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Accessing the underlying genetics of complex traits, especially in small grain

pulses is an important breeding objective for crop improvement. Genome-wide

association studies (GWAS) analyze thousands of genetic variants across several

genomes to identify links with specific traits. This approach has discovered many

strong associations between genes and traits, and the number of associated

variants is expected to continue to increase as GWAS sample sizes increase.

GWAS has a range of applications like understanding the genetic architecture

associated with phenotype, estimating genetic correlation and heritability,

developing genetic maps based on novel identified quantitative trait loci

(QTLs)/genes, and developing hypotheses related to specific traits in the next

generation. So far, several causative alleles have been identified using GWAS

which had not been previously detected using QTL mapping. GWAS has already

been successfully applied in mung bean (Vigna radiata) to identify SNPs/alleles

that are used in breeding programs for enhancing yield and improvement against

biotic and abiotic factors. In this review, we summarize the recently used

advanced genetic tools, the concept of GWAS and its improvement in

combination with structural variants, the significance of combining high-

throughput phenotyping and genome editing with GWAS, and also highlights

the genetic discoveries made with GWAS. Overall, this review explains the

significance of GWAS with other advanced tools in the future, concluding with

an overview of the current and future applications of GWAS with

some recommendations.
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GRAPHICAL ABSTRACT
1 Introduction

Mung bean (Vigna radiata L.) is an important food and cash crop

in the rice-wheat-based farming systems of Southeast and South Asia

and is also cultivated in other regions of the world, especially in the

warm regions of the United States, Canada, Australia, and dry parts of

southern Europe. Mung bean is native to the Indo-Burma region of

Asia, probably first domesticated there, and is believed to have

originated in the subcontinent gene center. The wild ancestors of

mung bean, V. radiata var. sublobata, are also from India and can be

found in the sub-Himalayan tract, in the Tarai region and in various

parts of eastern and western India. Subcontinent is the main center of

mung bean diversity, which spreads across the continent from the

Himalayas in the north to the southern peninsula and northeastern

regions (Mishra et al., 2022). The Indo-Gangetic plains are considered

a secondary center of diversity for mung bean. In the past, mung bean

seeds were taken by traders and emigrants from Asia to the parts of

South America, Latin America, East Africa, Middle East, and

Australia (Manjunatha et al., 2023). The area under mung bean

cultivation is increasing worldwide and the reasons behind this are its

tolerance to heat and drought stresses, low input requirements, high

nutritious profile, and most importantly the short crop duration (70

days). Therefore, mung bean has become the most popular niche crop

to fill the time gap between wheat (after harvesting) and rice (before

sowing). Mung beans thrive in the humid and hot climates of tropical

and subtropical regions. They need an annual rainfall of 600 to 870

mm. The best temperature for mung bean growth and development is

between 28 and 30°C, though it can tolerate temperatures up to 45°C.

The crop is susceptible to waterlogging but can handle slightly salty

soils. Mung beans grow well in well-drained loamy to sandy loamy

soils with a pH range of 5 to 8 (Sosiawan et al., 2021). Currently, it is

cultivated in over six million hectares (6m ha) worldwide which is

about 8.5% of the global pulse area and therefore has become one of
Frontiers in Plant Science 02
the most important edible legume crops (Hou et al., 2019). However,

the yield of mung bean in some countries is still very low, ranging

from 0.5 to 1.5 t/ha (Hou et al., 2019).

Mung bean is being consumed throughout the world in

different forms. The seeds of mung bean are rich sources of

proteins, minerals (such as potassium, magnesium and iron),

vitamins and dietary fiber compared to other legumes. On dry

weight basis the seed of mung bean comprised of 62 to 65%

carbohydrates, 3.5 to 4.5% fiber, 4.5 to 5.5% ash, 1 to 1.5% oil

and 24 to 28% proteins (Azmah et al., 2023). The proteins of mung

bean comprise all the essential amino acids such as lysine, arginine,

methionine, tryptophan, isoleucine, valine, phenylalanine, and

leucine (Zhang et al., 2024). During sprouting, it has been

observed that the proteolytic cleavage of vitamins, amino acids,

minerals, and proteins is significantly high. Mung bean holds

significant importance in vegetarian diets due to its large and

easily digestible proteins. Therefore, mung bean consumption

along with other cereals is increasing in the daily human diet

(Sehrawat et al., 2024). Mung bean regular consumption not only

helps in managing body weight but also provides antioxidant

properties, improves digestion, and reduces cholesterol levels in

the body to reduce or prevent the risk of chronic diseases. Besides,

its nutritious profile, mung bean also plays a significant role in

improving soil structure and fertility through nitrogen fixation

(Ahmed et al., 2023).

Due to its agronomic and economic importance, it has been

used as a model crop to study genomic and genetics studies in other

crops of the Vigna group. Mung bean is a diploid (2n) in nature

with 22 chromosomes and a small genome of around 579 Mb

(Somta et al., 2022). In the last few years, research for mung bean

has widely expanded since its full genome was sequenced by (Kang

et al., 2014). However, its genome has not yet been explored in the

ways other models and agronomic crops like Arabidopsis thaliana,
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rice, wheat, cotton, and maize have been explored. Since mung bean

has about 14,187 accessions in the central genebank (the second

largest collection in genebank after soybean), it provides an

excellent resource to efficiently exploit genetic resources in

improving future breeding programs (Schreinemachers et al.,

2014). Comparing the re-sequenced genes with the reference

genome to check the genetic variations and molecular basis can

help in understanding mung bean adaptation to different biotic and

abiotic stresses. Moreover, unlike other crop species, the cross

compatibility among Vigna species has not been widely explored

or understood, and so their gene pool. However, there is generally

no barrier to cross-compatibility between domesticated cultivars

and their closes relatives. Some studies have explored wide

hybridization to expand the genetic base of Vigna radiata using

V. trilobata, Vigna umbellata, and Vigna mungo, showing that

interspecific barriers can be easily overcome (Lin et al., 2023). Few

studies have classified the gene pool of mung bean GP-1, GP-2 and

GP-3. The GP-1 consist of Vigna radiata and Vigna sublobata. The

GP-2 consist of Vigna mungo, Vigna umbellate, Vigna trinervia,

Vigna tenuicaulis, Vigna stipulacea, Vigna grandiflora and Vigna

subramaniana. The GP-3 consist of Vigna angularis and Vigna

aconitifolia. Crop improvement has always been the priority of

plant breeders (Gayacharan et al., 2020). Crop betterment mainly

depends on the availability of genetic variability, which can be

found naturally (wild relatives) or induced artificially through

hybridization or mutagen. Phenotypic variations within plant

species including mung bean are due to the spontaneous natural

genetic mutations that are maintained in nature by natural

selection, artificial and evolutionary processes. Natural variations

have brought great advances in understanding plant physiology,

morphology, and its response to adverse climatic conditions. The

importance of genetic variation in crop can be understood by

elucidating the genetic modifications in agronomic and yield-

related traits. For example, pod shattering in mung bean (one of

the major issues causing substantial yield loss) is controlled by two

quantitative trait loci (QTL) regions (LG1 and LG7). LG7 has also

been reported in azuki bean but LG1 is specific in mung bean. Pod

shattering in mung bean has been improved through domestication

by inducing genetic variation which increased grain yield. Vairam

et al.(2017) also reported the improvement of pod shattering in two

mung bean genotypes (NM 65 and CO-Gg-7) through induced

mutation (Ethyl methane sulphonate and gamma rays) in M2 and

M3 generations (Vairam et al., 2017). Genebanks provide a wide

source of genetic variation which has been widely used in improving

plant species via introducing desired alleles for enhancing yield and

developing resistance against biotic and abiotic stresses. On the

other hand, modern breeding techniques and domestication

processes have also resulted in narrowing down the genetic

variation in cultivars that limit crop yield and adaptation.

The last two decades have witnessed tremendous computational

and technological advances in nucleic acid sequencing. These

advances in the field of genome sequencing are due to the

simultaneous sequencing of multiple DNA molecules at a high-

speed rate and low sequencing cost (Mardis, 2017). Recently, Miga

et al. (2020) for the first time presented the gapless telomere-to-

telomere fully sequence assembly of the human X chromosome;
Frontiers in Plant Science 03
before this, thousands of unresolved gaps persisted and no single

chromosome was sequenced end to end in any organism. Now,

these advances in sequencing technologies have made the genetic

improvement of significant traits in mung beans (e.g., early

maturity, resistance to mung bean yellow mosaic virus, pod

shattering, and seed size) possible. High-throughput-sequencing

(HTS) or Next-generation-sequencing (NGS) techniques like

genotyping-by-sequencing (GBS) offer the possibility to study

thousands of single nucleotide polymorphisms (SNPs) that are

associated with the important traits of mung beans. Besides

advances in sequencing technologies, numerous excellent

statistical-based genetic methods such as whole-genome

sequencing (WGS), whole-exome-sequencing (WES) and

Genome-wide-association-studies (GWAS) have been proposed to

identify genes or alleles controlling target traits. GWAS is a useful

technique that can successfully identify the genes of interest for

many traits in mung beans as it is based on phenotype and genotype

association. In this review we discuss in detail the advancements in

GWAS overcoming its limitations, the current status of GWAS in

mung bean, discoveries of k-mers and structural variations (SVs) as

new markers, the status concerning integrating GWAS and high

throughput phenotyping in plants (a step forward in unlocking

other levels of molecular breeding), expounding the loci found

through the multi-scale plant traits obtained by different high-

throughput phenotyping techniques in GWAS. In our review, we

have focused on mung bean studies as an excellent example of a

model pulse crop that has significant genetic improvement due to

the identification/discovery of useful novel genes and QTLs, used as

markers during selection processes with GWAS. The inherent

challenges and future directions are also discussed to enhance our

understanding of GWAS, PWAS, and HTP with some guidance for

future research.
2 Genome-wide association studies

GWAS detects hundreds of thousands to millions of genetic

variants (single nucleotide polymorphism-SNPs) across the

genomes of many individuals to identify significant associations

between phenotype and genotype. GWAS has revolutionized the

field of genetics, especially dealing with complex traits over the past

decade. GWAS greatly facilitates analyzing the genetic architectures

associated with complex traits and thoroughly explores the genetic

basis of phenotypic diversity.

Unlike GWAS in humans, GWAS in plants uses a permanent

resource, a population of diverse genotypes that can be re-

phenotyped for several traits and only needs to be genotyped

once and one can subsequently generate specific mapping

populations for particular traits or QTLs (Huang and Han, 2014).

The basic theme of GWAS is to compute the association between

markers and phenotypes of interest from a diverse panel. The

effectiveness and robustness of GWAS in dissecting quantitative

traits in crops including mung bean has been fully demonstrated

and, is expected to be more effective in identifying the causative

gene/loci(s) for complex traits by utilizing recently available large

population and high-throughput sequencing technologies. A large
frontiersin.org

https://doi.org/10.3389/fpls.2024.1436532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ahmed et al. 10.3389/fpls.2024.1436532
number of alleles (detected through GWAS) and historical

recombination events can be used to generate a high-resolution

genetic map (Rafalski, 2010) (Figure 1). In association mapping

populations, historical-recombination events that assembled

through several generations with the help of historical Linkage

Disequilibrium (LD) which persist among the representative

accessions and enhance association analysis resolution via rapid

LD decay (Jaiswal et al., 2019).

GWAS maps quantitative traits and dissect natural genetic

variation in combination with genotyping platforms in different

crops including mung bean. For example, In GWAS analysis, the

use of gene-based 9k SNPs Illumina™ chip provides a higher-

genetic resolution that helps in identifying new alleles that improve

crop quality, adaptation, and productivity (Thabet et al., 2021)

(Figure 2). In mung bean, GWAS will be more informative and

robust if we use the newly generated 50k Illumina Infinium iSelect

genotyping array. The primary objective of conducting GWAS is to

identify causal factors for a given trait and determine the genetic

architecture of a specific trait. Crop traits can have either simple

genetic architecture (controlled by a low number of loci e.g., mung
Frontiers in Plant Science 04
bean seed color) or complex genetic architecture (controlled by a

large number of loci e.g., mung bean lobed leaflets).

Several steps have been taken so far to improve GWAS

methodology but some factors still exist that limit the power

of GWAS.
2.1 Factors limiting GWAS power

Many factors limit GWAS’s power to detect true associations

between phenotype and genotype. Some of the factors are

described below:

2.1.1 Variation in phenotypic data
The raw phenotypic data should be carefully analyzed with

outliers identified before performing GWAS. The high level of

variation in the data from normal variation data points can limit

the power of GWAS and might result in false positive or false

negative associations. If there are outliers in the phenotype data, the

next step should be to assess the impact of these outliers on the
FIGURE 1

(A) Selection of plant population based on the research objective. The plant population should support the hypothesis before the experiment such
as if the trait of interest is plant height, then the population be variation for plant height. (B) Phenotypic data should be carefully collected from the
targeted plant population. To avoid or minimize human errors during data collection, advanced high-throughput phenotyping tools must be used to
collect data. (C) Advanced high-throughput phenotyping processing unit (combinations of different tools like camera and picture analysis software).
(D) Genotyping refers to collecting genotypic data using advanced sequencing tools such as WES, WGS, and NGS. (E) Quality control involves
different steps with wet laboratory work like DNA switches and genotyping calling and dry laboratory work like SNPs calling, principal components
analysis (PCA), and population strata detection. (F) Detection of the causative or trait associated SNPs across different individuals using reference
genome alignment, enhancing the resolution and completeness of genotypic data. The SNPs are represented in different colors (red, blue, green,
yellow) to indicate varying physical distances from the causal mutation and to illustrate linkage disequilibrium (LD) decay patterns, where SNPs closer
to the causal mutation may exhibit complete LD. (G) Using an appropriate model for testing genetic associations for each genetic variant,
identification of the QTLs, INDELS, and SNPs associated with a trait of interest.
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GWAS. The boxplot is used to test the effect of outliers and visualize

the data and if there are extreme outliers in the data they should be

excluded. While performing all these steps and removing outliers, it

should be highlighted that the removal of outliers should not affect

the phenotypic variance as it is very important for association.

Additionally, once the filtration of data is completed, traits with

high or moderate heritability must be considered for GWAS

because heritability is one of the great indicators of how strong

the phenotype is associated with genotype and how much the

genetic variance has been contributed to phenotype. The power of

GWAS to detect true associations among phenotype and genotype

is also affected by low broad-sense heritability.
Frontiers in Plant Science 05
2.1.2 Total number of individuals in the
whole population

Population size or sample size is considered a key factor while

performing GWAS as obtaining meaningful results is completely

dependent on the sample size. Population size is important for

explaining portions of genotypic and phenotypic variance;

therefore, an increase in sample size will enhance the chances of

having true associations, overcoming rare variants, and an

acceptable frequency within the population. Sample size ranging

from 100 to 500 (or > 500) individuals is needed or acceptable for

performing GWAS and the sample size below 100 is considered as a

disadvantage that reduces or limits the power of GWAS. Selection
FIGURE 2

This illustration explains the steps and tools involved in performing GWAS in mung bean and other crops. The process begins with the collection of a
genetically diverse plant population (e.g., bi-parental or mixed populations). Next, field trials are conducted, and phenotypic data for traits of interest
is collected using high-throughput phenotyping (HTP) techniques. High-quality DNA is then extracted using Invitrogen kits, followed by sequencing
with advanced platforms such as PacBio. Finally, various analytical tools are applied to identify the associated SNPs.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1436532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ahmed et al. 10.3389/fpls.2024.1436532
of the individuals from a large population for GWAS may be based

on the researcher or breeder’s trait of interest, genetic background,

growth habit, biological status, and geographic region or location.

Mostly, the variation among the individuals within a population can

be accessed through phenotypic observation but genotypic

information can also be used to access the genetic variation. If the

extensive genetic information of individuals is not available, even

though their genetic diversity can be estimated through genetic

markers (DNA markers) for some of the important traits such as

plant height, clusters per plant, pods per cluster, early and late

maturity and photoperiod response like in case of mung bean. Once

the genotypic and phenotypic analyses of individuals are completed,

the individuals with maximum variation are selected for the study.

This careful selection of the individuals from the population can

detect novel true associations due to greater genetic variation that

can be utilized in different aspects of future breeding programs.

2.1.3 Population structure
Population structure is one of the most important components

of GWAS. It is a statistical approach/method that calculates or

infers the relationship between individuals within a population. It is

essential to consider the genealogical or historical relationship

between individuals as it affects the analysis and interpretation of

results. Since not all individuals are equally related to one another at

a genetic level, this is considered the major limitation of GWAS. If

the population structure is ignored during performing GWAS or

not corrected, it results in spurious associations between the

phenotype and genotype. STRUCTURE, a computational-based

software (freely available, latest version V. 2.3.4) that is used to

describe or address the population structure by generating clusters

(subpopulation) within a population (also called Q-matrix) to

estimate which individual belongs to which subpopulation.

STRUCTURE uses multi-loci data of the genotypes and generates

highly accurate clusters to describe population structure.

Controlling population structure is always the biggest challenge to

be tackled properly. Most of the time, the structured associations are

removed to control population structure because of limitations in

explaining the total number of clusters and assigning each

individual to each cluster but that is not always the adequate way.

Moreover, structure analyses are always time-consuming and

require rigorous computational analysis. Price et al. (2006)

introduced another statistical method (called EIGENSTRAT) for

addressing or controlling population structure through principal

component analysis (PCA) by reducing the dimensional genotype

data (Price et al., 2006). The EIGENSTRAT approach uses

genotypic data to estimate genetic variations which are described

via a small number of dimensions. Yu et al. (2006) introduced the

mixed-model technique for controlling spurious associations by

considering multiple/several levels of relatedness through a pair-

wise relatedness matrix (also known as the Kinship matrix donated

by K) (Yu et al., 2006). The kinship matrix uses the genetic

information of individuals to calculate or estimate the

relationship or relatedness between a pair of individuals. If the

value for the relationship between the individuals is high, it means
Frontiers in Plant Science 06
that there is a high genetic similarity between these individuals. For

example, individuals from the same geographical regions will have

the same level of tendency and therefore be clustered in a similar

group. The majority of studies conducted so far in mung bean and

other crops have used both PCA and STRUCTURE approaches to

validate their results (Sokolkova et al., 2020; Wu et al., 2020a; Reddy

et al., 2021; Abou-Khater et al., 2022). Sometimes ADMIXTURE

software is also used. PCA represents results in a scatter plot by

estimating the total variation among the individuals based on their

genetic information. If genotypes are randomly distributed within a

plot and generate no group, it means that the population has no

population structure. STRUCTURE software plots subpopulation

against delta k to determine the population structure. STRUCTURE

HARVEST is an online website that is used to compress and upload

the output results file of STRUCTURE. This software not only

provides the acquired population information but also the best k for

the proposed population. Table 1 outlines the list of software used in

GWAS. Below is the link to STRUCTURE HARVEST

(https://taylor0.biology.ucla.edu/structureHarvester/).

2.1.4 Distribution of allelic frequency
Another important component that limits GWAS power is the

distribution of allelic frequency; as only a few alleles/loci are present

in a few individuals against the whole population. If the number of

alleles is fewer or rare, it results in low-resolution power. Thus, allele

frequency analysis and distribution directly affect the phenotypic

and genotypic associations. If functional alleles are present in the

population with low frequency, their detection becomes very

challenging unless they have a major effect on the phenotype. If

one ignores allelic frequency during GWAS, this might lead to false

results. The majority of studies in GWAS focus entirely on

common/rare variants and mostly display the allelic frequency at

>5%. It means that if the entire population comprises 500

individuals, only 25 individuals are carrying that allele. It shows

that this variant is rare with minor allele frequency (MAF) at <5%.

This MAF or rare allele explains the variation only in a particular

group of individuals within the entire population however, this

variant/allele could be important and helpful in future breeding

programs. For instance, Youssef et al. (2017) studied a barley

population comprised of 209 accessions out of which 13

accessions were collected from East Asia (Youssef et al., 2017).

They reported that the 11 accessions from East Asia (out of 13) were

carrying the allele (MAF <5%) that significantly affected several

complex traits like greater leaf area, number of leaves, and number

of tillers. This finding indicates that low-frequency alleles/loci can

have immense effects on complex traits. They also proposed that

population structure must be carefully studied and linked with

GWAS outputs to interpret the results. However, the lower MAF

also impacts the ability to detect and utilize the genetic variants

associated with the trait of interest. Low MAF also reduces the

statistical power to identify the significant association between the

traits and alleles. Low MAF increases the chances of false negative

results during SNPs association with the trait of interest and thus

the reliability of the results gets reduced.
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TABLE 1 List of recently developed efficient software for GWAS and genetic analysis.

Software/programs/tools Application/use Reference

SMR Figure out whether the trait and SNP associations are mediated by gene expression
levels using Mendelian randomization approach

Mendelian randomization Evaluation of causal relation among traits based on genetic overlap utilizing statistics
summary of GWAS as input file

(Burgess et al., 2015)

PLINK/PLINK2 Use in different steps while performing GWAS, especially in quality control such as
filtering SNPs to separate the associated SNPs from bad SNPs using Hardy Weinberg

equation, minor allelic frequency, and genotyping call rate.

(Purcell et al., 2007)

MACH/Minimac Use to impute missing genotypes adjacent to an available reference panel matched for
ancestry and Minimac involved in speeding imputation time.

(Scott et al., 2007)

BEAGLE Use to impute missing genotypes adjacent to an available reference panel matched
for ancestry

(Browning et al., 2018)

GATK Use for selection of indels and SNPs; acquire reference genome as input file (Liu et al., 2022b)

IMPUTE2 Use to impute missing genotypes adjacent to an available reference panel matched for
ancestry; implement more memory when compared to other tools used for imputation

(Howie et al., 2011)

RICOPILI Use for quality control of raw genetic data and in meta-analysis it requires statistics
summary as input file

(Lam et al., 2020)

PLINK Use to filter the SNPs to minimize the chances of error and identify the real associated
SNPs, mostly used after using GATK for further filtration of SNPs

(Han et al., 2022)

BWA-MEM Use to map reads to the assembled sequence (Liu et al., 2022a)

SMART-PCA Use for raw genotypic/sequencing data PCA; provides PCA at the individual level that
helps in correcting population stratification

(Kinnersley et al., 2015)

Hisat2 Use to read mapped clean reads to reference genome file (Liu et al., 2022b)

FastGWA Used for mixed model genetic association analysis (Jiang et al., 2019)

BGENIE Use for continuous phenotypes genetic association: analyses extremely large sample
size than is > 100,000; custom made for UK Biobank BGENv1.2 file format

(Bycroft et al., 2018)

SNPTEST Use for testing SNPs or genetics associations, perform well with IMPUTE2 (Band and Marchini, 2018)

Softonic Use for statistical data analysis and mostly for principal component analysis
(https://origin-1.en.softonic.com/)

(Liu et al., 2022b)

FlashPCA Similar to SMART-PCA but faster and more scalable with increasing sample sizes
compared to SMART-PCA

(Abraham et al., 2017)

PowerMarker

BamTools/FreeBayes variant caller Use to call SNPs from raw sequencing or fine genotyping data using reference genome
panel (https://github.com/ekg/freebayes)

(Rajendran et al., 2021)

PrediXcan Using GWAS statistical summary as input file to Prioritize likely causal genes based
on transcription data

(Gamazon et al., 2015)

STRUCTURE Use for structure analysis in GWAS population (Han et al., 2022)

KMC Use to estimate the distribution of K-mers across the genome with
different parameters

(Liu et al., 2022a)

GenomeScope Use to estimate genome size, acquire GWAS raw sequencing file as input (Liu et al., 2022a)

REGENIE Use for analyzing a large population (>100,000) genetic association and has the ability
to assess multiple phenotypes at once; memory effective and rapid

(Mbatchou et al., 2021)

QTL Tools Use for QTLs identification and analysis; required raw genomic sequenced data
as input

(Delaneau et al., 2017)

LDSC Partitioned SNP-based heritability analyses showing enrichment in sets of functionally
related SNPs

(Bulik-Sullivan et al., 2015)

DEPICT Use predicted gene functions to assess enriched pathways and systematic prioritization
of genes

(Pers et al., 2015)

(Continued)
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2.1.5 Linkage disequilibrium
In a given population if the alleles are associated non-randomly,

this is called linkage disequilibrium. LD is another important factor

that needs to be considered carefully during GWAS analysis,

particularly when defining intervals of tightly associated SNPs

which help in explaining the foremost significant loci. If one

ignores the alleles’ non-random association at different loci, then

both causative and non-causative alleles will be incorporated during
Frontiers in Plant Science 08
analysis and will result in false associations. LD is very important in

finding all the markers acquired for covering or scanning the whole

genome by determining the distance among loci with the help of LD.

If the value of LD is high it means that a small number of markers

are required to cover the whole genome (Semagn et al., 2010;

Mathew et al., 2018). Long-range LD enhances the chances of

spurious associations therefore calculating LD at the beginning of

association analysis is necessary to avoid false/spurious associations.
TABLE 1 Continued

Software/programs/tools Application/use Reference

Power Marker/SNPhylo Uses SNP data to develop an un-rooted phylogenic tree (Reddy et al., 2021; Sandhu and
Singh, 2021)

MAGMA Use regression framework with competitive testing to assess gene-set and gene-based
analysis; permits custom gene sets testing including s options for conditional and

interaction testing between gene sets

(De Leeuw et al., 2015)

LDPred-2/LD Pred/PRScs/SBayesR Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach (Vilhjálmsson et al., 2015; Privé
et al., 2020)

VCFtools Use to identify chromosomal regions possessing high genetic differences or maximum
nucleotide diversity among subpopulations

(Han et al., 2022)

GenomicSEM Use to assess multivariate genetic correlation using GWAS-based summary statistic (Grotzinger et al., 2019)

LAVA Use to assess local multivariate genetic correlation using GWAS-based
summary statistic

(Werme et al., 2021)

p-HESS Use to assess local SNP-based heredity and genetic correlation using GWAS-based
summary statistic

(Shi et al., 2017)

superGNOVA Use to assess local genetic correlation using GWAS-based summary statistic (Zhang et al., 2020)

fastPHASE Use to detect SNP markers with MAF 0.05
(http://stephenslab.uchicago.edu/software.html)

(Garcıá-Fernández et al., 2021)

SumHer Use to assess genetic correlation between phenotypes using summary statistic as input;
possess several other functions too including assessment of selection bias and

partitioned SNP-based heritability

(Speed and Balding, 2019)

GCTA Use to assess the genetic correlation between phenotypes using raw sequencing file
as input

(Yang et al., 2011)

BLUP Use for different tasks in GWAS such as statistical analysis, association mapping, etc. (Sandhu and Singh, 2021; Abou-
Khater et al., 2022)

FUMA Use for functional annotation of transcriptomics, proteomics, genomics, and also
regulatory regions such as chromatin interaction information and integrates and

visualizes all output

(Watanabe et al., 2017)

ANNOVAR and VEP Use for functional annotation of transcriptomics, proteomics, genomics, and also
regulatory regions

(Mclaren et al., 2016)

HaplotypeCaller Use to identify potential variants in individual samples and generate results in the
GVCF file

(Han et al., 2022)

METAL Use GWAS statistics summary file as input for weighted meta-analysis (Willer et al., 2010)

GWAMA Use for Fixed and random effects meta-analysis; allows the specification of different
genetic models

(Mägi and Morris, 2010)

FINEMAP Use to calculate effect sizes and heritability owing to likely causal SNPs; draw
statistical-fine mapping acquiring GWAS summary statistics as input file

(Benner et al., 2016)

SuSIE Use GWAS statistical summary for fine mapping and LD information from a
reference panel; based on a Bayesian modification of a forward selection model

(Wallace, 2021)

PAINTOR Use GWAS statistical summary for fine mapping and functional genomics data for
prioritizing likely causal variants

(Kichaev et al., 2014)

GAPIT Use to perform statistical analysis such as PCA and also develop genetic kinship
matrix performing GWAS

(Gela et al., 2021)
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The coefficient of LD can help in measuring the values of how likely

two loci are associated and share recombination and mutation

history. This analysis is performed using a disequilibrium matrix

which displays pair-wise calculations between loci by utilizing the

two most common statistics D’ and r2 to measure LD (Flint-Garcia

et al., 2003). Several LD analyses performed in plants to date have

concluded that D’ is likely to be affected by MAF and population size

while r2 is a strong value for estimating how QTL of interest and loci

are correlated. LD is likely to be used for estimating the association

values (D’ or r2, >0) between loci as it is important to link the

causative SNP with phenotypic variation. It is necessary to consider

LD within SNPs as well as in causative alleles during statistical

analyses because these analyses reveal whether SNPs identified

within LD are significantly associated with a phenotype or not. At

this stage in such analysis, it is recommended to consider all SNPs

above the threshold level (sometimes every single SNP even

below the threshold level) to determine which SNP can clearly

explain phenotypic variation since not every highly-associated SNP

can have a greater impact on phenotype. SNPs within LD having an

r2 value > 0.2 must be considered for statistical analysis because they

might be useful to detect causal loci, especially for those QTLs that

are present in the centromeric region (Nadeem et al., 2024).

Mapping resolution (i.e., total markers and density of a given

population) in GWAS is of great importance and it is identified

through genome size and LD-decay (the rate at which LD declines

with physical or genetic distance). The rate of LD decay over a

distance (physical/genetic) varies dramatically for loci within a

population, within a genome, and among species. To accelerate the

rate of LD decay, a greater number of markers would be required for

whole-genome association analysis. This LD decay rate helps find the

total number of markers required for GWAS by dividing the genome

size by the distance at which LD is decayed (Fedoruk, 2013). LD

decay in self-pollinated crops such as mung bean is always larger

compared with cross-pollinated crops like maize and therefore

requires a few markers to cover the whole genome. In mung bean,

the LD decay for cultivated and wild species is estimated at about

∼100 and ∼60, respectively (Noble et al., 2018).

If one is interested in estimating the historical recombination

events within a particular species then LD pattern analyses within a

population can help. However, this depends on several factors like

population structure, population size, genotype selection, genetic

drift, mutation rating, randommating, recombination rate, and allele

frequency. In an association panel (i.e., in artificial selection by

researchers), the allelic frequency is not expected to fit with the

Hardy-Weinberg principle (HWP) proportion for a given loci (i.e.,

unlike bi-parental population, genotype frequencies cannot be

predicted by association population allele frequencies). However,

SNPs that do not fit in HWP are usually excluded from GWAS

analysis (Anderson et al., 2019b). In cross-pollinated species, LD

decay occurs more rapidly than in self-pollinated species because of

large effective recombination. Recombination events in association

populations gathered over generations enhance mapping resolution

due to a greater number of alleles. If the population size is small,

there is a possibility that genetic drift may result in the loss of rare

alleles as well as an increase in LD levels. In addition, selection can

also increase the level of LD such that if recombination or mutation
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occurs among neighboring alleles, they will both be under selection

pressure. Thus, association population selection can result in alleles

that control specific phenotypes (locus-specific linked alleles) which

usually appear in LD. Moreover, migration also increases the level of

LD in the population and greatly affects the genetic structure of the

association panel. Ignoring genetic drift, migration, mutation, and

selection could lead to alleles in linkage equilibrium (D’ or r2 = 0).

Therefore, critical estimation of population structure and

identification of subgroups at the beginning of analyses can reduce

all these factors.
2.2 Newly introduced approaches for
improving and enhancing GWAS power

The introduction and improvements of new approaches for

GWAS have always been an area of interest since LD-based

association mapping was first presented (Lander and Kruglyak,

1995). So far, three major areas have been highlighted with the

notion that these will not only overcome the above-mentioned

limitations but also improve GWAS in different aspects. The three

evolving areas include; (1) the development of new efficient marker

systems (recently discovered k-mers and structural variants(SVs)

for genotyping with emphasis on the use of pan-genomics, (2)

continuous development and improvements of software and

statistical models for statistical analysis to enhance GWAS

resolution, and (3) to minimize errors from phenotypic data by

introducing high through-put phenotyping techniques (Gupta,

2021b). Simple sequence repeats (SSR) were the first type of

markers used in GWAS followed by haplotypes and SNPs. SNPs

are the most common type of markers used in GWAS these days.

Recently two new classes of markers, k-mers and SVs including

chromosomal rearrangements (inversions/translocations),

insertions/deletions (InDels), presence/absence variation (PAV),

and copy number-variations (CNVs) are receiving attention from

scientists because they are becoming valuable resources for GWAS.
2.2.1 Genome and GWAS to pan-genome
and PWAS

Advances in next-generation technologies (NGS) have made it

possible to score thousands of SNPs in a single genotype from an

accession panel of species and compare the genome sequence of

each genotype with an available reference genome. However, this

method cannot score the entire genetic variation present in the

genomes of all genotypes of an accession panel used for GWAS. To

overcome this issue, it was decided to take advantage of the available

genome sequences of individuals within a species, assemble pan-

genomes, and use them for GWAS. Tettelin et al. (2005) assembled

the first pan-genome in Streptococcus agalactiae followed by the

development of pan-genomes in plants, animals, and humans

(Bayer et al., 2020). Now these pan-genomes are being used as

novel reference genomes for GWAS, like the recent acronym PWAS

(pan-genome wide association studies) has also been used for

GWAS (Manuweera et al., 2019). The applications of k-mers and

SVs based on early pan-genome studies discovered two key
frontiersin.org

https://doi.org/10.3389/fpls.2024.1436532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ahmed et al. 10.3389/fpls.2024.1436532
findings; first, in every species there is about 15 to 40% variable gene

content, and second, the genes concerned with k-mers and SVs are

frequently associated with every type of trait including resistance to

abiotic and biotic stresses in crops (Gupta, 2021b). Genomic

variations within species are found in both gene content (e.g.,

PAVs of genes, CNVs distribution across genome, and tandem

duplicated genes) and repeated genome portions (e.g., centromere

repeats, knob repeats, and transposable elements). This variation

has been characterized into three components; core fraction

(genomic fraction common to all genotypes within a species),

dispensable fraction (which might present in the genome of some

genotypes but not in all genotypes) and unique fraction (which is

unique to an individual genotype within a species). Till now, several

pan-genomic studies have been conducted in different crop plants

such as barley (Jayakodi et al., 2020; Wu et al., 2022), wheat

(Walkowiak et al., 2020), sorghum (Ruperao et al., 2021),

rapeseed (Song et al., 2020, Song et al., 2021), soybean (Li et al.,

2014), rice (Zhao et al., 2018a), tomato (Gao et al., 2019), Brassica

oleracea (Golicz et al., 2016; Bayer et al., 2019), Brachypodium

distachyon (Gordon et al., 2017) and Arabidopsis thaliana (Alonso-

Blanco et al., 2016; Van De Weyer et al., 2019). However, no study

on pan-genomics in mung bean has been reported yet. There is a

need for pan-genomics studies in mung bean to explore the

complete genetic variations of some interesting traits such as early

maturity and seed size for developing early maturity varieties with

large seed size.

2.2.2 Characterization of k-mers and SVs
for GWAS

During the last few years k-mers and Svs have been intensively

used for GWAS since pan-genomics have witnessed producing

millions of k-mers and SVs in single plant species. K-mer usually

refers to a subsequence in any sequence with a certain length. K-mers

(they can be in billions to trillions within a species) depend on the k

value. k is the number of nucleotides utilized to develop a set of k-

mers (Figure 3). For example, AGAT is the sequence of four

nucleotides present in DNA, so the value of k will be (4)k;

therefore, if k = 2 then the number of possible k-mers is 16, if k =

3 then k-mers are 64 if k = 6 then k-mers are 4096 and if the k value is

15 or 20 then the k-mers will be in billions and trillions, respectively.

The value of k can be between 2 to 35 or maybe more. k-mers with

different lengths have already been used for GWAS and pan-genome

assembles. k-mers are capable of detecting a wide range of

polymorphisms without requiring any reference genome and can

be used for GWAS. Before k-mer utilization in GWAS, deciding on

the size of k-mers is the first step (Gupta, 2021a). After this, k-mers are

isolated from short, sequenced reads (acquired from each genotype of

an association panel) and then used for k-mers genotyping of one

ormore association panels. k-mers genotyping refers to counting each

k-merwith a particular size (as mentioned above) in each genotype of

the association panel. The genotypic and phenotypic data are then

used to identify marker-trait associations (MTAs) in the form of k-

mers just like SNPs. Voichek andWeigel. (2020) expanded the genetic

variants detected through GWAS to include major rearrangements,

insertions, and detections (Voichek and Weigel, 2020). They directly

used raw sequence data files and derived k-mers and short sequences
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as these can mark a huge polymorphism without using a reference

genome. Later, they linked k-mers associated with phenotype to

specific genomic regions. Using this technique, they studied 2000

traits in maize, tomato, and Arabidopsis thaliana. Results revealed

that MTAs detected through k-mers were not different from those

detected through SNPs, but k-mers allowed detection with more

statistical power as compared to SNPs. However, some of the MTAs

identified through k-mers were not detected earlier using GWAS.

They also detected some new associations through SVs and missing

regions from reference genomes. This study highlighted the

importance of k-mers and SVs for GWAS by not only improving

GWAS power but also detecting associations with more

statistical confidence.

Reduction in sequencing cost of both whole genome sequencing

and short reads have allowed characterization of SVs (PAV/CNV)

more frequently in crops. PAV and CNV detection techniques have

been classified into three categories namely split, pair and depth

reads (Alkan et al., 2011). The split read technique involves SVs

detection within interrupted short read sequences (Alkan et al.,

2011). The read pair technique involves the identification of PAV/

CNV based on discrepancies in the distance between paired-end

sequences relative to their distance in the reference assembly (Alkan

et al., 2011). In the read depth technique, against reference genome

short reads are mapped, and the relative depth of a sequence at a

locus serves as a proxy for copy number in a particular genotype.

Initially, hybridization arrays were used to detect variants but with a

greater number of limitations. Later, the availability of whole

genome sequencing made the detection of variants much easier

but still with some minor limitations. However, these shortcomings

have already been addressed to some extent.

Recently, a few other techniques have been developed to further

improve the PAV/CNV characterization and also leverage the

newly developed library preparation techniques, single-molecules

maturation, and long-read sequencing. For instance, connecting

molecule approaches such as Strand-Seq, Hi-C, and 10x can retrieve

long-range information utilizing short-reads via developing linked

reads specialized libraries. Single-molecule techniques (Bionano

(optical map) and long read sequencings like Oxford Nanopore

and PacBio) permit aligning sequences from several individuals and

due to different read lengths; missing sequencings in the reference

genome can also be characterized. Both of the above-mentioned

techniques have allowed the characterization of both intermediate

and small-sized SVs (Levy-Sakin et al., 2019). However, SVs greater

than 1Mb can be more effectively characterized through optical

maps (Levy-Sakin et al., 2019). SVs with millions of copies in each

crop species have already been identified and are intensively being

utilized for GWAS/PWAS. Wei et al. (2021) presented a

comprehensive quantitative-traits nucleotides [(QTNs) including

CNV and PAV] map of rice based on eight GWAS cohorts (Wei

et al., 2021). They also developed a genome-navigation system

(RiceNavi) for breeding route optimization (BRO) and QTN

pyramiding and implemented it in the improvement of

Huanghuazhan (intensively grown indicarice cultivar). Till now,

these developments have led to the most comprehensive

characterization of PAV/CNV. Ho et al. (2020) have recently

provided a comprehensive review of SVs development in the era
frontiersin.org

https://doi.org/10.3389/fpls.2024.1436532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ahmed et al. 10.3389/fpls.2024.1436532
of genomics (for more information on SVs read the

mentioned review).
3 Genetic and molecular
advancements in mung bean

Modern genetics, molecular breeding and functional genomics

techniques have made plant tolerance against biotic and abiotic

stresses easier and faster. Biotic (such as MYMV) and abiotic

(drought, salinity and temperature) factors reduce mung bean

yield significantly. The emergence and development of the

MYMV (through white fly) across India, destroyed the mung

bean crop fields completely. Later, this viral disease started

spreading rapidly across the borders and started destroying the

mung bean crops in other countries like Pakistan and Taiwan. In

the early 90s Nuclear Institute for Agriculture and Biology (NIAB),

Faisalabad developed the first MYMV-resistant variety through

physical mutation (NM-92). The advancement from conventional

breeding to mutation breeding (chemical and physical mutagens)

was not fast enough as the advancement todays in modern genetics

techniques. Till now several crops including mung beans have been

improved through modern genetics techniques such as marker-

assisted breeding, gene silencing, genome editing, QTLs mapping,

and NGS. Understanding the crop’s genetics associated with the

traits of interest allows the molecular breeders to identify the loci

and construct a genetic map. Subramaniyan and Narayana (2023),

developed a mung bean population through crossing TU 68

(resistant male parent to MYMV) and MDU 1 (susceptible female

parent to MYMV), to access the mung bean resistance to MYMV

through genetic markers. Some of the introgression lines showed

significant resistance to MYMV along with high yield. They further

identified the genes associated with the disease resistance through
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using genetic markers. Talakayala et al. (2022), employed CRISPR-

Cas at two different locations AV1 (coat protein) and AC1 (rep

protein) in mung bean to develop resistance against the MYMV.

The transformed lines (containing Cas9 cassette) displayed minimal

mosaic symptoms and displayed resistance against MYMV by

reducing the accumulation of AV1 and AC1. Besides, several

studies have identified many genes in mung bean associated with

several biotic and abiotic factors and constructed QTL maps. Some

of the examples are given below in details. Figure 4 contains the

several genes identified associated with traits and their

chromosomal location in mung bean.
3.1 QTLs detection in mung bean
through GWAS

We have seen the negative effects of climate change on crop

growth and development including a significant reduction in yield.

Complex traits like yield and seeds per pod in mung bean are

controlled by several alleles and therefore it is difficult to understand

the underlying genetic architecture of complex traits (Yuan et al.,

2020). For example, GWAS analysis in mung bean recently

discovered five QTLs associated with resistance to mung bean

yellow mosaic virus (MYMV). The QTLs qMYMV10_1 ,

qMYMV6_1, qMYMV4_1, qMYMV5_1and qMYMV4_1 was

identified on chromosomes 10, 6, 5, and 4 with a total of 538

SNPs covering 1291.7 cM distance. qMYMV4_1(on chromosome 4)

was found as major and the most stable QTL for resistance to

MYMV (Mathivathana et al., 2019). GWAS analyses have

discovered several novel QTLs for various traits and

environmental conditions like salinity stress in different crops

(including mung bean) that have not been reported previously.

Salinity stress is known to cause a major yield reduction in mung
FIGURE 3

Illustration of different structural variants (SVs) that can be found across crop genomes and responsible for creating genetic variations that lead to
genetic diversity. Structural variants (such as deletions, insertions, duplications and inversions) in combination with genome-wide association studies
(GWAS) can detect hidden SNPs (associated with traits of interest) that remain undiscovered during GWAS analysis.
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bean. Liu et al. (2022a) reported seven QTLs (EVM0012371,

EVM0002218 , EVM0029605 , EVM0033924 , EVM0022712 ,

EVM0017397, and EVM0018329) significantly associated with salt

tolerance in mung bean using GEMMA and EMMAX (Liu et al.,

2022b). These QTLs are distributed on chromosomes 1 and 3. They

also reported that the expression level of candidate gene VrFR08

was up-regulated under salinity stress. Furthermore, another study

reported 5288 SNPs markers through GWAS to mine alleles

associated with salinity stress in mung bean. Significantly

associated SNPs and QTLs were identified on chromosomes 7

and 9 with 7 and 30 genes, respectively. However, QTL on

chromosome 7 stretched from position 2,696,072 to 2,809,200 bp

having seven genes but only one gene Vradi07g01630 was

functionally annotated. Similarly, QTL on chromosome 9

stretched from 19,390,227 to 20,321,817 bp having 30 genes but

only two genes Vradi09g09600 and Vradi09g09510 were

functionally annotated (Breria et al., 2020a). Dissecting the root

genotypic and phenotypic variability in mung bean accessions using
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GWAS revealed that chromosomes 2, 6, 7, and 11 possess QTLs that

control lateral root angel (LRA), chromosomes 3 and 5 having

QTLs that control total dry weight (TDW) and volume (VO) and

QTLs on chromosome 8 control total root length growth rate

(TRLGR). Moreover, gene description on different chromosomes;

chromosome 2 has two genes first (–)-Germacrene D synthase-like

and second gene description is not given (both genes are

significantly associated with LRA), chromosome 3 has one gene

Mannose-1-phosphate guanylyltransferase1 (associated with

TRLGR), chromosome 5 has one gene dehydration-responsive

element-binding protein 2H (DREB2) associated with TDW,

chromosome 6 also has one gene associated with LRA but has no

description, chromosome 7 has two genes first Beta-galactosidase 3

and second gene description is not given (both associated with

LRA ) . C h r omo s ome 8 p o s s e s s e s t w o g e n e s fi r s t

Monodehydroascorbate reductase, second Uncharacterized

LOC106771882 associated with LED. Chromosome 11 has one

gene Protein FAR1-RELATED SEQUENCE5 associated with LRA
FIGURE 4

Distribution of some of the most important genes across chromosomes associated with different mung bean traits discovered through GWAS. The
numbers on each chromosome (in second line) for example on chr1 (1-14), Chr2 (15-22), Chr3 (23-35) represent the number of genes present on
the chromosome associated with the above traits (Supplementary Table 1); SC (seed color), BR (bruchid resistance), CP (crude protein), DF (Days to
flowering), FW (Fusarium wilt), HC (hypocotyl color), Fe (Iron), LRA (lateral root angle), LDM (leaf drop at maturity), LRT (Leaf related traits), LP (Lectin
proteins), LEC (Root length distribution), MYMV (Mung bean yellow mosaic virus), PC (Phosphorus conc.), PCUE (P concentration and P utilization
efficiency), P (Phosphorus), PH (Plant height), PC (Pod color), PL (Pod length), K (Potassium), P_S (Quality traits (Protein and starch), SS (Salinity
stress), SCL (Seed coat luster), ST (Seed texture), SW (Seed weight), SPP (Seeds per pod), SD (Shoot development), TDW(Total Dry Weight), TPU (Total
Phosphorus Uptake), YPP (yield per plant), Zn (Zinc).
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(Chiteri et al., 2022). To this end, several mung bean populations

and marker types have been used to study the genetic variability

among accessions and a wide range of important traits. For

example, the mini core mung bean collection (consisting of 293

to 297 accessions) established by the World Vegetable Centre

Taiwan (also called AVRDC) is intensively used for GWAS

studies that revealed QTLs for different traits and stress

conditions (Breria et al., 2020b; Sokolkova et al., 2020). GWAS

output in mung bean provides novel candidate genes and alleles that

can be used in future breeding programs to develop resistance to

abiotic and biotic stresses and enhance yield to meet targets.
3.2 GWAS: a driver of candidate gene
discovery in mung bean

Statistical geneticists commonly believe that GWAS have

rendered traditional candidate gene identification techniques

obsolete (Duncan et al., 2019). The importance of population

association mapping in identifying the candidate genes associated

with particular traits can be estimated from the number of studies

published since 2015. In this section, we shall also illustrate the

potential of GWAS in detecting allelic variations with examples

shown in Table 2. The first genome-wide study in mung bean was

conducted by Van et al. (2013) to assess the genetic diversity and

identify the SNPs markers associated with resistance the MYMV

and seed shattering (Van et al., 2013). They used Illumina Hiseq to

sequence Gyeonggi jaerae 5 and Sunhwanokdu (two mung bean

cultivars) and sequenced more than 40 billion base pairs (from both

cultivars) to a depth of 72x. They identified a total of 305,504 SNPs

out of which 42 were significantly associated with both the traits

mentioned above. In the beginning, identifying candidate genes

using whole-genome sequence data was difficult due to the lack of

knowledge of GWAS and the tools/software required for handling

the large data. Later Korean scientists, Daovongdeuan et al. (2017)

carried out the second GWAS attempt in mung bean to study seed

size and color using 218 accessions collected from different regions

of the world (Daovongdeuan et al., 2017). They could not identify

any significant SNP marker associated with the studied traits at a

LOD of 6 and p-value <0.05. This second attempt of GWAS in

mung bean once again failed in reporting the candidate genes

associated with seed size and color. However, they reported that

the studied traits were controlled by several alleles but with minor

effects. VrMYB113 (on chromosome 4) and Vrsf3′h1 (on

chromosome 5) are the first two genes in mung bean discovered

using GWAS; that are associated with the seed coat color (Noble

et al., 2018) (Figure 4, Supplementary Table 1). MYB113 was first

reported by Gonzalez et al. (2008) in Arabidopsis thaliana,

responsible for anthocyanin biosynthesis (Gonzalez et al., 2008).

Anthocyanin concentration in mung bean and other plants depends

on the expression levels of MYB113. miR828 (micro-RNA828) and

TAS4 (trans/acting siRNA4) are small endogenous RNAs,

responsible for post-transcriptional suppression of MYB113.TAS4

and miR828 mutants were developed using CRISPR-Cas to further

confirm the involvement of MYB113 in anthocyanin biosynthesis.

The mutant plants accumulated more anthocyanin compared with
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untreated plants, thus confirming the significant association of

MYB113 with seed coat color (Sunitha and Rock, 2020; Koo and

Poethig, 2021). FRO8 gene is another example detected by GWAS,

associated with tolerance to salinity stress in mung bean (Liu et al.,

2022b). FRO8 had a direct connection with the BELL-1 gene. The

BELL-1 like family (BELL) of transcription factors is ubiquitous

among plant species and found in regulating a range of

developmental processes through interacting with KNOTTED1-

like proteins (Kurt and Filiz, 2020). Jg5489 which is a homolog of

WUSCHEL-related homeo-box-3 (WUS), associated with yield per

plant in mung bean has also been discovered using GWAS. In the

same study, they also discovered several other candidate genes

jg35209 and jg3587 that are homologs to Glyma09g33350/

Glyma09g33340 and Glyma03g01540 (soybean candidate

genes identified using GWAS) associated with days to flowering

(Mao et al., 2017).

In contrast, Ahmed et al. (2021), for the first time in chickpeas

discovered RPLP0 and EMB8-like candidate genes using GWAS

associated with salinity stress (Ahmed et al., 2021). Similarly,

Maalouf et al. (2022) discovered candidate genes (MYB-related P-

like protein, PsaA, RCH1, NAK, and LRR) through GWAS in faba

beans associated with herbicide tolerance. The successful above-

mentioned examples of candidate gene identification through

GWAS provide strong evidence that GWAS can rapidly detect

hidden loci/genes associated with important plant traits and that

can be effectively used to further strengthen the mung bean

breeding program.
4 Recent advances in high-
throughput phenotyping in GWAS

Domestication started many decades ago in response to feeding

the large population and protecting plants from adverse climatic

conditions. Domestication requires many years (about 6 to 7 years

mostly) to develop a single crop variety. This challenge forced

researchers to find new ways to speed up the process of crop

improvement. Therefore, various techniques were successfully

introduced to improve crops within a short duration and whole

genome sequencing was one of those techniques. Since whole-

genome sequencing has been achieved in several crops, functional

genomics studies have stepped into the big-data and high-

throughput phenomics era. In 1911, Wilhelm Johannsen

characterized the word phenotype for the first time as “all type of

organisms can be distinguished by direct inspection or with finer

method of measurements or description” (Johannsen, 1911). Later,

Davis in 1949 defined the word phenome as “the total of extra genic,

non-auto-reproductive portions of the cell and represented the set

of phenotypes” (Davis, 1949). Simply, crop phenomics can be

defined as “the multi-disciplinary study of high throughput

accurate acquisition and multi-dimensional analysis of

phenotypes on a large scale through crop development” (Yang

et al., 2020). Plant phenotype is influenced by genotype and

environment (G x E) interactions. According to Mendelian

genetics, in the presence of a dominant allele, the recessive allele
frontiersin.org
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TABLE 2 List of candidate gene(s) discovered and validated using GWAS in mung bean and other pulses.

e ID Chromosome
Position

Validation Reference

Chr.1 Comparative
genomics,

Transcriptome
and

Metabolomics
PCR, statistical

analysis,
data

integrations

(Liu
et al., 2022b)

09, jg3587,
rs.

Chr.1, Chr.4, Chr.5,
Chr.7, Chr.10

Markers,
Transcriptome

and
Metabolomics,

statistical
analysis,
data

integrations

(Liu
et al., 2022a)

53988,
76541,

72343

Chr. 2, Chr. 7, Chr.
11, Chr. 8, Chr. 5

Mapping,
Molecular
markers,
statistical
analysis,
data

integrations

(Chiteri
et al., 2022)

6500,
7820,
7800

Chr. 5, Chr. 3,
Chr. 4

Re-sequencing,
variant

Mapping,
Molecular
markers,
statistical
analysis,
data

integrations

(Han
et al., 2022)

G20860,
G00070,
G09030

Chr.1, Chr.5, Chr.6,
Chr.8, Chr.9

Sanger
sequencing,
expression

(Reddy
et al., 2021)
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14
Population Sample
Size

Growth
habit

Model Markers Phenotype Software/programs/
tools

Candidate gene(s)/Ge

Mung bean

Chinese
accessions

112 Summer GEMMA,
EMMA

160.14K Salinity-stress
survival rate 10
and 15 Days

Softonic, Hisat2, and GATK VrFRO8

Chinese and
other
origin

accessions

750 Spring
and

Summer

GEMMA 2.9K Insect resistance,
yield, gain

composition,
pod width, pod
length, flowering

period, etc.

KMC, GenomeScope, BUSCO,
BWA-MEM, Hi-C,

LTR_retriever, RepeatModeler,
RepeatMasker, ADMIXTURE,
BRAKER2, HISAT2, ProtHint,
GUSHR, Infernal, Barrnap,
Rfam, r8s, TimeTree, WGD
detector, Profiler, MCScan,

MaSuRCA, QUAST, CD-HIT,
Mosdepth, Picard,

EIGENSOFT, iTOL, R-
programming, VCFtools

and LDBlockShow

jg22573, jg5284, jg13746, jg352
jg30665 and 250+ oth

USDA and
Asian

accessions

375 Growth
chamber

MLM 26.5K TDW, VOL,
TRL_GR, LED,

LRA, etc.

TASSEL LOC106755829, LOC1067
LOC106768494, LOC1067

LOC106772343,
LOC106771882, LOC1067

Chinese
accessions

558 Spring
and

Summer

GEMMA 69.9K Branch number,
plant height,

pod width, pod
length,

Flowering time,
and

quality
parameters

SAMtools, GATK, e
HaplotypeCaller, PLINK,
MEGA-X, STRUCTURE,
VCFtools, R-programming

Vradi05g00200, Vradi03g
Vradi04g07830, Vradi04g
Vradi04g07810, radi04g0

AVRDC
accessions

120 Glass house MLM,
CMLM

55.6K TDW, PC,
TPU, PUtE

TASSELv5.0,
STRUCTUREv2.3.4, PLINK,

VRADI01G04370, VRADI05
VRADI06G12490, VRADI08
VRADI08G20910, VRADI0
n

e

0
0
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TABLE 2 Continued

ene ID Chromosome
Position

Validation Reference

analysis,
Markers

,
6774729,
6758789,
,
,
6772003,
6774971

Chr.1, Chr.2, Chr.4,
Chr.5, Chr.6, Chr.8,

Chr.9, Chr.10

Sequencing,
Histogram

plots,
Statistical
analysis,
Molecular
markers

(Sandhu and
Singh, 2021)

5g08320
Chr. 5 Molecular

Markers,
statistical
analysis,
data

integrations

(Breria
et al., 2020b)

9g09510
Chr.7, Chr.9 Molecular

Markers,
statistical
analysis,
data

integrations

(Breria
et al., 2020a)

g00830,
g16350,
g26320,
g22740,
g10120,
g10020,
g06200,

6g02380

Chr.1, Chr.5, Chr.7,
Chr8, Chr.6

Statistical
analysis,
Molecular
markers,
Mapping,
Data

integrations

(Wu
et al., 2020b)

′h1 Chr.4, Chr.5 Mapping, Data
integrations,
Statistical
analysis

(Noble
et al., 2018)

HI Chr.2, Chr.4,
Chr.5, Chr.7

qRT-PCR,
QTLs

Mapping,

(Ma
et al., 2020)
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15
Population Sample
Size

Growth
habit

Model Markers Phenotype Software/programs/
tools

Candidate gene(s)/G

Mung bean

MEGA v6.0,
PowerMarker v3.51

USDA
accessions

482 Spring
and

Summer

CLMM,
FarmCPU

264.5K Qualitative seed
traits, 100- seed
weight, days to
flowering, Plant
height, etc.

CLML, GAPIT, BLUPs,
FarmCPU, Numericware-i,
STRUCTURE, PLINK,

SNPhylo, DISTRUCT, R-
programming,

CLUMPP, adegenet

LOC106774729
LOC106774729, LOC10
LOC106756462, LOC10

LOC106759308
LOC106760769

LOC106764910, LOC10
LOC106773047, LOC10

AVRDC mini-
core collection

297 : MLM,
GLM

5.3K Seed coat luster TASSEL 5.2.31,
STRUCTUREv2.3.4,
R-programming

Vradi05g09110
Vradi05g09100, Vradi0

AVRDC mini-
core collection

284 Controlled
Conditions

FarmCPU,
MLM

5.3K Salinity stress TASSEL 5.2.31,
STRUCTUREv2.3.4,
R-programming

Vradi07g0163,
Vradi09g09600, Vradi0

USDA
accessions

95 Summer MLM,
GLM

6.48k Seed minerals
Zn, P, S, Mn, K,

Fe, Ca

TASSEL, BWA,
R-programming

Vradi01g00840, Vradi0
Vradi01g00820, Vradi0
Vradi07g26340, Vradi0
Vradi07g1418, Vradi08
Vradi06g10210, Vradi0
Vradi06g10060, Vradi0
Vradi06g09900, Vradi0

Vradi07g05950
Vradi01g05570, Vradi0

Australian
accessions
including
wild types

482 Summer MLM 22.2K Seed coat color TASSEL, R-programming,
DARwin v6.0

VrMYB113, Vrsf3

Other Species

Lentil
accessions from
60 countries

326 Winter MLM 164.1K Aphanomyces
root rot index,
Root dry weight,

Haploview (v 4.2),
Cartographer, BWA,

SAMtools, Freebayes (v1.2),

ABCA, PE, and C
,

1
5
7

6
6
7
,
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ne ID Chromosome
Position

Validation Reference

Molecular
markers
Statistical
analysis,

MTAs)
5,
7

Chr.2, Chr.3, Chr. 5,
Chr. 6, Chr. 7

Molecular
markers, PCR,

Statistical
analysis,

(Rajendran
et al., 2021)

.3g006380,

.3g005310,
s includes
758,
230,
58,
133,
129

Chr.3, Chr.4, Chr.5,
and Chr.6

GenBank,
Molecular

Markers, QTL
mapping,
statistical
analysis

(Gela
et al., 2021)

.7g016850,

.6g015410,

.2g028680,

.2g028680,

.1g069450,

.7g048400,

.7g048450,

.7g048380,
.6g015410,
.4g045790,
.1g020350,
.6g040560,
.3g057050

Chr.1, Chr.2, Cr.3,
Chr.4, Chr.5,
Chr.6, Chr.7

Statistical
analysis,

Histograms,
GBS and
molecular

markers, and
chemical
analytical
techniques
through
advanced

instruments

(Johnson
et al., 2021)

s) including
5443_27,
3782_10,

Chr.2, Chr.3,
Chr.4, Chr.5

Statistical
analysis,

Association
mapping, PCR,

Molecular
markers

(Das
et al., 2022)

G117200,
G206200,
G141800,

Chr.1, Chr.2, Chr.4,
Chr.6, Chr.7,
Chr.8, Chr.10

Statistical
analysis, QTL
mapping,

(Garcıá-
Fernández
et al., 2021)
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16
Population Sample
Size

Growth
habit

Model Markers Phenotype Software/programs/
tools

Candidate gene(s)/Ge

Other Species

Shoot
dry weight,

VCFtools, BEAGLE (v 3.3.2),
R-programming

ICARDA
lentil accessions

176 Winter GLM 22.5K Days to first
flower, Plant

height, Seed per
pod, days to
maturity,

harvest index

TASSEL, Freebayes, BamTools,
Stacks, RAD-Tags, PGDSpider,

STRUCTURE, UPGMA,
NTSYS-PC program 2.02k,

CDC Redberry

Marker trait associations
SLCCHR3, SLCCHR
SLCCHR6, SLCCHR

Diverse
Lentil

accessions

200 Winter MLM 21.6K Resistance to
anthracnose

race 1

VCFtools, MSTMap,
ICIMapping, KnowPulse
database, SNPRelate,

STRUCTURE, Bayesian-
model-based, GAPIT,

R-programming

Lcu.2RBY.3g006340, Lcu.2RB
Lcu.2RBY.3g005880, Lcu.2RB
Lcu.2RBY.3g006350 and MA

Lcu.2RBY.Chr6.374326
Lcu.2RBY.Chr5.437944
Lcu.2RBY.Chr5.28637
Lcu.2RBY.Chr4.442702
Lcu.2RBY.Chr4.44270

Lentil
accessions

143 Winter GEMMA 22.2K Identification of
pre-biotic

carbohydrates,
Total Starch,

Resistant Starch,
Stachyose
+Raffinose,
Sucrose,
Fructose,
Glucose

and Mannitol

VCFtools, GAPIT, TASSEL,
FarmCPU, VanRaden, PLINK,

R-programming

Lcu.2RBY.7g016860, Lcu.2RB
Lcu.2RBY.6g060190, Lcu.2RB
Lcu.2RBY.3g007570, Lcu.2RB
Lcu.2RBY.2g028670, Lcu.2RB
Lcu.2RBY.2g028670, Lcu.2RB
Lcu.2RBY.1g023480, Lcu.2RB
Lcu.2RBY.7g048380, Lcu.2RB
Lcu.2RBY.7g048410, Lcu.2RB
Lcu.2RBY.4g007850,Lcu.2RBY
Lcu.2RBY.5g043890, Lcu.2RB
Lcu.2RBY.2g055260,Lcu.2RBY
Lcu.2RBY.1g020320, Lcu.2RB
Lcu.2RBY.4g026570, Lcu.2RB

Lentil
accessions

118 Winter MLM 3.2K Resistance to
Pea Aphid (PA
resistance traits

STACKS v.2.0, BWA,
SAMTOOLS v.0.1.19, BEAGLE

v.3.3.2, FarmCPU,
HAPLOVIEW v.4.2,
R-programming

Marker trait associations (MTA
7173_43, 7453_32, 5957_51
5421_34, 3884_57, 4584_48

2642_48, 3385_39

Common bean
Spanish

diverse panel

308 Spring MLM 32.8K Pod
morphological

fastPHASE, Tassel,
mrMLM, GAPIT,

Phvul.010G118700, Phvul.01
Phvul.008G019500, Phvul.00
Phvul.006G074600, Phvul.00
(

Y
Y
T

4

2

Y
Y
Y
Y
Y
Y
Y
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Y
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e ID Chromosome
Position

Validation Reference

G139100
Molecular
markers,

Sequencing

ding
-related
6_60 (gene
PsaA),
alate
_16 (gene,
ein kinase
ne, LRR
otein kinase
1(gene,

—— Molecular
markers,
Statistical
analysis

(Abou-Khater
et al., 2022)

3927,
5950,
0332,
0352,
12103,
47809,
0962,
96898,
92966,

3943

——– Molecular
markers,
Statistical
analysis

(Maalouf
et al., 2022)

s) including
027240,
127690,
007030,
033880,

046030

Chr.2, Chr.3, Chr.4,
Chr.5, Chr.7

QTL mapping,
PCR,

Molecular
markers,
Statistical
analysis

(Sallam
et al., 2016)

4634, Affx-
1, Affx-
, Affx-
, Affx-
, Affx-
, Affx-

Chr.1, Chr.2, Chr.3,
Chr.4, Chr.5, Chr.6

Molecular
markers, NIR,

HPLC,
Statistical
analysis,
Genetic

map, QTLs

(Puspitasari
et al., 2022)
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Population Sample
Size

Growth
habit

Model Markers Phenotype Software/programs/
tools

Candidate gene(s)/Ge

Other Species

and
color characters

Phvul.001G262600,
Phvul.001G229900, Phvul.00

Faba bean
accessions from
ICARDA and
other countries

140 Winter,
Spring

GEMMA 10.8K Herbicide
tolerance traits
include Plant

height, seeds per
plant, pods per
plant, branches
per plant, yield
per plant, days
to maturity, and

days to
50% flowering

ADMIXTURE, TASSEL,
Bowtie, GenStat, BLUP,

R-programming

SNP trait association inc
SNODE_7114_58 (gene, MY

protein P-like), SNODE_55937
photosystem I core protein
SNODE_4187_38 (gene, m

dehydrogenase), SNODE_3696
Probable serine/threonine-pro
NAK), SNODE_14298_44 (g

receptor-like serine/threonine-p
RCH1), SCONTIG127798_

acidic endochitinase

Faba bean
accessions from
ICARDA and
other countries

134 Summer,
Spring,
Winter

GEMMA 10.8K Heat resistance
including, Plant
height, seeds per
plant, pods per
plant, branches
per plant, yield
per plant, days
to maturity,
days to

flowering, pollen
germination,
and 100

seed weight

TASSEL, Bowtie,
ADMIXTURE, TASSEL,
BLUP, R-programming

LOC11440721, LOC1137
LOC11440721, LOC1093
LOC11420332, LOC1142
LOC11420332, LOC1143
LOC101493666, LOC1015
LOC114380151, LOC1138
LOC109813943, LOC255
LOC101496898, LOC1014
LOC112012620, LOC1014

LOC101492966,
LOC11425609, LOC1098

Faba
bean accessions

290 Winter MLM,
GLM

687 Frost resistance
traits including
AUSPC, LTAF,

LCAF,
FAC, FPC,

TASSEL, PowerMarker, QTL
Network, STRUCTURE,

R-programming

Marker trait associations (MTA
VF_MT3G086600, VF_MT2
VF_MT4G125100, VF_MT4
VF_MT5G026780, VF_MT4
VF_MT5G005120, VF_MT5

VF_MT7G090890,
VF_MT7G084010, VF_MT5

Faba bean a
inbred lines

189 Winter MLM 2.54K Convicine and
vicine contents

in seeds

TASSEL, WinISI II,
R-programming

SNPs associations, Affx-100395
1003937842, Affx-30947369
308714105, Affx-30973215
308989324, Affx-30985941
309903736, Affx-30875015
310120776, Affx-30971272
n
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Candidate gene(s)/Gene ID Chromosome
Position

Validation Reference

310628027, Affx-
308848038, Vf_Mt4g053880

,

,

S6_7891103, S7_9379786, S4_4477846,
S6_26554579, S4_31996956, S1_2001361,

S1_2772537, S7_32973784

Chr.1, Chr.4,
Chr.6, Chr.7

Molecular
markers,
Statistical
analysis,
Mapping,

(Srungarapu
et al., 2022)

Evaluated the genetic variability based on
the number of SNPs per chromosome. No

gene was reported.

26.7K SNPs on
Chr.1, 18.1K on
Chr.2, 13.6K on
Chr.3, 52.3K on

Chr.4, 27.8K on Chr.
5, 129.3K on Chr.6,
25K on Chr.7, 5.5K

on Chr.8

Statistical
analysis,

(Liu
et al., 2021)

RPLP0, EMB8-like Ca2, Ca4 Statistical
analysis,
Molecular
markers,
Cross-

validations

(Ahmed
et al., 2021)

,
of
,

,

Ca03227, Ca03400,
Ca24399, Ca22196, Ca09146, Ca03842,
Ca00947, Ca12262. Ca09416, Ca27126,

Ca19289, Ca06927

Chr.1, Chr.2, Chr.3,
Chr.4, Chr.5, Chr.7

Association
mapping, QTL

Mapping,
HPLC,

Molecular
markers, RT-

PCR,
Statistical
analysis

(Upadhyaya
et al., 2016)
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Population Sample
Size

Growth
habit

Model Markers Phenotype Software/programs/
tools

Other Species

Chickpea
ICRISAT
accessions

280 Winter MLM 4.6K Zn and Fe
concentrations,
Day to 50%

flowering, Days
to maturity, and
100 seed weight

TASSEL, GAPIT, Admixture
BLINK, STRUCTURE,

STRUCTURE HARVESTER
BLUPs, FarmCPU

Chickpea
Australian
accessions

315 Winter MLM 298K Yield
related traits

BLUE, GeneStat, Tassel,
R-programming

ICARDA
Chickpea
accessions

186 Winter GEMMA 5.3K Salinity stress BLUEs, ADMIXTURE,
R-programming

Chickpea
accessions

92 Winter CMLM,
EMMAX

16.59K Zn and Fe
concentration

in seeds

GAPIT, STACKS v1.0,
FASTQC v0.10.1, CGAP v1.0
SnpEff v3.1h, BiNGO plugin
Cytoscape V2.6, PAMLv4.8a
TASSEL v5.0, PowerMarker

v3.51, MEGA v5.0,
STRUCTURE v2.3.4, PLINK

MALDI-TOF
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will not be expressed. Additionally, if the allele expression is being

influenced by environmental factors (soil, light, temperature, etc.)

then the dominant trait may only emerge under certain

environmental conditions. Thus, phenotype is the sum of three-

dimensional (3D) spatiotemporal expression information resulting

from interactions between environmental factors and genotype.

However, the acquisition of phenotypic data is still a bottleneck

limiting functional genomics studies (Deery et al., 2016).

Traditional phenotypic approaches mostly depend on manual

measurements, which are subjective, time-consuming, laborious,

and hamper comprehensive phenotypic data from individuals

within a large population. Additionally, errors are obvious in

manual measurements, and therefore, data reliability and

accuracy data cannot be guaranteed (Xiao et al., 2022). In

addition to cost, manpower, and other related limitations, manual

measurements can only be exploited for limited features during the

critical stages of plant growth. Moreover, physical changes cannot

be fully detected throughout a plant’s life cycle. The aforementioned

shortcomings and limitations from traditional approaches can be

overcome by exploiting high throughput phenotyping (HTP). HTP

is emerging as an important tool for evaluating a plant’s phenotype.

HTP approaches such as fluorescence imaging, hyperspectral

imaging, visible light imaging, automation technology, machine

vision and advanced sensors combined with advanced information

technologies (ITs) and data extraction systems have enabled more

accurate, rapid, and non-destructive measurements of physiological

and morphological parameters. Each of the above-mentioned

techniques has its advantages that allow reliability and accuracy

in high throughput detection (Jiang et al., 2018; Narisetti et al., 2021;

Sarkar et al., 2021).

HTP platforms integrate data acquisition equipment, a control

terminal, and data analysis platforms. Firstly, in HTP, phenotypic

data are collected via spectroscopy and non-invasive imaging

techniques and then high-performance computational tools are

adopted to rapidly analyze plant physiological state and other

growth activities. In comparison to traditional phenotypic

approaches, HTP offers simultaneous data acquisition of multiple

traits and close observation of plant activities at different growth

stages throughout the life cycle. Secondly, traditional approaches

like visual scoring, are prone to subjective interpretation while trait

characterization in HTP is more based on images or spectra which

are more objective. Thirdly, HTP offers modeling-based non-

destructive estimation of biochemical parameters, hence reducing

laborious tasks and time. In the last few years, there have been

major advances in HTP techniques to study different targets such as

plant roots, leaves, shoots, seeds, cells, and canopy (Yang et al.,

2020). For example, microscopic imaging and microcomputed

tomography (m-CT) are used in the determination of tissue

morphology (Zhang et al., 2021), cell growth rate (Gallegos et al.,

2020), alterations in cell structure (Faulkner et al., 2017) and

number of cells (Mele and Gargiulo, 2020). Moreover, visible

light imaging and 3D graphics have intensively been used for

characterization of seed morphological traits like germination rate

(Ligterink and Hilhorst, 2017; Merieux et al., 2021), seed weight

(Huang et al., 2022), growth and development (Margapuri et al.,

2021), coleoptiles length (Zhang and Zhang, 2018) and seed color
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(Baek et al., 2020). Other physiological, morphological, and

biochemical parameters have also been intensively studied

through combined GWAS and HTP using time domain pulsed

nuclear magnetic resonance (NMR) (Melchinger et al., 2018),

Semantic Guided Interactive Object Segmentation (SGIOS) (Yuan

et al., 2022), Graphical User Interface (GUI) (Yuan et al., 2022),

Near-infrared spectroscopy (Jasinski et al., 2016; Anderson et al.,

2019a), Deep convolutional neural networks (DCNNs) (Jiang et al.,

2021), Hyper-spectral vegetation indices (VIs) (Koh et al., 2022),

unmanned aerial vehicle (UAV) (Jiang et al., 2021), computed

tomography (Guo et al., 2022) and multi-spectral or hyper-

spectral images (Wu et al., 2021a; Correia et al., 2022). In-depth

information on phenotyping techniques can be found here

(Rahaman et al., 2015). Zhang and Zhang (2018), in their review,

summarized the applications of recently developed imaging HTP

techniques to study the pathological, physiological, and

morphological traits of plants (Zhang and Zhang, 2018). Shakoor

et al. (2017), provided a detailed review of HTP techniques

(especially recently developed sensors) in accelerating plant

breeding and disease assessments (Shakoor et al., 2017). Recently

Liu et al. (2020), thoroughly reviewed hyper-spectral imaging and

three dimensional (3D) techniques applications for plant

phenotyping (Liu et al., 2020). Jang et al. (2020), in their review

have focused on UAV applications in plant breeding and

summarized the deployed sensors that can be mounted on UAV

and their characteristics in detail (Jang et al., 2020).

Phenotypic data is one of the most important factors limiting

GWAS power, inaccurate and non-reliable phenotypic data results

in false associations. For example, imprecise phenotypic data greatly

influence the true MAF present within a population, so that the

identified SNPs cannot be linked to traits that are affected by these

SNPs. Phenotypic data collected manually is always prone to error.

Therefore, to minimize these errors, HTP techniques are combined

with GWAS. The success of this combination can be gauged by the

number of studies published in the last 4 years. HTP combination

with GWAS has made it possible to study those plant traits that

cannot be studied through physical phenotypic parameters e.g. I-

traits (traits that can only be studied efficiently through images)

(Wu et al., 2021a). Furthermore, this combination also improves the

crop selection process and makes selection strategies tractable for

plant breeders to increase the rate of genetic gain (Crain et al.,

2018). Wu et al. (2021a), combined an HTP technique called Plant

array, a lysimetric-based system developed by Halperin et al. (2017),

which combines several factors to measure plant water relations

during plant life cycle with GWAS to study the physiological

parameters for drought stress in 106 accessions of cowpea

(Halperin et al., 2017; Wu et al., 2021b). They identified a total of

20 SNPs out of which 14 were significantly associated with critical

soil water content (qcri) and 6 were significantly associated with the

slope of transpiration rate declining (KTr). The detected SNPs were

distributed on 9 different chromosomes and accounted for 8.7 to

21% of phenotypic variation, indicating both stomatal closure speed

and stomatal sensitivity to soil drought were controlled by multiple

genes with moderate effects. Wu et al. (2021b) established a multi-

optical HTP system based on X-ray computed tomography and

hyper-spectral imaging combined with GWAS to study drought
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stress in 368 maize genotypes using an I-trait pipeline (Wu et al.,

2021b). Their data revealed 4322 significant locus-trait associations,

representing 1529 QTLs and 2318 candidate genes. They also

reported two novel genes ZmFAB1A and ZmcPGM2 associated

with drought stress and 15 I-traits as potential markers for maize

drought tolerance breeding. Crain et al. (2022) combined the

unmanned aerial vehicle (UAV) HTP technique with GWAS to

study the relationships between single plant and full plot yield in

340 wheat accessions using association mapping panel for full plot

and single plant association mapping for single plants (Crain et al.,

2022). UAV (equipped with a multi-spectral camera) was used to

collect normalized difference vegetation index (NDVI) throughout

seasons (2018-2019 and 2019-2020). According to their data, both

single plant and full plot NDVI measurements (during the grain

filling stage) were positively associated with grain yield. They

identified SNPs on chromosome 7A and 2B significantly

associated with spikelet and spike length, respectively, during the

growing season 2018-2019 but with no associations for the same

traits were identified in 2019-2020 growing season. Moreover, SNPs

marker identified on chromosome 4B were significantly associated

with plant height within the full plot association mapping panel in

both seasons. However, no association was found for the same trait

within single plant association mapping for a single plant.

Furthermore, canopy reflectance spectrometry combined with

GWAS in strawberries increased the selection efficiency of

resistant lines against powdery mildew (Tapia et al., 2022).

Aerial-based systems combined with GWAS have greatly

facilitated the measurements of canopy traits such as canopy

coverage and lodging to further facilitate the identification of

novel QTLs associated with such traits. RGB (Red, Green, and

Blue) imaging and GWAS combination have been successfully

exploited in detecting the genetic architecture related to disease

resistance. Silva et al. (2022) used a ground-based proximal sensing

HTP platform in combination with a DJI quadcopter Matric-100

multi-spectral imaging camera to screen wheat genotypes against

barley yellow dwarf disease (BYD) (Silva et al., 2022). GWAS

analysis identified 16 significant SNPs marker associated with

resistance to BYD distributed on chromosomes 5AS, 7AL, and

7DL. They also identified the Bdv2 gene on chromosome 7AL as

having a strong association with resistance to BYD. Xiao et al.

(2022) provided a review of advances in HTP techniques and also

summarized the combined applications of HTP and GWAS in

different crops such as wheat, rice, barley, maize, soybean, and other

species till 2020 (Xiao et al., 2022).

So far, no study has been reported on a combined analysis of

HTP and GWAS in mung bean. This combination of HTP and

GWAS in mung bean can be useful for studying novel traits such as

i-traits associated with biotic and abiotic stresses (Guo et al., 2018).

Such traits can only be efficiently measured or calculated through

aerial or imaging techniques. X-ray computed tomography; multi-

spectral imaging, spectroscopy, 3D structural analysis, and RGB

imaging can be used in mung bean to study the physiological and

biochemical activities under stressful conditions throughout the life

cycle. Combining the aforementioned HTP techniques with GWAS

can identify novel loci or genes associated with yield-related traits

and resistance to biotic and abiotic stresses. HTP techniques can
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measure phenotypic traits more rapidly and accurately and also

improve selection efficiency in mung bean breeding programs.
5 Connecting GWAS with
genome editing

Genome editing (GE) technologies have revolutionized the field

of life science by precisely editing plant genomes. In the past few

years, different GE tools such as zinc finger nucleases (ZFNs),

transcriptional activator-like effector nucleases (TALENs) and

clustered regularly interspaced short palindromic repeat (CRISPR)

have been successfully exploited for editing complex and simple plant

traits. ZFNs are targetable DNA cleavage proteins that act as

restriction enzymes to cut DNA sequences. ZFNs were artificially

developed by fusing binding domains of ZFNs proteins with the Fok-

1 endonuclease cleavage domain. Similarly, TALENs were also

developed by fusing TALEs (transcription activator-like effectors)

derived DNA binding domains with the Fok-1 endonuclease cleavage

domain (Zhang et al., 2019). TALENs are capable of inducing double-

stranded breaks (DSBs) in targeted sequences, which activates DNA

repair pathways, resulting in genome modifications. However, both

TALENs and ZFNs have been intensively used to edit the genome of

living organisms including humans and plants, but some limitations

of these technologies have prevented their effective use. Therefore,

scientists started looking for other effective GE technologies

and discovered the CRISPR-Cas9 system in archaea and bacteria

(Jinek et al., 2012) (Figure 5). In the beginning, CRISPR-Cas also had

limitations just like other GE technologies, but with time, different

CRISPR-Cas variants were discovered to overcome these limitations.

CjCas9 is a Cas9 variant, derived from Campylobacter jejuni, and is

more specific in cutting targeted DNA sequences than Cas9 in vivo

and in vitro. CjCas9 is delivered through AAV (adeno-associated

virus) in the target cell and induces targeted mutations at high

frequency (Kim et al., 2017). Recently discovered Cas13 is another

variant that is used to target endogenous RNAs and viral RNAs in

plant cells (Wolter and Puchta, 2018). Different research groups

have reported that CRISPR-Cas13 is highly efficient and has the

highest RNA target specificity compared with other Cas variants

(Abudayyeh et al., 2017). NGS technologies have made precise

target-specific gene editing much easier. Significantly associated

SNPs controlling important traits have made CRISPR-Cas base

editing more efficient than whole gene insertion and deletion.

Combining GWAS and CRISPR-Cas system offers three key

advantages; firstly, editing of identified SNPs/genes with CRISPR

can further validate whether the identified SNPs/genes are indeed

associated with trait of interest or not, secondly, putative genes with

unknown functions identified through GWAS can be knocked-out

to identify their functions, thirdly, insertion or deletion in candidate

gene (identified through GWAS) can help in improving plant traits.

For example, Kariyawasam et al. (2022) identified SnTox5 (involved

in facilitating parastagonospora nodorum colonization in mesophyll

tissue of wheat to induce program cell death) gene using GWAS and

edited through CRISPR-Cas system to further validate its previously

reported role in pathogenesis. They identified Sn2000_06735

(putative candidate gene) as a homolog of SnTox5 and to validate
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this, Sn2000_06735 was disrupted by inserting hygR (hygromycin

resistance cassette) using the CRISPR-Cas system. Sn2000_06735

disrupted mutants failed to cause necrosis and prevented

Parastagonospora nodorum colonization (Kariyawasam et al., 2022).

Thus, confirming Sn2000_06735 is associated with

Parastagonospora nodorum pathogenesis. Similarly, Liu et al.

(2021) identified the Fov7 gene (encodes for GLR proteins)

through GWAS that is associated with resistance to Fusarium

oxysporum in Gossypium hirsutum. CRISPR-Cas system-based

knockout of Fov7 resulted in extreme susceptibility to Fusarium

oxysporum in all-cotton lines. Moreover, they also identified the
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significant SNP in the Fov7 gene associated with resistance to

Fusarium oxysporum and revealed that this SNP changes an

amino acid and confers resistance. Another group of researchers

selected different rice cultivars using pedigree analysis to identify

yield-related candidate genes through GWAS. They discovered six

genes with known functions (associated with yield) and 123 loci

with genes of unknown functions. From 123 loci, they randomly

selected 57 genes for CRISPR-Cas-based system knock-out to

identify their functions. Their results revealed that most of these

genes were significantly associated with yield-related traits. For

instance, Os01g0885000, Os01g088600, and Os01g0555100 showed
FIGURE 5

A simultaneous representation of GWAS and genome editing. (A) General overview of CRISPR-Cas from gene selection to genome editing.
(B) Phenotyping, genotyping, and identification of the causal loci(s)/allele(s) associated with particulate trait. (C) Genome editing of loci/alleles
identified by GWAS for further validation of results using gene knockout strategy (D) Genome editing of loci/alleles identified by GWAS for further
validation of results using gene HDR and NHEJ strategy (E) Genome editing of loci/alleles identified by GWAS for further validation of results using
gene KO, HDR, NHEJ and deaminase strategy (F) CRISPR-Cas most reliable delivery methods (Agrobacterium and Bombardment).
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fewer tillers, a reduction in plant growth, and changes in panicle

structure, respectively (Huang et al., 2018). Liang et al. (2022)

phenotyped 2409 accessions of soybeans to identify the candidate

gene involved in controlling the number of branches per plant

(Liang et al., 2022). GWAS analysis revealed SoyZH13_18g242900

(also known as Dt2) as a candidate gene significantly associated

with the increase in number of branches per plant and several other

agronomic traits. To validate the role of SoyZH13_18g242900,

DN50 (soybean variety with four branches) was selected and

SoyZH13_18g242900was knocked out using the CRISPR-Cas9

system. Field experiments revealed that Dt2 mutant lines showed

an increase in the number of branches compared with wild-type

DN50. Moreover, these mutant lines also increased days to

flowering and maturity and enhanced the number of nodes per

plant and plant height.
6 Future prospects

6.1 Opportunities, challenges, and future
strategies of GWAS and PWAS

The prior knowledge of natural genetic variations present in

mung bean is extending and making mung bean a model crop to

study genetic variations in other crops like mash bean, faba bean,

and other pulses. We have observed these advancements in recent

years through a large number of genetic variability studies

conducted to understand the phenomena of natural variation in

mung beans. GWAS soon will be more useful/informative in mung

bean using advanced sequencing technologies to unlock the hidden

genetic variations and availability of the high throughput SNPs set

associated with phenotype as a reference genome in genebank e.g.,

IPK, to study the mutations in mung bean mutant genotypes and

construct some useful genetic maps such as MutMap. The output of

GWAS could be executed and utilized in different aspects, for

example, improving breeding programs, targeted genome editing,

identification of novel genes, constructing genetic maps, high

throughput phenotyping or highly accurate phenotyping by

breeders can also improve GWAS power in detecting new loci

and recombinations. These advances help in facilitating and

improving breeding by analyzing the genomics or genetics of

agronomically important plant traits. In-depth analysis in

detecting causative loci via GWAS, for instance, haplotype-based

analysis is a key for genomics-assisted plant breeding. In

comparison to QTLs mapping, GWAS has higher resolution due

to the large number of recombination’s and large population

comprising hundreds to thousands of genotypes used to study

genetic variations in more depth and breadth. GWAS in future

mung bean work must be considered as an exploratory analysis for

selecting true segregating parents which can be utilized in

developing populations and QTL mapping and in the future for

molecular and genetic association validations. Besides, GWAS is

also useful in understanding marker-based selection (individual

selection for breeding programs based on their available genetic
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information of specific alleles linked to QTLs) or breeding-

program-based variation (the genetic variability of association

panel implemented in improving crops) because the association

mapping population is considered as a source of alleles that are

rarely present in bi-parental mapping populations. Recently,

various studies used both association mapping and QTLs

mapping to isolate or identify and validate the QTLs associated

with traits of interest for example, brassica (He et al., 2017), maize

(Zhao et al., 2018b) and faba bean (Sallam et al., 2016). This

technique utilizes both populations (biparental and mixed

population) to determine whether the identified significant

markers are associated with the same trait of interest in two

different genetic backgrounds or not. However, no study in mung

bean has been reported yet using this technique and therefore, it will

be of great advantage to implement it in mung bean to genetically

improve the traits of interest. Association mapping population is

always rich in alleles (including land races, wild types and

domestication alleles) and offers great genetic variation; therefore,

it can be considered as an excellent genetic resource and enhance

the chances of discovering new genes/alleles controlling complex

traits such as yield, tolerance to biotic and abiotic stresses. The

analyses enable predicting the function(s) of the different alleles

representing genetic alterations/mutations and candidate alleles/

genes which are associated or have an agronomic impact, thus could

be utilized in molecular validations such as genome editing and

gene expression. Collaborations with bioinformaticians and

statisticians can help in establishing new efficient statistical

models and databases that can be utilized during the analysis of

complex traits. Integration of genetics and omics can be crucial for

molecular analysis. Therefore, they should be integrated and

implemented together. The expansion in natural variation

analysis to molecular mechanisms will further provide insights

into mechanisms involved in mung bean growth, adaptation,

and development.

The advancements in genomic approaches offer opportunities

to characterize genetic diversity, traits mapping, and improvements

and they also offer a greater understanding of complex genomes and

the development of new genome editing tools for breeding.

6.1.1 Complex polyploid genome, genetic
resources, and rapid domestication of
crop species

Autopolyploidy and allopolyploidy are common mechanisms of

genome doubling and many plants (especially angiosperms) during

evolution have undergone at least two rounds of polyploidy. This

natural mechanism results in introducing more allelic diversity,

improving crop adaptation to new environmental conditions and

new phenotypic variations. Plant breeders have already taken

several advantages of this mechanism by introducing artificial

polyploids with an increase in fruit size (Wu et al., 2012),

developing seedless fruits (Varoquaux et al., 2000), and increasing

the grain yield (Rosyara et al., 2019). Genomic studies in polyploidy

species have always been a great challenge due to several

complications and reasons. Besides, the development of a
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genomic library with high quality, there is another challenge due to

the inclusion of different but closely related sub-genomes,

differentiating homologous loci and generating non-mosaic sub-

genome scaffolds. Different research groups have made efforts to

reduce the genomic complexity of polyploids by sequencing closely

related species (Shulaev et al., 2011) or diploid progenitors (D’hont

et al., 2012) to generate initial reliable reference assemblies.

Detection of SVs and SNPs in closely related species is still very

challenging and difficult and most of the studies have failed in

detecting these variations (Gordon et al., 2020). Besides these

difficulties, genetic improvement of polyploids is subject to

further complications: (1) dissecting the genetic architecture of

complex traits becomes impossible when the variants are not

mapped to the correct sub-genome (Ramıŕez-González et al.,

2018) and (2) biologically, the exact prediction of phenotype

based on genotype might be hampered by extensive epistatic

interactions and regulatory feedback between sub-genomes in

polyploids (Bird et al., 2018). However, these issues have already

been addressed through advancements in sequencing and assembly

algorithms. As the numbers of GWAS and Pan-genomic studies are

expanding in polyploid crop species, we expect that the degree of

SNPs, k-mers , and SVs will be greater compared with

diploid species.

Breeding efforts using pan-genomic studies are limited because

only a few research groups are using this technique and therefore,

the genomic resources remain low. For example, Silphium

integrifolium (an oil crop species with large genome size) genome

was studied using transcriptome assemblies to identify loci

associated with adaptation in different climatic conditions due to

the non-availability of whole genome reference genomic assembly

(Raduski et al., 2021). SVs remained uncharacterized in this study

due to limited genomic resources and SNPs helped in identifying

the loci by re-sequencing. Forage crops and turfgrass are other

examples of crops with limited genomic resources. GWAS and

PWAS have unlocked the challenges associated with crop

domestication, especially with the reduction in the time frame

generally required for developing a single variety. Plant breeders

can use genomic information resulting from GWAS/PWAS to

genetically improve crops efficiently by genome editing techniques

or identifying markers or variants (PAV, CNV, and SNPs)

associated with particular traits in wild plants. For instance, pan-

genomic in tomatoes revealed that variations in fruit size/weight are

controlled by the duplication of the SKILUH (cytochrome P450)

gene (Alonge et al., 2020), rather than an SNP as reported earlier

(Chakrabarti et al., 2013). Later, this was confirmed by using

CRISPR-Cas9 to reduce the SKILUH copy number, and resulted

in alterations in fruit weight (Alonge et al., 2020). Domestication of

crops has significantly reduced the genetic diversity compared with

wild relatives. Identification and utilization of the genetic diversity

from wild relatives is a major focus of a plant breeder in improving

crops. Combined applications of GWAS and genome editing

technologies will allow de-novo domestication of wild plants and

take advantage of available genetic diversity from secondary and

tertiary gene pools (wild plants). Wild relatives of mung bean are

known to possess high genetic diversity. Therefore, domestication

with wild relatives is easy as till now no study has reported the
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combining ability barriers between domesticated and wild parents.

For instance, the mini core of mung bean from world vegetable gene

bank Taiwan, studied GWAS in a large mung bean population

(containing all the domesticated and wild relatives) to identify the

SNPs associated with the trait of ineptest. They identified several

SNPs associated with the trait of interest are in wild relatives rather

than in the domesticated plants. The wild relatives had more SNPs

and had more strong association with phenotypic traits (Sokolkova

et al., 2020). This study is the proof that the domestication has

reduced the genetic diversity in the mung bean to significant level.

However, this can be restored by crossing the domesticated mung

bean plants back to wild relatives.
6.2 Challenges, future applications, and
role of high throughput phenotyping
in GWAS

Various studies have demonstrated the potential applications

and role of HTP in plant research but few studies have integrated

GWAS and HTP. The key factors that limit GWAS and HTP

integration are challenges in the accession of genomic data,

accuracy in characterizing phenotypic traits, and shortage of

skilled persons. Genomic data can be obtained from re-

sequencing or the gene banks. Reduction in the cost of whole

genome re-sequencing has made genomic studies easier but it is still

time-consuming and highly laborious. On the other hand, the data

available in the genebanks at the movement may not match the

actual samples due shortage of genebanks. Highly accurate

phenotypic data of any trait is necessary for GWAS but currently

available HTP techniques applied in GWAS are still generally

flawed. Many HTP techniques such as X-ray CT, hyper-spectral

imaging, and visible light/RGB imaging, strongly rely on data/image

processing algorithms. Recently, signal-based algorithms have been

associated with several deficiencies like inaccurate feature

extraction, imperfection, and low efficiency; therefore, they need

to be subjected to required improvements. Highly sensitive and

high-resolution equipment utilized for fluorescence imaging, X-ray

CT, and hyper-spectral imaging are very expensive and therefore

cannot be implemented extensively. UAVs for near-surface HTP

are appropriate for collecting phenotypic canopy data in the field

due to wide spatial coverage and flexibility. However, complex

approaches, huge prices, and insufficient payload acquired for

processing enormous remote sensing data may limit their

adaptation. Besides these, there is a need to introduce more

promising HTP techniques like optical coherence tomography

and infrared-thermal imaging in GWAS. Currently, some efforts

have already been taken to acquisition of highly accurate

phenotypic data using currently available HTP techniques

(Mochida et al., 2019; Liu et al., 2020; Yang et al., 2020). Changes

in phenotypic data are due to alterations in genetic composition and

environmental factors. Environmental changes are directly

associated with changes in the phenotypic traits of plants which

are difficult to control. Indeed, we can develop phenotypic databases

through HTP techniques but only if we consider a wide range of

environmental situations which is challenging.
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To enhance the implementation of HTP in GWAS to explore

the underlying complex genetic architecture of phenotypic traits in

mung bean and other plant species, the following aspects must

be considered,
Fron
1. Enhance the amount of investment in developing more

efficient and highly accurate population genotypic

data approaches.

2. Sufficient genotypic data of various crops including mung

bean must be present in online databases (https://bigd.big.

ac.cn/gvm/home) and must be accessed by all the

researchers. Collection of plant material of known

genotypes for HTP is one of the potential strategies to

reduce the associated cost.

3. The development of efficient HTP techniques with low cost

is another strategy to encourage the wider application and

adaptation of this technique in GWAS.

4. The development of new and improvement of existing

public phenotypic databases are of great interest to

efficiently resolve resource issues in data provision,

heterogeneous data formats, and insufficient meta-data.

We strongly recommend and urge the publication of

meta-data, that need to be structured according to the

principles of FAIR (Wilkinson et al., 2016)and state the

detailed information like environmental conditions and

data formats. Ćwiek-Kupczyńska et al. (2016) have

already proposed the guidelines for governing the

description of phenotypic data, which provided a

document of Minimum Information About a Plant

Phenotyping Experiment(MIAPEE) and encouraged to

implementation of ISA-Tab format for meta-data set

organization (Ćwiek-Kupczyńska et al . , 2016) .

Furthermore, we need to develop universal unified

standard formats for phenotypic data recorded using

different approaches. Some efforts are under the mission

of generating efficient phenotypic databases like

PHENOPSIS DB for Arabidopsis thaliana (http://bioweb.

supagro.inra.fr/phenopsis/). This database can be used as a

template to develop more phenotypic databases for other

crops like mung bean including other pulses and cereals.

5. Incessant developments of imaging algorithms or

multivariate data are essential. For example, image

processing and voluminous data in-depth processing have

shown excellent impact in understanding the data, owing to

their unique strength in the form of self-learning ability and

efficiency in large data analysis. We do not doubt that in the

future the applications of in-depth learning considering

plant traits data extraction will be a hot research topic.

6. A combination of all existing HTP techniques might greatly

facilitate the evaluation of plant traits in different aspects.
We are urgently in of need a large number of studies

implementing GWAS and HTP techniques together to study

diverse plant populations and traits to understand functional

genetics/genomes in greater depth.
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Mathew, B., Léon, J., and Sillanpää, M. J. (2018). A novel linkage-disequilibrium
corrected genomic relationship matrix for SNP-heritability estimation and genomic
prediction. Heredity 120, 356–368. doi: 10.1038/s41437-017-0023-4

Mathivathana, M. K., Murukarthick, J., Karthikeyan, A., Jang, W., Dhasarathan, M.,
Jagadeeshselvam, N., et al. (2019). Detection of QTLs associated with mungbean yellow
mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata× Vigna
umbellata. J. Appl. Genet. 60, 255–268. doi: 10.1007/s13353-019-00506-x

Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J. A., Ziyatdinov, A.,
et al. (2021). Computationally efficient whole-genome regression for quantitative and
binary traits. Nat. Genet. 53, 1097–1103. doi: 10.1038/s41588-021-00870-7

Mclaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., et al.
(2016). The ensembl variant effect predictor. Genome Biol. 17, 1–14. doi: 10.1186/
s13059-016-0974-4

Melchinger, A., Böhm, J., Utz, H., Müller, J., Munder, S., and Mauch, F. (2018). High-
throughput precision phenotyping of the oil content of single seeds of various oilseed
crops. Crop Sci. 58, 670–678. doi: 10.2135/cropsci2017.07.0429

Mele, G., and Gargiulo, L. (2020). Automatic cell identification and counting of leaf
epidermis for plant phenotyping.MethodsX 7, 100860. doi: 10.1016/j.mex.2020.100860

Merieux, N., Cordier, P., Wagner, M.-H., Ducournau, S., Aligon, S., Job, D., et al.
(2021). ScreenSeed as a novel high throughput seed germination phenotyping method.
Sci. Rep. 11.

Miga, K. H., Koren, S., Rhie, A., Vollger, M. R., Gershman, A., Bzikadze, A., et al.
(2020). Telomere-to-telomere assembly of a complete human X chromosome. Nature
585, 79–84. doi: 10.1038/s41586-020-2547-7

Mishra, G. P., Dikshit, H. K., Tripathi, K., Aski, M. S., Pratap, A., Dasgupta, U., et al.
(2022). “Mungbean breeding,” in Fundamentals of field crop breeding. (Springer Nature
Singapore, Singapore), 1097–1149).

Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S., Nishii, R., et al. (2019).
Computer vision-based phenotyping for improvement of plant productivity: a machine
learning perspective. GigaScience 8, giy153. doi: 10.1093/gigascience/giy153

Nadeem, S., Riaz Ahmed, S., Luqman, T., Tan, D. K., Maryum, Z., Akhtar, K. P., et al.
(2024). A comprehensive review on Gossypium hirsutum resistance against cotton leaf
curl virus. Front. Genet. 15, 1306469. doi: 10.3389/fgene.2024.1306469

Narisetti, N., Henke, M., Seiler, C., Junker, A., Ostermann, J., Altmann, T., et al.
(2021). Fully-automated root image analysis (faRIA). Sci. Rep. 11, 1–15. doi: 10.1038/
s41598-021-95480-y

Noble, T. J., Tao, Y., Mace, E. S., Williams, B., Jordan, D. R., Douglas, C. A., et al.
(2018). Characterization of linkage disequilibrium and population structure in a
mungbean diversity panel. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.02102

Pers, T. H., Karjalainen, J. M., Chan, Y., Westra, H.-J., Wood, A. R., Yang, J., et al.
(2015). Biological interpretation of genome-wide association studies using predicted
gene functions. Nat. Commun. 6. doi: 10.1038/ncomms6890

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and
Reich, D. (2006). Principal components analysis corrects for stratification in genome-
wide association studies. Nat. Genet. 38, 904–909. doi: 10.1038/ng1847
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