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Cotton morphological traits
tracking through spatiotemporal
registration of terrestrial laser
scanning time-series data
Javier Rodriguez-Sanchez1, John L. Snider2,
Kyle Johnsen1* and Changying Li3*

1School of Electrical and Computer Engineering, University of Georgia, Athens, GA, United States,
2Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States, 3Bio-Sensing,
Automation and Intelligence Laboratory, Department of Agricultural and Biological Engineering,
University of Florida, Gainesville, FL, United States
Understanding the complex interactions between genotype-environment dynamics

is fundamental for optimizing crop improvement. However, traditional phenotyping

methods limit assessments to the end of the growing season, restricting continuous

crop monitoring. To address this limitation, we developed a methodology for

spatiotemporal registration of time-series 3D point cloud data, enabling field

phenotyping over time for accurate crop growth tracking. Leveraging multi-scan

terrestrial laser scanning (TLS), we captured high-resolution 3D LiDAR data in a

cotton breeding field across various stages of the growing season to generate four-

dimensional (4D) crop models, seamlessly integrating spatial and temporal

dimensions. Our registration procedure involved an initial pairwise terrain-based

matching for rough alignment, followed by a bird’s-eye view adjustment for fine

registration. Point clouds collected throughout nine sessions across the growing

season were successfully registered both spatially and temporally, with average

registration errors of approximately 3 cm. We used the generated 4D models to

monitor canopy height (CH) and volume (CV) for eleven cotton genotypes over two

months. The consistent height reference established via our spatiotemporal

registration process enabled precise estimations of CH (R2 = 0.95, RMSE =

7.6 cm). Additionally, we analyzed the relationship between CV and the

interception of photosynthetically active radiation (IPARf), finding that it followed a

curve with exponential saturation, consistent with theoretical models, with a

standard error of regression (SER) of 11%. In addition, we compared mathematical

models from the Richards family of sigmoid curves for crop growth modeling,

finding that the logistic model effectively captured CH and CV evolution, aiding in

identifying significant genotype differences. Our novel TLS-based digital

phenotyping methodology enhances precision and efficiency in field phenotyping

over time, advancing plant phenomics and empowering efficient decision-making

for crop improvement efforts.
KEYWORDS
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1 Introduction

The increasing demand for agricultural products has

emphasized the need for more efficient methods to accelerate

crop productivity (Voss-Fels et al., 2019). Field-based plant

phenotyping, key for evaluating plant traits in distinct

environmental conditions, has become integral in crop breeding

(Großkinsky et al., 2015). However, conventional techniques are

laborious and time-consuming, often restricting assessments of

traits to the end of the growing season and creating bottlenecks

in breeding programs (Furbank and Tester, 2011). Recent

advancements in remote and proximal sensing have increased the

throughput and precision of field-based phenotyping (Singh et al.,

2016). Nevertheless, persistent challenges in data processing and

automation impede further progress in plant phenomics (Chawade

et al., 2019; Kim, 2020). Therefore, novel strategies are imperative to

streamline procedures and enable enhanced trait monitoring for

crop growth tracking.

Integrating temporal data analysis into phenotyping pipelines

can unveil plant development patterns and cyclic phenomena in

growth. Continuous monitoring of plant growth is key for

understanding plant behavior and responses to external factors

(Miao et al., 2020). Recent studies have demonstrated the potential

of continuous plant growth monitoring to identify specific

genotypes contributing to particular traits (Xavier et al., 2017;

Wang et al., 2018; Zhou et al., 2020; Li et al., 2022). However, the

variability in crop growth within fields makes it challenging to

establish standardized and consistent monitoring systems,

hindering uniform trait tracking over time for large-scale fields

(Tao et al., 2022). Exploring innovative and adaptable solutions for

in-field trait assessment is key to overcoming these challenges and

improving field phenotyping efficiency.

Advancements in three-dimensional (3D) imaging have

expanded the application of plant modeling for the purpose of

predicting crop traits over time. Detailed plant 3D models obtained

from imaging data through photogrammetry methods (Paproki

et al., 2012; Gelard et al., 2018; Hui et al., 2018), structured light

scanning (Li et al., 2013), and active laser triangulation (Paulus

et al., 2014) have been applied to track individual organs and

monitor canopy growth of potted plants. However, these methods

have proved labor-intensive and may lack scalability for larger field

experiments. At the field scale, photogrammetry methods have also

been proposed to gather 3D information from the crop over time

using 2D imagery from ground (Carlone et al., 2015; Dong et al.,

2017) or aerial systems (Chebrolu et al., 2018; Malambo et al., 2018).

Despite their potential for large field coverage, these methods face

constraints in capturing complex canopies due to RGB sensor

limitations in handling occlusions, repetitive patterns, and

changing light conditions.

In recent years, advanced methods using light detection and

ranging (LiDAR) technologies for crop phenotyping have gained

prominence. LiDAR scanners can mitigate some of the limitations

associated with traditional 2D image sensors (Lin, 2015). Notably,

employing a linear LiDAR scanning approach, mobile laser

scanning (MLS) techniques have found application in field crop

monitoring using moving ground vehicles (Jiménez-Berni et al.,
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2018; Sun et al., 2018) or specialized rail-based phenotyping

platforms (Li et al., 2023). However, these methodologies involve

analyzing crops from a fixed top-to-bottom orientation, potentially

limiting the capture of lower canopy layers in dense crops with

complex architectures, as certain parts of the crop may be shadowed

or obscured from the sensor’s perspective.

Terrestrial laser scanning (TLS) techniques based on stand-

alone 3D LiDAR scanners offer reliable solutions for overcoming

occlusion issues and simplifying field-based crop phenotyping.

Those scanners have demonstrated effectiveness in monitoring

seasonal crop changes in small-scale breeding fields (Hosoi and

Omasa, 2009, 2012) as well as daily canopy alterations in both

individual plants (Herrero-Huerta et al., 2018) and large field trials

(Jin et al., 2021a). Their consistent performance under various

lighting conditions and superior depth-sensing capabilities make

them particularly well-suited for precise crop canopy measurements

in field-based plant monitoring (Madec et al., 2017; Jin et al.,

2021b). However, the adoption of TLS techniques for plant

phenotyping may be hindered by the absence of standardized and

automated data processing methodologies (Medic et al., 2023),

making continuous monitoring challenging. Simplifying LiDAR

data processing and extraction of information can enhance plant

trait analysis over time and promote broader usage in

field phenotyping.

To ensure consistent crop growth modeling and plant traits

monitoring using TLS, a fundamental step is to precisely associate

spatial information from data collected over time into the same

geospatial context. However, the complex transformations that crops

undergo during the growing season complicate the registration of point

clouds collected at different time points. The most straightforward

technique for TLS-based crop growth tracking involves scanning the

field from a fixed location at different points in time (Eitel et al., 2016).

This single-position scanning approach introduces challenges such as

laser shadows obscuring parts of the crop and variations in point

density, particularly for plants closer to the laser scanner, that can

impact subsequent data analysis (Malambo et al., 2019). An alternative

approach involves scanning the field from multiple locations (e.g.,

multi-scan TLS). A study successfully employed this method to track

wheat height over the growing season (Guo et al., 2019). Despite its

advantages in reducing occlusions, this approach relied on precise

geolocation of point cloud data, requiring accurate positioning systems

that increase costs and processing time for data analysis (Crommelinck

and Höfle, 2016). Another proposed method involves using a

motorized gantry-type phenotyping platform to mount the LiDAR

scanner and collect TLS data (Jin et al., 2021a). While effective for

accurate trait monitoring, this approach requires a dedicated structure

and highly accurate position sensors for real-time scanner location,

introducing complexities to the phenotyping process.

To further enhance the precision and consistency of TLS-based

time-series field phenotyping, the alignment of point clouds

collected over time into a common coordinate system—4D

registration— becomes fundamental. Traditionally, registering

point clouds for crop growth monitoring has relied on the use of

registration targets. This approach involves installing registration

targets throughout the field to assist in aligning successive point

clouds and has proven effective in monitoring crop growth in large
frontiersin.org
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breeding fields (Tilly et al., 2014; Friedli et al., 2016), as well as

individual plants evolution under field conditions (Su et al., 2019).

However, it can be labor-intensive and error-prone. Deviations in

the target placement between surveys can impact the temporal

alignment accuracy, and hence the estimation of traits over time.

Ensuring that the registration targets are placed consistently in the

same exact location in agricultural fields, where machinery needs to

operate or other experiments need to be executed, can be

challenging. More adaptable approaches used crop distribution to

improve the alignment of remotely sensed data (Chebrolu et al.,

2018; Günder et al., 2022). Although these studies were limited to

aerial imagery, the concept could enhance spatiotemporal

alignment of TLS data, facilitating its application for

field phenotyping.

Alternative methods for 4D registration of point clouds have also

been implemented to accommodate changes in plant structures,

albeit with limitations for large-scale fields. Recent studies have

proposed non-rigid registration methods to align point clouds at

the organ-level during the growing season (Chebrolu et al., 2020;

Magistri et al., 2020; Chebrolu et al., 2021). In contrast to rigid-body

transformations (Besl and McKay, 1992), which assume a fixed

relationship between the point clouds, non-rigid registration allows

for more flexible and adaptive alignment, enabling more accurate

tracking of plant growth and structural changes over time. However,

these approaches require highly-detailed plant models, which can

hinder their practicality for field crops where segregating individual

plants might not be feasible. The development of methodologies for

spatiotemporal registration of large-scale LiDAR data can

significantly broaden the application of these technologies in field

phenotyping, enabling efficient crop growth modeling and trait

monitoring over time for enhanced crop development.

In this study, we present a novel methodology for automating the

registration of field-based time-series TLS point clouds, addressing

critical challenges in data registration and processing to facilitate

consistent crop phenotyping and growth tracking. Our primary

technical contribution lies in the development of a two-phase TLS

data registration approach, which exploits terrain morphology and

crop row distribution to minimize alignment errors between point

clouds collected over time. This innovative method reduces

dependence on fixed registration targets and streamlines the data

processing pipeline, offering breeders a robust solution to acquire

accurate phenotypic traits from the same physical locations at

different time points. From a crop science perspective, our work

introduces an efficient approach to track the evolution of crop traits

throughout the season, enhancing our understanding of cotton plant

development and trait variations. The specific objectives of the study

were to: (1) develop a robust methodology for precise spatiotemporal

registration of field-acquired point clouds; (2) validate the effectiveness

of the methodology in reducing point cloud alignment errors

throughout the growing season; (3) investigate the utility of

registered time-series TLS data for extracting key morphological

traits and facilitating precise monitoring of cotton crop growth

dynamics; and (4) assess the applicability of the developed

methodology in informing crop modeling efforts, with a focus on its

potential to deepen our understanding of cotton plant growth and

genotype-specific trait variations.
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2 Materials and methods

2.1 Experimental field

The field research site used in this study was located at the

University of Georgia’s Iron Horse research farm in Greene County,

GA, USA (33°43’01.6”N 83°18’1.8”W). The field contained 11

different genotypes, arranged in a randomized complete block

design with 8 replications. These genotypes included conventional

Upland cotton varieties from public breeding programs (Acala

Maxxa, DES 56, Tamcot Sphinx, UA 48), exotic genotypes

(T0018MDN, T0246BC3MDN, and MDN0101 (GH191)),

commercial Upland cultivars (DG 3615, DP 1646, and ST5020),

and a Pima cotton cultivar (DP 314). A more detailed description of

the included cultivars can be found in (Kaur et al., 2023).

The field’s layout consisted of single-row plots, each measuring

3.05 meters in length, with an inter-row spacing of 1.83 meters

(Figure 1A). A 1.52-meter wide bare soil alley separated each range

of plots. The field was organized into 88 plots, distributed across 8 rows,

with 11 plots per row, resulting in approximate dimensions of 52

meters in length and 14meters in width. A total of 15 seeds were sowed

in each plot on June 18, 2021 (planting date), and the final plant density

in each plot varied based on germination and survival rates.
2.2 Field data collection

A FARO Focus 3D S70 laser scanner (FARO Technologies,

Florida, US) was used for terrestrial laser scanning (TLS). To reduce

occlusions and collect as much information from the crop as

possible, a multi-scan methodology was adopted to scan the field.

Between nine and thirteen scan locations, depending on the growth

status of the crop, were used to ensure an adequate coverage of the

crop during the different growth stages. The LiDAR was mounted

on an elevating tripod (Figure 1B), whose height was adjusted in situ

during each data collection session in accordance with crop height.

At the beginning of the season, the height of the scanner was

configured to 1.25 m. When the plants reached the canopy closure

stage, the scanner height was adjusted to 1.8 m. The quality

parameter for the LiDAR scanner was set to 2x, while the angular

resolution was set to 1/2 (angular step of 0.18°) for both the vertical

and horizontal angles, which is equivalent to a point distance of

3.05 mm over 10 m. The collected point clouds were colorized using

information gathered from the color camera integrated in the

LiDAR scanner. Additionally, global positioning system (GPS)

and inclinometer information from the scanner’s internal sensors

were also saved during the scan. For each scan location, raw point

cloud data were stored in an SD card as FARO Laser Scan (.FLS)

files for further processing.

Nine data collection sessions were conducted to monitor canopy

development from crop establishment to canopy closure. The LiDAR

scanner was used to survey the cotton field approximately at 35, 42, 49,

56, 62, 70, 77, 84, and 98 days after planting (DAP). During each

session, five spherical targets with a diameter of 200mm (Koppa Target

Spheres, California, USA) were strategically placed throughout the field
frontiersin.org
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to facilitate the spatial co-registration of point clouds from different

scan locations into a common coordinate system. These targets were

mounted on aluminum rods with heights ranging from 1.4 m to 2 m

(Figure 1C). The spherical targets were deployed before each TLS

survey session. A mallet was used to drive the aluminum rods into the

ground, ensuring each one of themwent in straight and deep enough to

provide stability during the survey. Since permanent structures in the

field were not feasible due to ongoing experiments, the aluminum rods

were taken down and stored between data collection sessions.

Therefore, the position of the spheres was not necessarily consistent

across different data collection sessions.

Manual measurements of key plant traits were conducted

directly in the field at three different stages of crop development

and served as ground truth data for validation purposes. The first

session took place immediately after the onset of the blooming

stage, approximately at 60 DAP. The second ground truth session

occurred during the peak blooming period, at around 80 DAP. The

final session was performed at the canopy closure stage, 90 just

before the first open cotton bolls became visible. The field

measurements included the height of the canopy and the quantity

of light intercepted by the canopy, which is directly proportional to

crop growth (Baker and Meyer, 1966) and plays a key role in

modeling crop evolution and yield (Loomis and Williams, 1969).

Canopy height (CH) was determined by measuring the distance

between the ground and the top of the canopy (the plant terminal)

using a measuring tape. Two to five different plants within each plot

were measured following established methods commonly used in

cotton breeding. The final CH value was calculated by averaging
Frontiers in Plant Science 04
these measurements. Light interception was estimated by the

fraction of photosynthetically active radiation (PAR) intercepted

by the canopy (IPARf), using Equation 1. Two IPARf readings were

taken per plot and then averaged. Light interception measurements

were taken using an AccuPAR LP-80 ceptometer (METER

Environment, Pullman, WA) under cloudless conditions between

1100 and 1300 h. Both the below-canopy photosynthetically active

radiation (PARbelow) and the above-canopy irradiance (PARabove)

were measured simultaneously.

IPARf =
PARabove − PARbelow

PARabove
(1)
2.3 Data processing pipeline for
spatiotemporal alignment

Our TLS-based 4D field phenotyping methodology involved a

sequential series of data processing steps (Figure 2). Initially, intra-

session data processing helped co-register multi-scan point clouds

into a common coordinate system and prepared the data collected

in each data collection for subsequent analysis. Inter-session

processing aligned consecutive point clouds in both space and

time, facilitating the extraction of crop traits to analyze growth

trends over the season.

The data processing pipeline was designed to run on Windows

systems, using only CPU resources without requiring specialized

GPUs. All experiments were conducted on a desktop computer
FIGURE 1

Experimental field layout. (A) Distribution of plots (green ovals), scan locations (circular target icons), and registration targets (checkered circles) for
LiDAR-based phenotyping. (B) LiDAR scanner performing TLS scan at a scan location. (C) Registration target deployed in the field.
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equipped with an 8-Core Intel(R) Core(TM) i7–9700K CPU

running at 3.60 GHz and 64 GB of RAM.

2.3.1 Intra-session data processing
After each data collection session, point clouds from multiple

scan locations were co-registered using SCENE software (FARO

Technologies, Florida, US), version 2019.2. The raw. FLS files were

imported into SCENE and preprocessed using the ‘Edge artifact’

filter. Point clouds were automatically registered using the ‘Target

Based’ method. Registration results were validated through target-

based and mean point error statistics. Then, SCENE’s ‘Clipping box’

tool was used to isolate and extract 3D points within designated

field boundaries. Points within the clipping box were saved in the

LASer (.LAS) file format.

Co-registered point clouds underwent denoising using a statistical

outlier removal (SOR) filter with parameters N = 20 and ±2.5 standard

deviations as outliers boundaries. Then, a subsampling step based on a

5 mm point-to-point distance threshold reduced the point clouds size

while maintaining spatial information, reducing computational

demands. After subsampling, point cloud height was normalized

with respect to a local digital terrain model (DTM) ensured

consistency in elevation data across the field. For a more detailed

description, please refer to the Supplementary Materials.
2.3.2 Inter-session data processing
The terrain’s elevation profiles and slopes are generally stable in the

short term, and the arrangement of crop rows remains consistent

despite canopy growth. Leveraging this stability, we introduced a two-

phase alignment process for temporally registering successive point

clouds: one as the fixed reference and the other as the source

undergoing alignment.
Frontiers in Plant Science 05
In the initial phase, we conducted a preliminary alignment

using the reconstructed terrain models to establish a rough

correspondence between pairs of point clouds. We used the

iterative closest point (ICP) pairwise matching algorithm (Besl

and McKay, 1992) to align the DTM points. The ICP algorithm

seeks to find the best-fitting transformation that minimizes the

distance between points in two point clouds, in our case the terrain

points. This iterative process continues until a satisfactory

alignment with minimum root mean squared deviation (RMS) is

achieved. The resulting transformation matrix, including full

rotation and translation components (i.e., roll, pitch, yaw, X, Y,

and Z), was applied to the source point cloud, providing an initial

spatial alignment.

To further refine the alignment and minimize errors, we

implemented a second phase based on bird’s-eye view (BEV)

alignment (Figure 3). This approach used the distribution of crop

rows and plots, automatically identified from the point clouds, to

match the orientation and position of both point clouds from a top-

down perspective. This refinement step ensured greater accuracy in

aligning the point clouds collected over time.

The BEV alignment process started with the identification of

plots centroids in both point clouds. A height threshold, set at half

the maximum height value within each plot, was applied to separate

points belonging to the upper canopy section. After thresholding,

the canopy points were projected onto the X-Y plane, resembling a

2D top-down orthographic view of the field. Using contour

detection, points corresponding to each plot were clustered and

filtered using Principal Components Analysis (PCA) to eliminate

incomplete plots or noisy point clusters. We leveraged the typical

growth pattern observed in field crops planted in plots, where the

length along the row axis generally exceeds the width. Any clusters

deviating from this expected growth pattern were identified as noise
FIGURE 2

Overview of the proposed methodology for LiDAR-based 4D in-field phenotyping.
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and excluded from subsequent processing stages. The pixel

coordinates corresponding to the centroid of each validated

cluster were retained for further analysis.

The detected centroids served to improve the alignment

between the point clouds. However, certain plots may not appear

in the 2D projection in the XY plane during specific growth stages.

To address this issue, a k-Nearest Neighbor (KNN) algorithm (Fix

and Hodges, 1951) identified pairs of points common to both point

clouds, excluding any missing centroids from the BEV alignment

process. The rigid transformation between the source and reference

point clouds was formulated as a Procrustes superimposition (PS)

problem (Rohlf and Slice, 1990). This method involves determining

the transformation needed to optimally align two sets of points,

effectively overlaying one onto the other. Using a custom

implementation of Sneath’s method (Sneath, 1967) (Algorithm 1),

we calculated the translation and rotation required to align the

centroids from the source point cloud with those from the reference

point cloud.

Given a reference set R of m pairs of coordinates (x, y)

representing the plot centroids detected in the reference point

cloud, and a source set S of n pairs of coordinates (x, y)

representing the plot centroids detected in the source point cloud,

the PS algorithm returns the optimal translation and rotation angle

that minimize the sum of the squared distances between

corresponding points. First, k pairs of points
Fron
Input:

R = ½(x1,y1),…, (xj ,yj)�;  j = 1, 2,…,m

S = ½(x1,y1),…, (xl ,yl)�;  l = 1, 2,…,n

Output:

Optimal translation T
tiers in Plant Science 06
Optimal rotation angle q

Initialization:

1:  R0 = ½ �
2:  S0 = ½ �
3:  T = (0, 0)

4: q = 0

5: ½R0,S0� = KNN(R,S)

6: (�xR0 , �yR0 ) = (o
k
i=1xR0i

k ,o
k
i=1yR0i

k )

7: (�xS0 , �yS0 ) = (o
k
i=1xS0i

k ,o
k
i=1yS0i

k )

8: T← (�xR0 − �xS0 , �yR0 − �yS0 )(Tx ,Ty)

9: for i = 1, 2,…,k do

10:R0(k)← (xR0i − �xR0 ,yR0i − �yR0 )

11:S0(k)← (xS0i − �xS0 ,yS0i − �yS0 )

12: end for

13: q = arctan  −o
k
i=1 xS0i � yR0i − yS0i � xR0ið Þ

ok
i=1 xS0i � xR0i − yS0i � yR0ið Þ

 !
14: return T, q
Algorithm 1. Procrustes superimposition algorithm for plot
centroids alignment.

common to both point clouds were identified using the KNN

algorithm (Algorithm 1, line 5). Then, the center of gravity (i.e.,

mean or average point) for these matched points was computed for

each point cloud (Algorithm 1, lines 6 and 7). The distance between

centers of gravity coordinates in the X and Y axes was used to

compute the components of the optimal translation (Tx ,Ty)

(Algorithm 1, line 8). Then, both sets of points were translated to

the origin (Algorithm 1, lines 9 to 12). Finally, the rotation angle

was calculate using the sums of the cross products between x and y

components for both sets to minimize the distances between

corresponding points (Algorithm 1, line 13).

After fine registration, all point clouds were aligned under a

common coordinate system. It is important to note that the initial

normalization conducted in the previous section was performed

locally for each data collection session. Discrepancies in DEM

quality across different growth stages may introduce height errors
FIGURE 3

Bird’s-eye view alignment steps for multi-temporal point cloud pairs registration.
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between sessions, potentially impacting crop growth analysis. To

mitigate these errors and minimize bias in trait estimation, height

values for every data collection were renormalized using a common

reference plane across all collected point clouds. The terrain mesh

derived from the reference point cloud served as the global

reference ground level (Z = 0 meters) for all subsequent point

clouds. This approach ensured that traits measured relative to each

plot’s unique characteristics had a consistent reference, enabling an

unbiased assessment of crop growth over time.

2.3.3 Performance analysis for
spatiotemporal registration

To evaluate our methodology’s effectiveness in aligning point

clouds over time, we needed accurately aligned reference models for

each data collection session. We achieved this by manually aligning

each point cloud dataset with the baseline reference, which was the

initial point cloud collected at 35 DAP. Working in pairs and using

the CloudCompare tool ‘Align (point pairs picking)’, we selected 12

key points common to both point clouds. We then refined the

alignment using the ‘Translate/Rotate’ tool until we achieved a root

mean square (RMS) error of approximately 3 mm. The resulting

transformation matrix served as the basis for comparing the

temporal registration performance of our method.

To measure the performance of our registration process, we

compared each point cloud spatiotemporally registered by our data

processing pipeline with its manually aligned counterpart from each

data collection session. The Hausdorff distance (Rote, 1991) was

considered as performance metric to measure the dissimilarity

between both point sets. Given two different point sets PCA =

a1, a2,…, an and PCB = b1, b2,…, bn, the Hausdorff distance from

PCA to PCB can be computed using Equation 2:

dH(PCA, PCB) = max
a∈PCA

min
b∈PCB

(d(a, b)) (2)

where a and b are points belonging to the point clouds PCA and

PCB respectively, and d(a, b) is the Euclidean distance between a

and b.
2.4 Crop traits estimation

2.4.1 Individual-plot point clouds preparation
To isolate individual plots within the registered point clouds,

we initially generated a polygon grid covering the entire field area

and saved it using the ESRI shapefile (.shp) spatial data format. A

region of interest (ROI) was manually defined for the first plot,

then replicated and uniformly spaced to create a grid pattern

aligning with crop rows and plots. The shapefile grid was used as

the spatial guide to segment individual plots from each data

collection session. As the point clouds were spatially and

temporally co-registered with the reference point cloud from the

first session, this grid generation was a one-time task applied

throughout the growing season
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2.4.2 Plot-level traits extraction
After segmenting individual plots, key morphological traits,

including canopy height (CH) and canopy volume (CV), were

extracted using the ‘laspy’ and OpenCV libraries in Python. In

addition, we evaluated the use of CV estimations as a proxy for

estimating light interception under field conditions, which has been

identified as a key input for process-based growth and yield models

in cotton (Ermanis et al., 2020; Pokhrel et al., 2023). This indirect

approach for estimating light interception has been explored

previously in almond orchards (Zhang et al., 2021).

To estimate CH at the individual plot level, we analyzed

normalized height values within each plot point cloud. We explored

two percentile values, 95th (CH95) and 99th (CH99), as well as the

maximum height (CHmax) derived from the histogram of Z-

coordinates. We also compared CH estimations post-4D registration

and those from individual point clouds before temporal registration.

For CV estimation, we initially calculated the per-plot projected

canopy area (CA). Vegetation points were differentiated from

terrain points based on a 5 cm threshold for Z-values. The

identified vegetation points were then projected onto the XY

plane, generating a 2D binary image mask for each plot. CA was

determined by counting the number of pixels per unit area within

the projected vegetation points. Subsequently, CV was estimated by

multiplying the projected area by the corresponding CH values

using Equation 3:

CVprojArea = CA � CH = numPixels � shapeSizem
shapeSizepx

� CH (3)

where shapeSizem represents the shapefile area for the plot in

m2, and shapeSizepx represents the area in pixels.

2.4.3 Crop trait estimation performance metrics
The overall performance of our methodology at estimating crop

traits for field phenotyping was assessed by comparing trait values

estimated from TLS data with ground truth values. The selection of

the optimal height percentile for CH estimations was based in three

metrics: the coefficient of determination (R2), the root mean

squared error (RMSE), and the mean absolute percentage error

(MAPE), as defined in Equations 4–6, respectively. Higher values of

R2 approaching 1 and lower RMSE and MAPE values indicated

more accurate estimations.

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�o

n

i=1
(yi − ŷ i)

2

s
(5)

MAPE( % ) =
1
no

n

i=1
j yi − ŷ i

yi
j � 100 (6)

where n is the total number of data points used for regression

analysis, yi is the actual value of CH for the ith ground truth plot, ŷ i
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is the predicted CH value obtained from the LiDAR point cloud

associated with the ith ground truth plot, and �y is the mean CH value

calculated from the total of ground truth measurements.

To assess the use of CV estimations as a proxy for estimating

canopy light interception, a nonlinear regression analysis was

performed. This analysis compared the estimated CV values with

field ground truth measurements of IPARf, using nonlinear least-

squares fitting with the ‘curve fit’ function from the ‘scipy’ Python

library. The standard error of regression (SER) was calculated using

Equation 7 to evaluate the goodness of fit, accounting for the

number of independent variables.

SER =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − (p + 1)
�o

n

i=1
(yi − ŷ i)

2

s
(7)

Here, yi and ŷ i are the actual and predicted values of IPARf for

the ith ground truth plot, respectively, n is the total number of data

points used for nonlinear regression, and p is the number of

coefficients in the model not counting the intercept.

2.4.4 Growth modeling and
parameters estimation

The growth cycle of cotton plants follows an S-shaped curve,

with lower and upper bounds indicating the period of growth

equilibrium (Snider et al., 2021). Among the mathematical

models for growth modeling, the three most commonly used for

asymptotic growth are the logistic model, the Gompertz model, and

the Richards growth model (Tjørve and Tjørve, 2010)

(Supplementary Table S1). These models capture plant growth

trajectories with different levels of asymmetry and flexibility. We

defined W as the trait value at a given time t, A as the maximum

value for the trait (upper asymptote), k as the growth rate, and Ti as

the time at inflection when the maximum growth rate occurs.

The three sigmoid growth models were used to analyze the

estimated trait data and reveal the underlying dynamics of CH and

CV evolution over time. Nonlinear mixed-effect models (NLME)

were employed to capture trait evolution, considering time and

genotype as fixed effects, while replicate was treated as a random

effect. For the model fitting process, we used the statistical

computing and graphics software R (R Core Team, 2023), version

4.2.3, and the ‘nlme’ package (Pinheiro and Bates, 2000). For the

sake of simplicity and to ensure convergence, we assumed that the

growth rate parameter k remained constant and independent of

genotype, without showing any random variability across replicates.

The likelihood ratio test (‘anova.lme’) from the ‘nlme’ package was

used to identify the most suitable model based on the Akaike

information criterion (AIC) (Akaike, 1992) and the Bayesian

information criterion (BIC) (Schwarz, 1978) metrics. The model with

the highest AIC and BIC support was fitted to the trait data, estimating

growth curve parameters. A post-hoc analysis was conducted to test for

mean differences in growth parameters by genotype using the

‘emmeans’ package (Lenth, 2023), with Bonferroni corrections for

multiple comparisons. This comprehensive approach enabled us to

discern significant variations in growth characteristics across

different genotypes.
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3 Results

3.1 Development of the 4D field model
for validation

We successfully reconstructed detailed point clouds for each

data collection session using multi-scan TLS approaches and

automatic registration (Figure 4). The average mean point

distance between matched target pairs was 1.6 mm, with a

maximum error of 3.2 mm across all sessions. On the whole, the

average mean scan point error remained consistently below 6 mm,

peaking at 8.5 mm for data collected at 84 DAP. After point cloud

preprocessing, the point cloud density was reduced by 8 to 18 times

(Supplementary Table S2), significantly decreasing LAS file sizes to

approximately 0.5 GB each and facilitating subsequent processing.

This reduction also enabled simultaneous processing of all point

clouds in a single CloudCompare session.

The presence of consistent and distinguishable 3D features

across all collected point clouds allowed for the creation of an

accurate 4D field model (Figure 5). This model integrated

individually reconstructed 3D point clouds from each session,

aligning them to the reference point cloud under a unified

coordinate system. As a result, we obtained almost perfectly

aligned point clouds for each session that served as a crucial

reference for validating the accuracy of our registration process.

By comparing the individual point clouds after alignment using our

methodology to the reference model, we were able to assess the

performance of our registration method.
3.2 Terrain-based registration of
point clouds

The rasterization of terrain points and the posterior meshing

process allowed us to obtain consistent DTM models for each data

collection session during the growing season (Figure 6). However,

the reconstruction process tended to overestimate terrain elevation

in areas with excessive vegetative growth and denser canopies. As

the growing season progressed and plant canopies began to overlap

with neighboring plots, the number of terrain points collected by

the LiDAR scanner notably decreased, leading to data gaps in the

rasterized point clouds (Figures 6B–D). These gaps presented a

challenge in accurately modeling the terrain. Notably, when

comparing the initial terrain model from the first data collection

session (Figure 6A) to the final session (Figure 6D), disparities in

elevation reached nearly 37 cm in regions with dense vegetation.

Despite these challenges, our method consistently produced

accurate terrain morphology results up to 84 DAP when all plots

in the field effectively reached the canopy closure stage.

Leveraging internal sensors data gathered during LiDAR data

collection allowed us to position consecutive point clouds in close

proximity to each other and facilitated convergence of the ICP

algorithm, minimizing its risk of getting trapped in local minima

(Supplementary Figure S2). The resulting RMS values for ICP
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registration between the DTM for each data collection session and

the reference DTM were consistently less than 10 mm.
3.3 Bird’s-eye view-based alignment for
spatiotemporal registration refinement

The developed process enabled the isolation of prominent plots

in the field, allowing for an accurate identification of their centroids

(Figure 7). Through local height normalization and thresholding,

only the upper section of the canopy was retained (Figure 7A),

revealing the distinct pattern of crop rows by focusing solely on

vegetation points (Figure 7B). Following plot clustering, PCA-based

filtering reduced the potential impact of spurious points or poorly
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defined plots, such as noise, small plots, or tall weeds, thereby

enhancing the consistency and robustness of plot centroid

identification (Figures 7C, D). For a comprehensive visualization

of the BEV alignment process for two point clouds, refer to

Supplementary Figure S3.

The BEV alignment step consistently enhanced the accuracy of

point cloud registration for data collected during the vegetative crop

growth stage (Figure 8). Initially, errors ranging between 10 cm and

35 cm with respect to the reference point cloud were observed after

the first alignment step (Figure 8A, inset 1). However, after the

second alignment step, errors for points above the terrain plane

notably decreased to values around 2 to 3 centimeters (Figure 8B,

inset 1). Examination of alignment results at terrain level revealed

that registration errors in the Z direction remained relatively

constant, increasing slightly from 2.2 cm for the initial DTM-
A B C

FIGURE 4

3D representation of the field at three different growth stages. (A) Data collected 42 days after planting (DAP); (B) Data collected 62 DAP; (C) Data
collected 84 DAP. Point clouds were colorized using information from the sensor’s camera. Black areas represent spaces without 3D point
information. Insets show a close-up of the same plot in each point cloud.
FIGURE 5

Manually aligned time-series point cloud used for benchmarking. (A) Overhead view of the reconstructed time-series point cloud; 3D points were
colorized using information from the sensor’s camera. (B) Perspective view of the point cloud colorized by data collection session; numbered insets
show close-up views for the distinctive objects enclosed in pink boxes. Section B’-B’ shows a slice of the point cloud taken from the direction
indicated by the pink arrows. Different solid colors denote point clouds collected at different dates.
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based alignment step (Figure 8A, inset 2) to 2.3 cm for the

refinement step based on BEV (Figure 8B, inset 2).

In general, the alignment of point clouds remained consistent

throughout the growing season, with final alignment errors

comparable to those achieved by manual alignment of the point

cloud pairs. In the manually aligned point clouds, the distance

between point clouds at the overall level ranged between 0.5 and

1 cm, while at the ground level, the distance in the Z axis between

point clouds reached approximately 6 mm. To see a detailed visual

comparison between the manually aligned point clouds and those
Frontiers in Plant Science 10
registered using our methodology, refer to Supplementary

Figure S4.
3.4 Quantitative analysis of errors for
spatiotemporal registration

Our quantitative analysis confirmed significant reductions in

the main distances between point clouds registered using our

methodology and their manually aligned counterparts (Table 1).
A

B

D

C

FIGURE 6

Reconstructed digital terrain model (DTM) for four data collection sessions during the vegetative growth stage. Rows (A–D) correspond to data
collected at 35 days after planting (DAP), 42 DAP, 84 DAP, and 98 DAP, respectively. For each row, from left to right: (1) RGB point cloud; (2)
Rasterized point cloud colorized by elevation; and (3) Reconstructed DTM colorized by elevation. Elevation is represented using a color map ranging
from blue (the lowest point) to red (the highest point).
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After the initial alignment based on DTM matching, the average

Hausdorff distance between point clouds was approximately 31 cm,

consistent with our previous qualitative analysis (Figure 8). With

the second alignment step, the average Hausdorff distance was

reduced to 5.5 cm, representing an 83% reduction from the initial

alignment errors. However, despite this improvement, the

alignment error for the final data collection session remained

relatively high, reaching 13.5 cm even after the refinement step,

in contrast to the approximately 3 cm observed for the other point

clouds. This difference can be attributed to the limitations of the
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initial alignment based on the DTM in advanced growth stages. The

denser and taller canopy obstructed the laser beam during the

survey more frequently, resulting in limited terrain data for ICP

registration. This contributed to larger initial errors that the

refinement step, based on the BEV alignment approach, was not

able to completely rectify.

A deeper analysis of registration errors revealed a clear trend: as

the cotton canopy grew and became denser, the registration errors

increased both in magnitude and variability (Figure 9). Early stages

showed relatively low and uniform errors, while later stages
FIGURE 7

Partial results during the bird’s-eye view alignment process. The depicted point cloud data pertains to the data collection session conducted at 42
DAP. (A) Canopy points isolation after height thresholding. (B) Projection of canopy points onto the X-Y plane in 2D. (C) Identified pixel clusters and
principal component analysis results. Red arrows depict the first principal component’s direction, while green arrows illustrate the second principal
component’s direction. (D) Visual depiction of identified plot centroids.
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exhibited higher errors due to the complexity of the mature canopy.

This progression of errors from the early to maturity stages

demonstrated the increasing difficulty in point cloud registration

as the crop canopy developed, highlighting the importance of robust

registration methodologies to handle increased canopy density

and complexity.
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At 42 DAP, during the early-stage canopy development with

minimal plant overlap, distance errors peaked at 3.24 cm, with most

errors being moderate. The majority of errors ranged between

0.38 cm and 1.13 cm, suggesting a low error spread. At 62 DAP,

with increased canopy coverage and uniform growth, the maximum

error reached 2.20 cm, with errors more uniformly distributed
FIGURE 8

Qualitative results for the two-step registration process for point clouds collected over time. (A) Rough alignment results after the first alignment
step based on digital terrain model matching. (B) Final alignment achieved after bird’s-eye view refinement. Insets (1) demonstrate generalized
alignment errors; Insets (2) highlight errors in the Z direction at the terrain level. Different solid colors denote point clouds collected at
different dates.
TABLE 1 Spatiotemporal registration errors after each alignment step.

Step 1 Terrain model-based alignment Step 2 Bird’s-eye view-based alignment

dHX
dHY

dHZ
dHX

dHY
dHZ

DAP RMS↓
(std)

dH max min max min max min RMS↓
(std)

dH max min max min max min

42 2.1 (1.9) 19.3 18.3 -16.9 16.1 -18.3 17.6 -15.8 1.2 (0.6) 3.2 3.0 -3.1 3.0 -3.1 3.2 -3.1

62 4.9 (6.5) 32.5 32.0 -32.3 31.0 -30.0 31.8 -29.4 0.5 (0.3) 2.4 2.1 -2.1 2.1 -2.1 2.1 -2.1

84 3.6 (3.6) 24.2 22.3 -24.0 21.8 -22.6 23.0 -22.4 0.8 (0.5) 3.5 3.2 -3.0 3.0 -3.1 3.2 -3.0

98 5.7 (5.7) 46.8 36.3 -46.1 43.5 -36.9 39.7 -40.1 2.5 (1.8) 13.5 11.7 -12.5 12.2 -11.4 12.3 -11.3
frontier
All values are given in centimeters.
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across the field compared to the earlier stage. Errors were primarily

concentrated between 0.25 cm and 0.75 cm, reflecting improved

registration accuracy during this stage. This improvement could be

attributed to better performance of the BEV refinement step, where

increased canopy density provided more information to identify

plot centroids, enhancing alignment accuracy. Additionally, as the

crop grew taller, interference from weeds diminished, aiding in

more accurate plot identification.

By 84 DAP, when the crop already reached canopy closure

stage, the maximum error increased to 3.49 cm, with higher

variability in areas of dense canopy growth. Errors ranged more

broadly, with a significant portion between 0.75 cm and 2.63 cm,

highlighting the challenges of maintaining accuracy as the canopy

became denser. This stage reflected the increasing complexity of the

registration process as the canopy structure became more intricate

and plots overlapped, posing significant challenges to maintaining

low error rates. At 98 DAP, errors reached a maximum of 13.49 cm,

demonstrating significant challenges due to dense and overlapping

canopies. A wide distribution of errors, clustering between 2 cm and

10 cm, indicated substantial variability and the presence of outliers

caused by canopy occlusion and overlapping. At this point, the

refinement step was no able to reduce alignment errors and

optimize registration.
3.5 Phenotypic traits estimation

Our spatiotemporal registration methodology significantly

enhanced CH estimations compared to conventional TLS data

analysis without temporal registration (Supplementary Table S3). All

analyzed percentiles for CH estimation—95th, 99th, and maximum

height—exhibited a strong relationship with actual measurements for
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both methods. However, after the two-step spatiotemporal registration

process, CH estimations consistently demonstrated stronger

correlations with ground truth measurements and reduced errors

compared to estimating CH from individual point clouds without

temporal co-registration.

Estimations of CH using the maximum height value

consistently exhibited the strongest correlation with actual CH

values, explaining almost 95% of the total variance. While CH95

and CH99 also demonstrated strong correlations with ground truth

measurements, CHmax consistently outperformed them across

various evaluation metrics. Notably, CHmax showed reduced

average deviation from the actual values and lower errors

compared to CH95 and CH99, with an RMSE below 8 cm and

average deviation of about 5%. These results are in line with

findings from previous LiDAR-based studies in cotton (Sun et al.,

2017, 2021), indicating the reliability of CHmax for estimating

canopy height in cotton crops from multi-scan TLS, particularly in

the context of time-series data analysis. CHmax captures the tallest

point in the canopy, akin to manual field measurements, making it

less susceptible to variability in canopy structure compared to

percentile-based estimations, especially after denoising the

point clouds.

3.5.1 Overall performance analysis
Our methodology for processing and analyzing in-field time-

series TLS data demonstrated robust performance in estimating key

traits versus ground truth measurements (Figure 10). The

regression analysis showed a strong agreement between estimated

values and ground truth measurements for both CH and IPARf.

Despite the complex and evolving nature of the crop, our

methodology allowed for the precise estimation of these traits,

accurately capturing the dynamic changes in crop traits over time.
FIGURE 9

Distribution of registration errors across data collection sessions. Comprehensive analysis of registration errors showcasing both the spatial
distribution of distance errors and their respective histograms. (A) 42 days after planting (DAP). (B) 62 DAP. (C) 84 DAP. (D) 98 DAP. The distribution
of distance errors is visualized with a color gradient ranging from blue (low error) to red (high error).
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Regarding CH estimations, we observed a general slight

overestimation of canopy height compared to the actual values,

which became more pronounced as the crop matured (Figure 10A).

The linear regression model displayed a slight deviation from the

1:1 line, a trend consistent across other percentiles, albeit with slight

variations. For instance, analysis of the 95th percentile revealed a

more pronounced tendency to overestimate canopy height during

early growth stages, suggesting it may be less reliable for estimating

in-field cotton plots height.

Analyzing the results for each data collection session

individually, error values showed an increasing trend with crop

development, leading to more dispersed CH estimations for larger

canopies during later growth stages. RMSE values varied

approximately 2 cm from the initial session to the last. At 62

DAP, the RMSE surpassed 6 cm, increasing to approximately 7 cm

at 84 DAP and 8 cm at 98 DAP. This trend may be attributed to

diverse canopy development of plants amongst plots or plant

lodging during the season. Other potential causes of errors

included underestimation in terrain elevation in regions with

dense vegetative growth, as discussed previously (Section 3.2), or

potential human error, given the challenges of measuring tall

(reaching more than 2 m) and dense crops in the field.

Nevertheless, examination of MAPE values revealed a consistent

performance of our methodology, with only a 1.42% difference

between the maximum and minimum MAPE values. Specifically, at

62 DAP, MAPE reached 6.17%, at 84 DAP it was 4.76%, and at 98

DAP, 5.11%. This suggests that, despite the observed increase in

RMSE, our estimations remained relatively close to the actual values

across different growth stages.

Upon examining the estimated CV in relation to field

measurements of IPARf, we observed a pattern of exponential

saturation with a distinct asymptote as the crop canopy

approached its maximum volume (Figure 10B). This pattern aligns

with the classical Beer-Lambert’s law of attenuation of light through

the canopy, offering a straightforward approach for predictive crop

physiological traits estimation. Notably, the critical leaf area index at

which 95% of radiation is intercepted was reached at canopies
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volumes between 3 and 4 m3. The crop attained these volumes in

a generalized manner between the first and second ground truth data

collection dates, suggesting the likely canopy closure between 62

DAP and 84 DAP, a timeframe consistent with bibliography on

cotton crop physiology (Snider et al., 2021). These findings provide

valuable insights into the dynamic interplay between canopy

structure and light interception efficiency, key for optimizing

crop productivity.

3.5.2 Validation of CH estimates over time
Our spatiotemporal registration of TLS data provided reliable

estimations of CH over time (Figure 11). The comparison between

TLS-based estimates and ground truth measurements indicated that

the temporal variation of predicted and observed data was generally

within 7 cm for most genotypes and data collection sessions. This

agreement was particularly strong for canopies under 1.5 meters,

where CH estimations closely matched actual values. However, for

canopies exceeding 1.5 meters, our estimations tended to slightly

overestimate CH, which is consistent with our previous

regression analysis.

The proximity of our estimated values to actual measurements

indicated the accuracy of our methodology. CH estimations

generally followed trends of steady growth, maintaining close

alignment with ground truth values. In several cases, such as UA

48 or ST5020, the estimated CH closely matches the ground truth,

demonstrating the reliability of our scanning technique. However,

we found some discrepancies between estimated and ground truth

values for certain genotypes, such as T0018MDN or MDN0101,

highlighting areas for potential refinement in our scanning process.

These discrepancies can be attributed to two main factors. Firstly,

these two genotypes showed the highest growth rate, and as the

canopies grew taller and denser, measuring their height in the field

became more challenging and error-prone, introducing noisy points

that could mask the performance of our methodology. Secondly, the

increased complexity of the canopy structure at later growth stages

might have affected the accuracy of the TLS data registration,

leading to slight overestimations in CH.
BA

FIGURE 10

Phenotypic traits estimation results. (A) Canopy height estimations computed using the maximum height value versus ground truth measurements.
(B) Canopy volume estimations versus ground truth measurements of fraction of intercepted photosynthetic active radiation (PAR).
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Our methodology effectively captured the variations in CH

among different genotypes over time. Some genotypes exhibited

considerable growth, and our methodology tracked this evolution

relatively accurately. At 62 DAP, CH among genotypes showed

minimal variation, mostly clustered between 0.8 and 1.0 meters, and

our estimation errors were below 5 cm. However, as the crop

matured, our CH estimates began to slightly diverge from the

actual values. By 98 DAP, there was greater diversity in CH,

ranging from nearly 1.8 meters for some genotypes to around 1.2

meters for others. At this stage, TLS estimates tended to be higher

than the actual measurements, with estimation errors reaching

approximately 20 cm for certain genotypes. These observations

were consistent when analyzed at the individual plot level

(Supplementary Figure S5). For genotypes such as DES 56 or DG

3615, average estimation errors remained under 7 cm. However, in

plots of genotypes like T0018MDN, errors approached 25 cm at

later DAP, indicating challenges in accurately measuring CH as

canopies became taller and denser.
3.6 Analysis of phenotypic traits over time

Our methodology for collecting time-series TLS data provided

highly detailed 3D information, enabling clear tracking of canopy

evolution at the plot level across the distinct crop growth phases

(Figure 12). The application of multi-scan TLS proved to be a robust

technique for crop trait modeling over time, facilitating the

reconstruction of detailed 4D models to successfully identify the

primary growth phases leading up to crop maturity. The

progression of canopy expansion is illustrated in Supplementary

Figure S6, which shows a detailed profile of the distribution of

canopy area per height layer over time for all genotypes. In general,

during the initial growth stages, steady stem elongation and leaf area
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expansion were observed. With increasing resource availability,

plant canopy expanded significantly both vertically and

horizontally, resulting in exponential leaf area growth for almost

all genotypes between 40 and 70 DAP. As the crop approached

canopy closure, the canopy height tended to peak, yet vegetative

branches continued to develop, significantly increasing lateral

growth and the overall occupied volume until reaching canopy

closure, where the canopy nears its upper size limit. This approach

facilitated the extraction of morphological traits at the plot level and

enabled comparative analysis across different genotypes throughout

the growing season.

3.6.1 Crop growth model selection
The logistic model consistently emerged as the best-performing

model across the analyzed traits, exhibiting the lowest AIC and BIC

scores for modeling CH and CV evolution (Supplementary Table

S4). Notably, the variations in performance among the models were

relatively modest, indicating that all selected models provided a

reasonably good fit to the data. The DAIC and DBIC values, which

represent the differences in Akaike Information Criterion and

Bayesian Information Criterion values, respectively, offer a

comparative perspective on each model’s performance relative to

the best-fitting model.

In our study, the logistic and 3P-Richards models excelled in

estimating CH growth parameters. For CH estimations, the logistic

model was closely followed by the 3P-Richards model, with only a

4-point difference. The Gompertz model performed notably worse,

with differences exceeding 50 points in both AIC and BIC scores.

Conversely, the logistic model outperformed the others in CV

growth modeling. Here, the 3P-Richards model had the worst

AIC and BIC scores, while the Gompertz model’s performance

was intermediate, with AIC and BIC scores 10 points higher than

those of the logistic model.
FIGURE 11

Temporal variation of predicted and observed canopy height. Solid lines represent canopy height (CH) values estimated using our methodology.
Dashed lines represent ground truth (GT) CH values measured manually in the field. Each color and symbol combination represents a different
genotype, with corresponding pairs (e.g., Acala Maxxa and Acala Maxxa_GT) for each genotype.
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3.6.2 Traits evolution modeling
Our findings revealed significant variability in CH growth

parameters across different cotton genotypes, including both
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maximum CH value and inflection point (Table 2). In order to

ensure the convergence of the mathematical model and facilitate the

estimation of other growth parameters using the available data, we

assumed a constant logistic growth rate (k) across all genotypes.

The maximum value in a sigmoidal growth curve represents the

upper limit or saturation point of growth for the crop. In our

analysis, genotype T0018MDN exhibited the highest maximum

CH among all genotypes, reaching nearly 2 meters. Genotypes

MDN0101 (GH191) and DES 56 closely followed, with a

maximum CH of approximately 1.8 meters. In contrast, genotypes

Tamcot Sphinx and UA48 were significantly smaller, with maximum

CH values around 1.2 meters. The remaining genotypes fell in

between, with CH values ranging from 1.4 to 1.6 meters. Notably,

ST5020, Acala Maxxa, DP 1646, and DG 3615 had significantly

shorter canopies compared to T0018MDN.

The inflection point is a critical feature that marks the change in

crop growth dynamics. This point, where the curve’s slope is at its

maximum, represents the stage where the rate of growth transitions

from being exponential to linear, signifying the phase of most rapid

change in the growth rate. In our experiment, T0018MDN genotype

was the last in reaching maximum growth rate, occurring after 59

DAP (Ti = 59.3 DAP). This was significantly later than the other

genotypes, except for MDN0101 (GH191), DP 341, and DP 1646. In

contrast, ST5020 and UA48 took around 50 days to reach their

maximum growth rates. The rest of the genotypes exhibited

inflection points of 53 DAP or more. Notably, MDN0101

(GH191) was significantly more slowly in reaching its peak than
FIGURE 12

Growth comparison for a sample plot (Plot ID 906) during the vegetative crop growth. The left column shows the original RGB point cloud. The rest
of columns show the frontal view, side view, and top view for each respective data collection session colorized by plant height. The figure is color-
coded based on plant height, normalized with respect to the terrain (DTM), with blue tones indicating points closer to the ground.
TABLE 2 Comparison of logistic growth parameters for canopy height
per genotype.

Genotype kCH ACH
† SE TiCH† SE

Tamcot Sphinx 0.06 1.24a 0.112 53.3abcd 1.153

UA 48 0.06 1.26a 0.097 51.2ab 0.875

ST5020 0.06 1.40ab 0.097 49.1a 0.792

Acala Maxxa 0.06 1.40ab 0.104 53.2abc 1.049

DP 1646 0.06 1.48ab 0.104 55.7cde 0.918

T0246BC3MDN 0.06 1.58abc 0.136 53.3bcd 1.028

DG 3615 0.06 1.59ab 0.104 52.5abc 0.941

DP 341 0.06 1.62abc 0.105 56.1cde 1.145

DES 56 0.06 1.81bc 0.104 54.4bcd 0.804

MDN0101
(GH191)

0.06 1.84bc 0.099 57.7de 0.909

T0018MDN 0.06 2.06c 0.100 59.3e 0.871
Means and standard error (SE) for maximum height (ACH ) in meters and inflection point
(TiCH ) in days after planting. The logistic growth rate (kCH ) was assumed constant for all the
genotypes. †Means not sharing any letter are significantly different by the Tukey-test at the 5%
level of significance.
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DG 3625, Acala Maxxa, UA48, and ST5020, taking approximately

54 DAP.

Our analysis of CV estimations over time revealed substantial

genotype-dependent differences in CV growth (Table 3). Similar to

the CH analysis, we assumed a constant logistic growth rate (k) for

all genotypes to ensure model convergence. Among the genotypes

assessed, T0018MDN exhibited the highest plant volume,

surpassing 7 m3. Following closely were genotypes DG 3615, DES

56, and DP 341, each with volumes exceeding 6 m3. In contrast,

Tamcot Sphinx attained a maximum volume of less than 3 m3,

significantly smaller than T0018MDN. The remaining genotypes

displayed CV values ranging between 3 and 7 m3. Regarding the

inflection point for CV growth modeling, genotype DP 1646

demonstrated the highest value among all genotypes, occurring at

approximately 70 DAP. Most other genotypes exhibited inflection

points between 64 and 68 DAP. MDN0101 (GH191) emerged as the

most precocious in reaching its maximum growth rate, at around 63

DAP, indicating a significant earlier maturation compared to

genotypes T0018MDN, DG 3615, and DP 341.

The complex interplay between genotype, environment, and

crop development is evident in the diverse morphological traits

analyzed and the corresponding evolution curves of CH

(Figure 13) and CV (Figure 14). The evolution of both CH and

CV reflects the gradual pace of growth of the crop during the initial

stages. As the season progressed and resources become more

available, plant canopy expanded both in height and laterally,

resulting in exponential CV growth across all genotypes between

40 and 70 DAP. This period of rapid development indicated the

crop’s increasing capacity to capture light energy. Around 75 DAP,

a visible slowdown in stem elongation is observed across nearly all

genotypes, signaling the approach to canopy closure. This

phenomenon suggests that the crop is nearing its upper size

limit, with further CH growth becoming increasingly
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constrained. Tracking growth traits over time provides valuable

insights into the dynamic evolution of cotton crop development,

including genotype-specific responses to environmental cues and

management practices. These insights can guide breeders and

researchers in selecting genotypes with desired traits to improve

yield, enhance pest resistance, and ensure adaptability to diverse

growing conditions.
4 Discussion

4.1 Time-series TLS data for
field phenotyping

Using time-related data in plant phenotyping represents a valuable

approach to gaining a deeper understanding of the temporal dynamics

of plant growth. Plants respond to changing environmental conditions,

and field data collected over time can capture these variations,

providing continuous insights into trait evolution during the course

of a growing season. This can allow for a better understanding of crop

development (Pauli et al., 2016), holding promise for advancing our

knowledge of plant biology and supporting the development of crops

adapted to varying environmental conditions (Miao et al., 2020). In

plant breeding, this information can be key to support genotype

selection based on new traits that allow for a more efficient use of

resources (Li et al., 2022).

Traditional plant phenotyping methods often limit analyses to a

single time point, potentially overlooking vital changes and

interactions between the crop and its environment during critical

developmental stages (Tardieu et al., 2017). Unlike conventional

static measurements, time-series data are composed of a sequence

of data collected at different timestamps. This temporal context

facilitates the identification of key stages of development and

growth patterns, offering valuable information about the rate of

growth, periods of stability, and potential stress responses (Chen

et al., 2014).

Integrating time-series data with advanced 3D technologies like

LiDAR enhances phenotyping for precision agriculture. LiDAR

technology has contributed to the advancement of field phenotyping,

offering direct access to complex 3D morphological trait information

and allowing for detailed reconstructions of plant structures (Guo et al.,

2018). Time-series TLS data can improve the accuracy of growth

models by capturing intricate details of plant development during the

whole growing season (Jin et al., 2021b). Our work demonstrated that

TLS time-series data can provide consistent information on traits such

as canopy height and volume, enabling precise crop traits tracking.

This information can increase our understanding of critical growth

parameters to optimize management strategies and make more

informed decisions in crop breeding.
4.2 Importance of 4D registration of TLS
data for crop growth tracking

Detailed 4Dmodels, incorporating the temporal dimension into

3D spatial data from TLS scans, provide a powerful tool for
TABLE 3 Comparison of logistic growth parameters for canopy volume
(CV) per genotype.

Genotype kCV ACV
† SE TiCV† SE

Tamcot Sphinx 0.106 2.76a 0.92 64.4abc 1.435

UA 48 0.106 3.68ab 0.80 64.8ab 1.058

Acala Maxxa 0.106 4.28ab 0.86 64.0ab 1.116

ST5020 0.106 4.28ab 0.80 65.3abc 1.139

DP 1646 0.106 4.77ab 0.85 70.1c 1.157

T0246BC3MDN 0.106 4.84ab 1.12 66.1abc 1.308

MDN0101
(GH191)

0.106 5.40ab 0.80 62.6a 0.846

DP 341 0.106 6.45ab 0.85 68.3bc 1.218

DES 56 0.106 6.49ab 0.85 66.7abc 0.962

DG 3615 0.106 6.67ab 0.85 67.4bc 1.087

T0018MDN 0.106 7.25b 0.79 67.0bc 0.849
Means and standard error (SE) for maximum canopy volume (ACV) in cubic meters and
inflection point (TiCV) in days after planting. The logistic growth rate (kCV) was assumed
constant for all the genotypes. †Means not sharing any letter are significantly different by the
Tukey-test at the 5% level of significance.
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analyzing and tracking morphological traits across the growing

season. However, generating these models poses unique challenges,

primarily from the need to align repeated measurements over time.

The complex transformations that crops undergo during the

growing season complicate the registration of point clouds

collected at different time points. Ensuring the consistency and

reliability of TLS data collection and processing becomes essential

in field conditions (Pieruschka and Schurr, 2019).

Accurate data alignment is crucial for tracking changes in plant

structure. While some methods use fixed targets to aid co-
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registration (Tilly et al., 2014; Friedli et al., 2016; Su et al., 2019),

this approach can be labor-intensive and error-prone. The

consistent positioning of targets in agricultural fields, where

machinery needs to operate or other experiments need to be

executed, can be problematic. Deviations in the target placement

between surveys can impact the temporal alignment accuracy, and

hence the estimation of traits over time.

Inspired by the positive results from a previous study in maize,

soybean, and wheat using semi-permanent targets (Friedli et al.,

2016), we initially adopted this concept to benchmark our
FIGURE 13

Temporal evolution of plot-level canopy height (CH) across the growing season for 11 genotypes. Grey lines indicate estimated CH values for all
plots in the field. Colored solid lines highlight the estimated CH for a specific genotype. Dash-dotted lines depict fitted logistic growth curves.
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methodology. This study reported deviations in the positions of

spherical targets between 2.5 mm and 10 mm. However, after

preliminary processing of data from our initial collection sessions,

we found deviations in target locations exceeding 20 mm. These

larger deviations were not due to the registration process itself but

were likely caused by external factors beyond our control. Our

experimental field was also used for other studies involving

autonomous robot navigation, and areas with heavy foot and

tractor traffic seemed to impact the soil around the spheres,

causing the structures to shift.
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To address this issue, we proposed an innovative approach that

relies solely on the collected data for registration, reducing

dependence on artificial targets and minimizing the impact of

such external factors. By not relying on physical markers that can

be displaced, our approach maintains accuracy over long periods

and in environments subject to change. This flexibility makes

it especially suitable for dynamic field conditions where

traditional fixed targets might fail to provide consistent accuracy.

This streamlines field setups and ensures consistent and

reproducible results.
FIGURE 14

Temporal evolution of plot-level canopy volume (CV) during the growing season for 11 genotypes. Grey lines represent estimated CV values for
every plot computed using the method based on projected area. Colored solid lines highlight the estimated CV of individual plots for a specific
genotype. Dash-dotted lines depict fitted logistic growth curves.
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Our approach has demonstrated effectiveness in overcoming

these challenges, offering an accessible and robust methodology for

TLS-based phenotyping in dynamic field environments. Unlike

approaches requiring continuous acquisition for ensuring

common features for registration (Li et al., 2023), our multi-step

TLS data alignment leveraged invariant elements naturally present

in the collected point clouds to roughly align them. This allowed us

to decouple the registration process from changing elements such as

the crop, facilitating the registration of point clouds collected at

distant time intervals. The observed registration errors, comparable

to expected errors in rigid registration at the organ level (Chebrolu

et al., 2021) and falling within the range of RMSE values for height

estimation, indicate the accuracy of our approach in capturing time-

series TLS data. This highlights the potential of our method for

LiDAR-based crop phenotyping under dynamic field conditions.
4.3 Challenges in growth modeling for
crop breeding

Understanding the growth patterns of cotton plants is essential

for effective crop management and informed breeding strategies

(Ritchie et al., 2007). Cotton plant development typically follows a

sigmoid function, characterized by slow initial growth during

establishment, followed by exponential vegetative growth that

gradually slows as the crop approaches canopy closure (Snider

et al., 2021). Growth modeling plays a key role in estimating key

parameters defining these growth curves (Gregorczyk, 1998),

providing a systematic approach to incorporate insights into crop

phenotyping (Costa et al., 2019).

Growth modeling from field data can be challenging, and many

of the growth parameters extracted with our methodology could not

be obtained any other way on a large scale. Focused on the analysis

of three key morphological traits, CH, CA, and CV, across diverse

cotton genotypes, our study unraveled the dynamics of cotton

growth and the relationships between growth parameters,

providing valuable insights for genotype selection tailored to

specific requirements. However, fitting maximal models with all

random effects may fail to converge because the random effects

structure has a complexity not supported by the underlying data

(Barr et al., 2013). Simplification of the random effects structure can

help the model to converge (Bates et al., 2015).

Trade-offs are often necessary due to computational limitations

and the need for efficient model fitting (McCrea et al., 2023).

Challenges may arise across the data analysis pipeline, including

processing, model development, and information extraction. Fitting

maximal models that include all random effects in growth

parameters can face convergence challenges due to the complexity

of the random effects structure (Barr et al., 2013). Our study

revealed that growth rate could be one of the most complex parts

of the random effects structure for crop growth modeling.

Primarily, we dropped covariance terms for some of the random

effects, as suggested in one paper (Seedorff et al., 2019) to try to

achieve convergence. However, it was not sufficient for our model to

converge, and we opted for a more drastic approach of fixing the

growth rate for all the genotypes, removing the slope entirely, in
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order to reduce the complexity of our model. This led us to simplify

the model by fixing the growth rate for all genotypes, emphasizing

the importance of balancing model complexity and convergence

(Bates et al., 2015).
4.4 Limitations and future work

The adaptability of TLS technology to capture 3D structural

information makes it inherently suitable for studying a wide range

of plant species. While our methodology has demonstrated

effectiveness in a cotton breeding field, highlighting its potential

application in similar agricultural contexts, its generalizability

across diverse crops and environmental conditions remains to be

fully explored.

Additionally, uncertainties in the use of estimated CV as a

proxy for estimating canopy light interception should be

acknowledged. Variability in environmental conditions can affect

the accuracy of IPARf measurements and validating its relationship

with our CV estimation method warrants further research.

Understanding these uncertainties is key for enhancing the

reliability and applicability of our methodology across different

agricultural settings.

Further experimentation across different field settings is

imperative to comprehensively assess the adaptability and

generalizability of our methodology. Expanding these efforts to

accommodate various research environments will be key to

establishing a scalable methodology for consistent field

phenotyping over time. Understanding how factors such as

canopy structure, plant density, and environmental influences

interact with our methodology is crucial for evaluating its

scalability and robustness across different crop types and field

conditions. Our initial findings indicated that our methodology

could create accurate 4D crop models under conditions of minimal

plant overlap. However, maintaining model accuracy became

challenging as canopy density increased. Different crop types may

require tailored strategies for BEV-based alignment due to their

unique growth characteristics. For example, maize plants, which are

individually planted and in early stages may project only a small

footprint, may require a more precise clustering process. Similarly,

densely planted crops like wheat can introduce additional

complexities in data interpretation and analysis.

Despite the effectiveness and accuracy achieved in our cotton

field, challenges such as laser beam shadowing and occlusions were

not entirely eliminated, particularly in advanced growth stages.

These issues are common in many remote and proximal sensing

studies conducted in the field, demanding further research for

resolution. The complex structure of crops like cotton poses a

challenge, where increasing the number of scan locations for multi-

scan TLS-based field analysis may not completely eliminate

occlusion effects. Striking a balance between the need for more

scans and efficient resource utilization, including time and

computing power, necessitates thorough site studies for TLS site

planning to optimize data collection. We are actively exploring the

potential of physics-based simulators for knowledge-guided TLS

site planning. These simulations can provide valuable insights into
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the optimal distribution of scan locations, especially in complex

field environments, enhancing the efficiency of TLS-based

field phenotyping.

Moreover, the increased number of scan locations introduces

new challenges, particularly in terms of time consumption and

logistics. Traditional practices for LiDAR-based scanning involve

manually moving the scanner from one scan location to another,

contributing to the time-intensive nature of data collection. In a

prior study, we demonstrated the potential use of a ground robot to

automate TLS data acquisition in a breeding field (Rodriguez-

Sanchez and Li, 2022). We are working on improving this system

to autonomously determine the number of scans and their

distribution throughout the field, thereby fully automating the

TLS-based phenotyping process. This work is currently under

review in a reputed journal, and a preprint is available on arXiv

(Rodriguez-Sanchez et al., 2024). This innovative approach aims to

enhance the efficiency of TLS data collection for plant breeding,

streamlining the phenotyping workflow and aligning with broader

trends in automation and robotics within the field of agriculture.
5 Conclusions

In this study, we introduced an innovative methodology for

precisely registering point clouds collected under field conditions,

enabling LiDAR-based crop phenotyping over time. This work

emphasizes the critical importance of precise point cloud data

collection, accurate registration, and precise modeling for TLS-

based field phenotyping. Our two-phase TLS data registration

approach has demonstrated its effectiveness in aligning point

clouds captured up to two months apart during the vegetative

growth season, significantly reducing alignment errors. By

leveraging terrain points and crop row distribution, our method

provides a reliable and efficient solution for monitoring crop

morphological growth, enabling breeders to consistently acquire

accurate phenotypic traits from the same physical locations at

different time points.

As digital technologies advance, the refinement of current

procedures for in-field data collection and processing will

strengthen our ability to enhance crop improvement in a more

efficient manner. Despite challenges such as late-season occlusions,

our approach presents a promising solution to enhance cotton

breeding programs by offering a reliable digital approach to monitor

traits over time. It provides a foundation for informed decision-

making and genotype selection based on desirable growth

characteristics. The findings of this study can contribute

significantly to understanding cotton plant growth and genotype

variations, offering valuable insights for optimizing cotton crop

management and advancing plant phenomics.
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