A. (2019). “Length phenotyping with interest point
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. New York, NY: IEEE.

Wang, Y., Hu, S., Ren, H., Yang, W., and Zhai, R. (2022). 3DPhenoMVS: A low-cost
3D tomato phenotyping pipeline using 3D reconstruction point cloud based on
multiview images. Agronomy 12, 1865. doi: 10.3390/agronomy12081865

Wang, C., Wu, X., Guo, Y. C., Zhang, S. H., Tai, Y. W., and Hu, S. M. (2022). “NeRF-
SR: high quality neural radiance fields using supersampling,” in Proceedings of the 30th
ACM International Conference on Multimedia. (Lisboa Portugal: ACM), 6445–6454.
doi: 10.1145/3503161.3547808

Wang, Z., Wu, S., Xie, W., Chen, M., and Prisacariu, V. A. (2021). NeRF–: Neural
Radiance Fields Without Known Camera Parameters. Available online at: https://arxiv.
org/abs/2102.07064 (accessed December 8, 2023).

Xie, Y., Tian, J., and Zhu, X. X. (2020). Linking points with labels in 3D: A review of
point cloud semantic segmentation. IEEE Geosci Remote Sens Mag. 8, 38–59.
doi: 10.1109/MGRS.6245518
frontiersin.org

http://ieeexplore.ieee.org/document/5521461/
http://ieeexplore.ieee.org/document/5521461/
https://doi.org/10.1016/j.compag.2023.107703
http://www.cloudcompare.org/
http://www.cloudcompare.org/
https://doi.org/10.1080/10942912.2018.1508156
https://doi.org/10.1016/j.compag.2021.106193
https://doi.org/10.3390/agronomy11081599
https://doi.org/10.3390/agronomy11081599
http://arxiv.org/abs/2210.00379
http://arxiv.org/abs/2210.00379
https://doi.org/10.1186/s13007-023-01031-z
https://doi.org/10.12791/KSBEC.2019.28.4.279
https://doi.org/10.1109/JSTARS.4609443
https://doi.org/10.1109/JSTARS.4609443
https://doi.org/10.2299/jsp.26.123
https://ieeexplore.ieee.org/document/10208826/
https://ieeexplore.ieee.org/document/10208826/
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.3390/agronomy11091780
https://doi.org/10.1111/jac.v209.1
https://ieeexplore.ieee.org/document/9578753/
https://ieeexplore.ieee.org/document/10209004/
https://doi.org/10.1016/j.jfoodeng.2023.111656
http://ieeexplore.ieee.org/document/7780814/
https://doi.org/10.1371/journal.pone.0256340
https://doi.org/10.1109/LRA.2023.3338515
https://doi.org/10.1071/CP21387
https://doi.org/10.3390/agronomy12081865
https://doi.org/10.1145/3503161.3547808
https://arxiv.org/abs/2102.07064
https://arxiv.org/abs/2102.07064
https://doi.org/10.1109/MGRS.6245518
https://doi.org/10.3389/fpls.2024.1439086
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	NeRF-based 3D reconstruction pipeline for acquisition and analysis of tomato crop morphology
	1 Introduction
	2 Materials and methods
	2.1 Pipeline overview
	2.2 Image acquisition
	2.3 NeRF-based 3D reconstruction
	2.4 Phenotypic trait extraction
	2.5 Ground truth measurement

	3 Results
	4 Discussion
	4.1 Performance
	4.2 Multi-modal point cloud
	4.3 Limitations and future work

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


