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FIDMT-GhostNet: a lightweight
density estimation model for
wheat ear counting
Baohua Yang*, Runchao Chen, Zhiwei Gao and Hongbo Zhi

School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, China
Wheat is one of the important food crops in the world, and the stability and

growth of wheat production have a decisive impact on global food security and

economic prosperity. Wheat counting is of great significance for agricultural

management, yield prediction and resource allocation. Research shows that the

wheat ear counting method based on deep learning has achieved remarkable

results and the model accuracy is high. However, the complex background of

wheat fields, dense wheat ears, small wheat ear targets, and different sizes of

wheat ears make the accurate positioning and counting of wheat ears still face

great challenges. To this end, an automatic positioning and counting method of

wheat ears based on FIDMT-GhostNet (focal inverse distance transform maps -

GhostNet) is proposed. Firstly, a lightweight wheat ear counting network using

GhostNet as the feature extraction network is proposed, aiming to obtain multi-

scale wheat ear features. Secondly, in view of the difficulty in counting caused by

dense wheat ears, the point annotation-based network FIDMT (focal inverse

distance transform maps) is introduced as a baseline network to improve

counting accuracy. Furthermore, to address the problem of less feature

information caused by the small ear of wheat target, a dense upsampling

convolution module is introduced to improve the resolution of the image and

extract more detailed information. Finally, to overcome background noise or

wheat ear interference, a local maximum value detection strategy is designed to

realize automatic processing of wheat ear counting. To verify the effectiveness of

the FIDMT-GhostNet model, the constructed wheat image data sets including

WEC, WEDD and GWHD were used for training and testing. Experimental results

show that the accuracy of the wheat ear counting model reaches 0.9145, and the

model parameters reach 8.42M, indicating that the model FIDMT-GhostNet

proposed in this study has good performance.
KEYWORDS
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1 Introduction

Wheat is a widely planted crop in the world, and its yield and quality are directly related

to global food security and the development of agricultural economy (Atamanyuk et al.,
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2023). Wheat ears, as the reproductive organs of wheat, are the key

to reflecting the growth status, yield potential and quality

characteristics of wheat. The precise positioning and accurate

counting of wheat ears is an important link in agricultural

production, which not only involves real-time monitoring of

wheat growth status, but also is a core indicator for predicting

wheat yield. Through high-precision positioning and counting

technology, agricultural scientists and researchers can more

accurately grasp the wheat growth, reproductive ability, and yield

potential of wheat, thereby providing scientific basis for agricultural

management, breeding optimization, and yield prediction. In

addition, the positioning and counting of wheat ears are also of

great significance to wheat breeding work (Hasan et al., 2018). By

comparing the number and distribution of wheat ears under

different varieties or different treatment conditions, breeders can

screen out more advantageous germplasm resources and develop

wheat varieties that are more suitable for the local growth

environment and market demand (Simão et al., 2023).

Traditional wheat counting methods are highly dependent on

the experience and visual judgment, resulting in inaccurate and

unrepeatable counting results. With the widespread application and

rapid development of artificial intelligence, deep learning has made

significant progress and breakthroughs in the field of wheat ear

counting research. Compared with traditional machine learning-

based methods, its performance has been significantly improved.

Deep learning models can handle more complex data patterns and

optimize their performance through training on large amounts of

data (Zou et al., 2023). In terms of wheat ear counting, deep

learning is mainly based on three methods, target detection,

image segmentation and density map estimation.

Methods based on target detection mainly use deep learning

models to identify and locate wheat ears in images. Many scholars

have trained detection models to identify the characteristics of

wheat ears and mark the position of each wheat ear in the image.

Madec et al. (2019) used the Faster R-CNN model to detect and

count wheat ears on high-resolution wheat images. In fact, the

advantage of this method is that it can accurately identify and locate

each wheat ear. Li and Wu (2022) proposed an improved YOLOv5

algorithm based on shallow features. By adding four times

downsampling to the feature pyramid to capture the

characteristics of micro-wheat ears, an attention mechanism was

added to the network to realize the detection and counting of wheat

ears. Yang et al. (2021) used YOLOv4, which added a channel

attention mechanism and a spatial attention mechanism, to

suppress irrelevant background information, increase the

expression ability of wheat ear features, and detect and count

wheat ears in different data sets. Wang et al. (2021b) proposed an

improved EfficientDet-D0 target detection model for wheat ear

counting. Research shows regardless of the single-stage or two-stage

detection network, it can achieve good results in wheat ear detection

and counting. However, when wheat planting density is high and

leaves are severely blocked, the target detection algorithm may

cause false detections or missed detections, resulting in inaccurate

counting results. Therefore, it is necessary to build a more

robust model.
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The counting method of wheat ears based on image

segmentation is to segment the wheat ears in the image from the

background or other objects. This method usually uses a deep

learning model to learn pixel-level features in the image to

accurately segment wheat ears and background. Through the

segmented image, the number of wheat ears can be calculated.

For example, Zhang et al. (2022a) used the semantic segmentation

model Wheat-Net to segment and count wheat ears under complex

backgrounds in the field. Wang et al. (2021a) proposed a semantic

segmentation regression network SSRNet to count wheat ears in

remote sensing images. Ma et al. (2020) proposed a model based on

semantic segmentation, EarSegNet, which effectively improved the

segmentation accuracy and efficiency of winter wheat ears. Xu et al.

(2023) proposed the CBAM-HRNet model for wheat grain

segmentation and counting. Misra et al. (2020) proposed a

segmentation model SpikeSegNet to implement counting of wheat

ears. Dandrifosse et al. (2022) developed the DeepMAC

segmentation model to achieve wheat ear segmentation and

density counting. Although the above segmentation models can

improve the accuracy of wheat ear counting to a certain extent, due

to the influence of environmental factors such as lighting, occlusion,

and shadow, some wheat ears may be mistakenly segmented or

missed, thus affecting the accuracy of counting. However, due to the

diversity of wheat planting environments and growing conditions, it

is difficult to ensure the generalization ability of the segmentation

algorithm in different scenarios.

The method based on density estimation uses a deep learning

model to estimate the density of wheat ears in the image. It does not

require precise identification and positioning of each wheat ear, but

estimates the overall distribution of wheat ears in the image. In

addition, density map-based methods have greater flexibility and

generalization capabilities and can be flexibly applied to counting

tasks of different scales and scenarios. For example, Bao et al. (2020)

used the CSRNet model based on density estimation and suitable

for target counting in dense scenes to count wheat ears. Sun et al.

(2021) optimized the CSRNet model to count wheat ears on the

global wheat data set. Wu et al. (2023) proposed the DM-Net model

to estimate and count the density of wheat ears. Ma et al. (2022)

proposed a transfer learning model EarDensityNet based on a fully

convolutional neural network to count wheat ears. Lu et al. (2022)

proposed a TasselNetV3 model based on density estimation to

implement wheat counting. Since the density map can reflect the

spatial distribution of objects, it can better handle the occlusion

problem between objects. Research shows that density map-based

methods have significant advantages in the field of wheat counting

and can overcome the limitations of traditional methods and

improve counting accuracy and efficiency. Although the above-

mentioned counting model based on density estimation has

achieved certain results, it still has shortcomings in terms of

training time, parameter redundancy, processing high density,

and adapting to complex scenes. Therefore, wheat counting based

on density plot regression still faces great challenges.

To this end, a wheat ear density estimation model based on

lightweight convolutional neural network is proposed in this study,

which can better alleviate the above-mentioned problems. The

purpose of this study is: (1) to solve the problem of different size
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435042
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1435042
of wheat ears, GhostNet is proposed as the feature extraction

network, which can generate multi-scale feature maps through its

unique Ghost module; (2) to improve the counting accuracy caused

by dense wheat ears, FIDMT based on point annotation is

introduced as the baseline network; (3) to obtain more

characteristic information of small target wheat ears, a dense

upsampling convolution module is proposed; and (4) to

overcome the background noise or interference of wheat ears, a

local maximum detection strategy is adopted to realize automated

processing of wheat ear counting.
2 Materials and methods

2.1 Data collection

2.1.1 Data sources
Wheat images were collected the National Modern Agriculture

Demonstration Zone (31°29′26″N, 117°13′46″E) located in Guohe

Town, China. The shots were taken on May 7, 2021 and May 17,

2021 using the rear main camera (48 million pixels) of Huawei’s

nova5pro mobile phone. When collecting each image, the camera

lens was kept at a distance of about 30cm directly above the wheat

ears. A total of 500 top-view images of wheat with a resolution of

3024 × 3024 pixels were collected and record them as wheat ear

counting (WEC) data set, which contains many samples with

different light intensities, different densities, and different periods.

Among them, there are 313 images of wheat in the filling stage and

187 in the mature stage.

To ensure the diversity and representativeness of wheat ears in the

data set and enhance the universality and robustness of the model, this

article added 500 images from the global wheat detection data set

(GWHD, http://www.global-wheat.com) with a resolution of 1024 ×

1024 pixels. This data set contains wheat data from multiple

countries and different growth stages. In addition, a total of 500

clear wheat images from 10 countries in the GWHD dataset were

selected, including Australia, Canada, China, France, Japan,

Mexico, Sudan, Switzerland, the United Kingdom, and the United

States. Wheat data from the wheat ears detection dataset (WEDD)

was also added, and a Sony ILCE-6000 digital camera was used to

maintain a distance of 2.9 meters from the ground for overhead

photography. To reduce the number of parameters and increase the

computing speed in the subsequent model training process, the

wheat images with an original size of 6000 × 4000 pixels in the data

set were cropped, and 200 wheat images with a resolution of 3072 ×

3072 pixels were obtained.

Figure 1 shows some examples of wheat data sets, including

three data sets, WEC, WEDD and GWHD. Among them, Figure 1A

represents WEC data set, Figure 1B represents WEDD data set, and

Figure 1C represents GWHD data set. There are certain differences

in the shape, density, occlusion, and period of the wheat ears, which

can intuitively reflect the diversity of wheat ears in the wheat data

set constructed in this study.
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2.1.2 Data annotation
After the wheat data is selected, MATLAB is used to label the

wheat ear points on the images in the above data set, as shown in

Figure 2A. And Figure 2B shows the.mat format tag that saves the

wheat ear position information. This annotation technology not

only maintains the clarity of the image, but also more accurately

captures the spatial position information of the wheat ears in the

image. To further reduce the computational burden and annotation

workload, all wheat images in the data set are uniformly adjusted to

a high resolution of 1024 × 1024 pixels before annotation, which not

only ensures the accuracy of annotation, but also improves

processing efficiency.

2.1.3 Dataset construction
The reasonable division of the wheat data set is a critical step for

the subsequent model training and evaluation process. The density

estimation model will be trained and tested based on the wheat data

set divided in Table 1. The ratio of the training set, verification set,

and test set is set to 7:2:1, and the detailed numbers are 840, 240,

and 120 images respectively.
2.2 GhostNet

The GhostNet is a lightweight network framework based on the

Ghost module, which is mainly composed of simple linear

operations and standard convolutions (Han et al., 2019).

Specifically, the Ghost module generates some intrinsic feature

maps through ordinary convolutions, and then generates more

feature maps from these feature maps through a series of simple

linear operations. These new feature maps are combined with the

original feature maps to form the final feature map output, as shown

in Figure 3. This structure enables GhostNet to greatly reduce the

size and number of parameters of the model while ensuring model

performance, making the model more lightweight. The

GhostBottleneck module is an important part of the GhostNet

model, which is mainly composed of two Ghost modules. Each

Ghost module is responsible for generating feature maps and

adding features and channels through linear operations. This

structure enables the GhostBottleneck module to further reduce

the computational complexity of the model while maintaining

feature extraction capabilities.
2.3 Upsampling method

2.3.1 Interpolation algorithm
Bilinear Interpolation Upsampling is a widely used technique in

image processing to enlarge the size of an image to a higher

resolution (Soh et al., 2024). The core idea is to perform linear

interpolation in two directions (usually horizontal and vertical) to

estimate and fill the values of the newly added pixels in the enlarged

image. Compared with other more complex upsampling methods,
frontiersin.org

http://www.global-wheat.com
https://doi.org/10.3389/fpls.2024.1435042
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1435042
the calculation of bilinear interpolation is relatively simple and easy

to implement.
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2.3.2 Transposed convolution
Transposed Convolution (Faisal et al., 2023), as a commonly

used upsampling method in deep learning, increases the size of

feature maps by simulating the inverse process of convolution layer.

Transposed convolution can effectively help the model recover
FIGURE 2

Example of wheat ear labeling: (A) Point labeling example, (B) Label data.
FIGURE 1

Examples of wheat image: (A) WEC, (B) WEDD, and (C) GWHD.
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high-resolution images or feature maps from low-resolution

features. However, the computational complexity of transposed

convolution is high, and the demand for computing resources

and storage space is also large, which needs special consideration

when designing large or complex deep learning models.

2.3.3 Dense upsampling convolution
Dense Upsampling Convolution (DUC) is an upsampling

technique that compensates for the loss in length and width by

dividing the entire feature map and operating on the channel

dimension. It is mainly used to increase the resolution of an

image or feature map to restore it to its original size or a larger

size, while trying to preserve and restore the details in the image

(Zhou et al., 2022).
2.4 Density estimation model

2.4.1 MCNN
MCNN (Multi-column Convolutional Neural Network) is a

three-column convolutional neural network model composed of

three different convolution kernel sizes (Zhang et al., 2016). It

completes the density estimation and counting tasks of the target by

mapping the input image into a predicted density map. Wang et al.

(2019) first applied it to wheat ear counting, using the feature map
Frontiers in Plant Science 05
generated by the multi-column convolutional neural network for

feature fusion, reducing the dimensionality of the fused features,

and then outputting the predicted wheat ear density map and

counting the wheat ears. The detailed network structure of

MCNN is shown in Figure 4.

2.4.2 CSRNet
CSRNet (Congested Scene Recogrition Network) is a target

counting model suitable for dense scenes (Li et al., 2018). Its

network structure mainly consists of a front-end network and a

back-end network, which are VGG-16 with all fully connected layers

removed, and 6 consecutive dilated convolution operations with the

dilation rate set to 2. Finally, after a 1×1 ordinary convolution

operation, the predicted density map is output and the targets are

counted. The CSRNet model structure is shown in Figure 5.

2.4.3 FIDTM
FIDTM is a convolutional neural network model for density

estimation and counting of dense targets (Liang et al., 2022). It is

designed to solve the problem of accurately counting and locating

targets in extremely dense scenes. When dealing with wheat ear

counting tasks, the FIDTM model shows its unique advantages, as

shown in Figure 6. To locate and count wheat ears more accurately,

the original FIDTM model will be improved. On the one hand, the

Ghost module is introduced. We replace the original convolutional
FIGURE 3

GhostNet model.
TABLE 1 Dataset details for this study.

Data set
Number
of images

Training set Validation set Test set
Total number of

wheat ears

WEC 500 350 100 50 12721

GWHD 500 350 100 50 22380

WEDD 200 140 40 20 11308

1200 840 240 120 46409
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435042
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1435042
layer of the FIDTM model with the Ghost module to reduce the

computational complexity and parameter amount of the model

while maintaining or improving the performance of the model. On

the other hand, in view of the fact that the FIDTM model may lose

the detailed information of wheat ears during the upsampling

process, the Dense Upsampling Convolution (DUC) module is

used to obtain more wheat ear features. Dense upsampling

mainly divides the entire feature map into multiple parts with the

same size as the input feature map to make up for the loss in length

and width by increasing the channel dimension.
Frontiers in Plant Science 06
2.5 Positioning based on LMDS

The local maximum detection strategy (LMDS) is an important

component in the wheat ear counting task, which is used to

effectively extract the center point of each wheat ear. In wheat ear

counting, the local maximum detection strategy works by

identifying possible wheat ear regions through image

segmentation or object detection algorithms. Then, within these

wheat ear regions, the maximum values of local pixel intensity or

feature values are found, which usually correspond to the center
FIGURE 5

Network structure of CSRNet model.
FIGURE 4

Network structure of MCNN model.
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points of the wheat ears. Finally, these center points are extracted

and the number of wheat ears in the image was accurately counted.

In this study, the point coordinates and K nearest neighbor

distance of each wheat ear can be obtained by using the LMDS

algorithm, and the approximate size of the wheat ear detection

frame is defined as shown in Equation 1.

D(x,y)∈P = min
d = f � 1

ko
k

1
dk(x,y)

min (img _w, img _ h)� 0:05

8><
>: (1)

Where D(x,y) represents the size of the wheat ear detection box

located at (x, y), P represents the set of predicted wheat ear

positions, d represents the average distance between the wheat ear

point set P x,yð Þ and uses a scalar factor f to limit the size. In images

with sparse wheat ears, d is generally much larger than the actual

wheat ear size, so a threshold needs to be selected related to the

image size to limit the wheat ear size.
2.6 Density map based on FIDT mapping

To accurately locate wheat ears in images in relatively dense

areas, the new label of Focal Inverse Distance Transform (FIDT) of

the target positioning task is used, that is, the position of each wheat

ear is represented by the nearest neighbor distance information. The

generation principle of the FIDT graph is based on the conversion

graph of Euclidean distance (Sun et al., 2019). The conversion graph

of Euclidean distance is defined as shown in Equation 2:

P(x, y) = min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − x

0
)2 + (y − y

0
)2

q
(2)

In the formula, x
0
, y

0� �
⊂ B and B represents the set containing

all wheat ear annotation information. For any pixel (x, y) in the
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image, P(x, y) represents the shortest distance between each pixel in

the image and its nearest wheat ear center point.

At the same time, to make it easier to distinguish the foreground

target from the background, the focus inverse distance

transformation map is used in the FIDTM model, which is

defined as:

I =
1

P(x, y)(a�P(x,y)+b) + C
(3)

where I represents the FIDT diagram, a and b are set to 0.02

and 0.75 respectively in the FIDTM model.
2.7 Count of wheat ear density map based
on FIDMT-GhostNet

2.7.1 Overall technical route
The flow chart of wheat ear counting based on the FIDMT-

GhostNet model is shown in Figure 7. Firstly, the wheat image is

used as the input of the model, and then the feature map is obtained

after 1 standard convolution and 16 consecutive GhostBottleneck

modules, which is upsampled through the DUC algorithm to make

the resolution of the feature map consistent with the input wheat

ear image. Secondly, the wheat ear density map was predicted based

on a standard convolution with a convolution kernel size of 1 × 1

and an output channel. Finally, the counting and positioning of

wheat ears are realized based on the density map and LMDS

algorithm. The wheat ears were located and detection frames

were generated by predicting the local maximum of the density

map. Among them, the target positioning information output by

the FIDMT-GhostNet model is based on the pixel level, that is, only

the position coordinates of the center point of the wheat ear are

determined. The final result of the detection requires obtaining the
FIGURE 6

Wheat ear counting process based on FIDTM model.
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wheat ear area in the image, that is, locating the target frame of each

wheat ear. Therefore, the target frame of each wheat ear can be

calculated using LMDS.

The FIDMT-GhostNet model innovatively introduces a

continuous stacking structure of 16 GhostBottleneck modules

when building its backbone feature extraction network. This

strategy greatly enhances the model’s ability to perceive details

and texture information of wheat ear images in a multi-level feature

space, thereby significantly improving the accuracy of wheat ear

counting. It is worth mentioning that despite the large number of

modules, the efficiency of the GhostBottleneck module ensures that

the model consumes reasonable computing resources, allowing

FIDMT-GhostNet to maintain high performance while also

achieving high computing efficiency. This design not only reflects

the ingenuity of the model design, but also demonstrates the

wisdom of seeking a balance between calculation accuracy and

efficiency in the wheat ear counting task.

2.7.2 Design of loss function
The loss function is used to calculate the error between the

model output and the true result. The Euclidean distance loss Le and

the density consistency loss Lc are used as the loss L of the overall

network, that is, the total loss L used by the network is the weighted

superposition of Le and Lc. The calculation formula is shown in

Equation 4 and 5.

L = Le + Lc (4)

Le =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

n

i=1
xGTi − xPi
�� ��2s

(5)
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In the formula, N is the number of wheat ear samples, xGTi and

xPi are respectively ground truth and the estimated wheat ear count

corresponding to the ith wheat ear sample.

SSIM (Structural Similarity Index Measure) is a metric used to

measure the structural similarity between two images, including the

brightness, contrast, and structural information of the image. SSIM

values range from -1 to 1, where 1 means the two images are

identical, 0 means there is no similarity, and -1 means the two

images are completely different. To comprehensively evaluate the

performance of the FIDMT-GhostNet model in target counting and

localization tasks, SSIM is used to evaluate the similarity between

the predicted wheat ear density map and the ground-truth density

map to evaluate the performance of the model.

SSIM(E,G) =
(2mEmG + c1)(2sEG + c2)

(m2
E + m2

G + c1)(s 2
E + s 2

G + c2)
(6)

Lc =
1
N o

N

n=1
(1 − SSIM(DM(In),w) (7)

Among them, N is the total number of training samples, In is the

nth image input to the model, DM(In) is the predicted FIDT image

obtained by inputting the nth image into the model, and w is the

FIDT image obtained by the focal inverse distance transform of the

nth image. mE and s 2
E are the mean and variance of the predicted

density map respectively, mG and s 2
G represent the mean and

variance of the Ground Truth respectively. sEG represents the

covariance between the predicted density map and Ground Truth,

c1 =0.0001, c2=0.0009. The value range of SSIM is between -1 and

1. The larger the value, the more similar the two images are.
FIGURE 7

The flow chart of wheat ear counting based on the FIDMT-GhostNet.
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2.7.3 Density estimation evaluation index
In density estimation, rootmean squared error (RMSE) is often used

to measure the difference in each pixel value between the predicted

density map and the true density map. The mean absolute error (MAE)

calculates the average of the absolute value of the difference between the

predicted value and the true value. Compared with MSE, MAE is more

robust to outliers. To evaluate the wheat ear counting performance of

FIDMT-GhostNet, MAE, RMSE, and R2 are used as evaluation

indicators of the model (Qiao et al., 2023; Zhang et al., 2022b).

MAE =
1
No

n

i=1
xGTi − xPi
�� �� (8)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

n

i=1
xGTi − xPi
�� ��2s

(9)

R2 = 1 −o
N
i=1(x

GT
i − xPi )

oN
i=1(x

GT
i − �xPi )

(10)

In the formula, N is the number of tested wheat ear samples, xGTi
and xPi are respectively the Ground Truth and estimated wheat ear

count corresponding to the ith wheat ear sample, MAE can directly

reflect the accuracy of the wheat ear counting model, and RMSE can

better reflect Out of the robustness of the wheat ear counting model,

R2 reflects the degree of fit between the predicted value of the wheat

ear and the Ground Truth. The closer the value is to 1, the higher

the degree of fitting and the higher the reliability of the trend line.

In addition, parameters (Parameter), Floating Point Operations

(FLOPs), Model Size, and FPS (Frames Per Second) indicators are also

introduced to evaluate the wheat ear counting efficiency of the model.
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3 Results

3.1 Experimental parameter settings

In this study, the PyTorch deep learning framework is used to

build the network model. The system information and other

software and hardware related information are listed in Table 2.

The parameter settings during model training are shown in

Table 3. When the Epoch value is greater than or equal to 100,

verification is performed every 5 Epoch intervals.
3.2 Wheat ear counting results

To verify the effectiveness and feasibility of counting method

proposed for the wheat ear in this study, and to evaluate the

universality and transferability of the FIDMT-GhostNet model,

we used WEC, GWHD, and WEDD data sets to carry out wheat

ear counting. The counting results are shown in Table 4. From the

detailed data in Table 4, we can observe the counting performance

of the model under different experimental data. An in-depth

analysis of these performance metrics reveals several noteworthy

trends or characteristics. Among the three data sets, the FIDMT-

GhostNet model performs best with theWEC data set. In particular,

the WEC data set test has the lowest MAE and RMSE, and the

highest R2, reaching 3.25, 3.56, and 0.9279 respectively. Compared

with the GWHD and WEDD data sets, the MAE of WEC decreased

by 2.23 and 1.62 respectively, the RMSE decreased by 2.67 and 2.02

respectively, and the R2 increased by 0.1153 and 0.0067 respectively.

The generalization performance of the FIDMT-GhostNet model on

the GWHD and WEDD test sets is lower than that on the WEC test

set. It may be that the GWHD data set comes from seven different

countries, and there are certain differences in the size, shape, and

color of wheat ears. The wheat ears in the WEDD data set are more

densely distributed and have a higher degree of occlusion. However,

the wheat ears in the WEC data set have a low degree of occlusion,

and the differences between wheat ears are small. Therefore, the

optimized FIDMT-GhostNet model has demonstrated excellent

counting capabilities in multiple data sets. Especially when

processing wheat ear images with severe occlusion and complex

backgrounds, the model can still maintain a high counting accuracy.

This further verifies the effectiveness and robustness of the

model design.

To further prove the wheat counting performance of the

FIDMT-GhostNet model, Figure 8 shows the density plot of the

output of some samples of the data set. These sample data come

from different data sets and wheat ears from different countries. It

can be seen from the wheat ear counting results in Figure 8 that this

model has certain universality and generalization in the wheat ear

counting task.

In the wheat image analysis shown in Figure 8, we can observe

that from top to bottom are the original wheat image, the FIDT

label density map, the density map predicted by the model, the

wheat ear positioning map predicted by the model, and the map
TABLE 2 Details of experimental hardware and software parameters.

Configuration name Parameters

Operating System Windows 10 Professional 64-bit

Code running environment Python3.7

Deep learning framework Pytorch1.80

GPU model NVIDIA GeForce RTX 2080

Processor Intel Core i7-8700 CPU@3.20GHz
TABLE 3 Training parameters of FIDMT-GhostNet model.

Parameter name Value

Epoch 1000

Batch size 2

Learning rate 0.0001

Weight decay 0.0005

Optimizer Adam
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generated based on point annotation. Although there are significant

differences in the distribution, occlusion degree, shape and growth

cycle of the wheat ears in the test image, the density map predicted

based on the FIDMT-GhostNet model and the FIDT label density
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map show a high degree of consistency in distribution, which fully

demonstrates that the FIDMT-GhostNet model has the ability to

handle differences between wheat ears. Furthermore, for the wheat

ears in the original image, the wheat ear counting results of the

FIDMT-GhostNet model is very close to the ground truth, which

shows not only the accuracy of the model in the counting task, but

also its reliability and effectiveness in practical applications. In

particular, the wheat ear detection frame predicted based on the

FIDMT-GhostNet model can more accurately cover the complete

wheat ear, which further verifies the performance of the model in

positioning and scale estimation. Therefore, the test results of

different data sets show that the proposed model can not only

achieve the task of counting wheat ears, but also obtain accurate

position and scale information of wheat ears.
TABLE 4 Wheat ear count results from different datasets.

Dataset
Number
of images

MAE RMSE R2

WEC 50 3.25 3.56 0.9279

GWHD 50 5.48 6.23 0.8126

WEDD 20 4.87 5.58 0.9212
FIGURE 8

Results of wheat ear counts from FIDMT-GhostNet model.
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4 Discussion and analysis

4.1 Counting results of wheat ears with
different degrees of occlusion

Wheat ears in the field often show varying degrees of occlusion

due to overlapping in the middle and late stages of growth, which

increases the difficulty of automatic counting. Occlusion will not

only cause some wheat ears to be difficult to identify in the image,

but may also affect the accuracy and stability of the counting

algorithm. To evaluate the wheat ear counting effect of the

proposed FIDMT-GhostNet model under different degrees of

occlusion, wheat images with mild occlusion, moderate occlusion

and severe occlusion were specially selected for testing in the test

set, aiming to intuitively demonstrate the model’s ability to count

different Adaptability to occlusion situations and counting

performance. Figure 9 shows the test results of the model. From

left to right, they are the wheat ear image, density map of FIDT label

generated using point annotation, the predicted density map, and

positioning map of wheat ear.

As can be seen from Figure 9, the prediction results of wheat ear

counting are very close to ground truth, and the prediction of wheat

ear detection frame can accurately locate most wheat ears. The
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FIDMT-GhostNet model shows excellent counting capabilities in

the wheat ear counting task, mainly due to the SE-block module

embedded in its structure. By introducing an adaptive feature

recalibration mechanism, SE-block significantly enhances the

model’s ability to express features of important channels while

suppressing the influence of useless channels. In wheat ear counting

tasks, occlusion between wheat ears is a common and thorny

problem. However, SE-block can enhance the model’s focus on

important channels, allowing the model to more accurately identify

occluded wheat ear features. At the same time, by suppressing the

influence of useless channels, the FIDMT-GhostNet model can

reduce interference caused by background noise or other irrelevant

features, further improving the accuracy of wheat ear counting. As

shown from the first row in Figure 9, the wheat ears have higher

definition in the image, and there is almost no occlusion. The

output of the density map is basically the same as the ground truth

density map. As shown in the second and third rows of Figure 9, the

FIDMT-GhostNet model can handle the scene where wheat leaves

block wheat ears to a certain extent. Even in the case of overlapping

wheat ears, the wheat ear density map estimated using the FIDMT-

GhostNet model has a smaller error than the ground truth density

map. The test results show that the wheat attention mechanism in

the model plays an indispensable role. It enables the model to
FIGURE 9

Counting results of wheat ears with different occlusion levels.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435042
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1435042
automatically identify and focus on the wheat ear area in the image,

effectively suppressing the interference of background noise and

other irrelevant elements. This mechanism not only improves the

robustness of the model, but also enables the model to maintain

stable performance in complex and changeable field environments.
4.2 Wheat ear counting results with
different upsampling algorithms

To verify the effectiveness of the dense upsampling algorithm

used in this article, three different upsampling algorithms were

designed, including GhostNet+bilinear interpolation, GhostNet

+dense upsampling, and GhostNet+deconvolution. When the

same parameters are set during model training and testing, the

test results are shown in Table 5.

It can be seen from Table 5 that when the backbone feature

network is GhostNet, the wheat ear counting effect is the best when

the model uses dense upsampling convolution, and its MAE, RMSE,

and R2 are 4.46, 5.87, and 0.9145. Compared with using the bilinear

interpolation algorithm and deconvolution operation, the MAE of

the model with dense upsampling convolution was reduced by 0.26

and 0.12 respectively, the RMSE was reduced by 0.29 and 0.15, and

the R2 was increased by 0.0722 and 0.033, respectively.

In fact, the bilinear interpolation algorithm may cause the loss of

some wheat ear features. Because bilinear interpolation estimates the

value of the middle pixel based on the values of the surrounding four

pixels, this method performs better when dealing with smoothly

changing areas. However, when dealing with complex structures and

edge information like wheat ears, the bilinear interpolation algorithm

may lose some subtle features, thereby affecting the accuracy of wheat

ear counting. The deconvolution operation may indeed produce

some unnecessary overlap and aliasing, resulting in image blur and

distortion. This is because the deconvolution process is essentially a

convolution operation with special parameter settings. If the

parameter settings are improper or the convolution kernel design is

unreasonable, the above problems may occur. In addition,

deconvolution itself will introduce a lot of matrix multiplications

during backpropagation, which may indeed increase the risk of

gradient disappearance or explosion, thereby affecting the training

and testing effects of the model. The dense upsampling algorithms

allows the model to recover more spatial detail information, which

plays a crucial role in accurately locating and counting wheat ears.
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This algorithm effectively improves the image resolution, enhances

the model’s ability to identify wheat ears, and further optimizes the

counting results.
4.3 Comparison of wheat ear counting
results based on different models

To evaluate the wheat ear counting performance of the FIDMT-

GhostNet model proposed in this article, we selected three other

density estimation models based on convolutional neural networks

to compare with the model proposed in this article, including

MCNN (Zhang et al., 2016), CSRNet (Li et al., 2018), and

FIDTM (Liang et al., 2021). The data used for training and

testing of these three models are distributed according to Table 1,

while ensuring that the remaining parameter settings remain

consistent to obtain the test results of wheat ear counting. The

results of wheat ear counting are shown in Table 6. Among them,

the leftmost column shows several classic counting network models

and our model. The second, third and fourth columns are MAE,

RMSE and R2.

As can be seen from Table 6, the MAE of FIDMT-GhostNet

reaches 4.46, which is 4.05, 2.81, lower than that of MCNN,

CSRNet, respectively, and is close to that of FIDTM. The RMSE

of FIDMT-GhostNet is 5.87, which is 6.61, 2.82, and 0.37 lower than

that of MCNN, CSRNet, and FIDTM. The R2 of FIDMT-GhostNet

is 0.9145, which is 0.4301, 0.2046, and 0.0513 higher than that of

MCNN, CSRNet, and FIDTM. Therefore, experimental results

show that our model outperforms other models on multiple

evaluation metrics.

We believe that this result may be due to the following two

reasons. On the one hand, the irregular distribution of wheat ears

and the large differences in size, shape, density, aspect ratio, etc. of

wheat ears make it difficult for MCNN and CSRNet networks to

generate high-quality label density maps through Gaussian kernel

functions. Of course, in future research, the settings of the multi-

column convolution kernel of the MCNN model and the hole rate

of CSRNet need to be further optimized to better extract the

effective features of wheat ears, thereby improving the accurate

counting of wheat ears.

On the other hand, we believe that the good performance of

FIDMT-GhostNet comes from the introduction of the Ghost

module and the dense upsampling convolution module, which

enables the network to adapt to the diversity of wheat ears and

focus on wheat ears more effectively. In addition, the FIDTM

network can solve the current situation of wheat ear scale changes
TABLE 6 Wheat ear count results for different models.

Model MAE RMSE R2

MCNN 8.51 12.48 0.4844

CSRNet 7.27 8.69 0.7099

FIDTM 4.39 6.24 0.8632

Ours 4.46 5.87 0.9145
TABLE 5 Counting results of wheat ears by different
upsampling algorithms.

Upsampling
algorithm

MAE RMSE R2

GhostNet +
bilinear interpolation

4.72 6.16 0.8423

GhostNet + deconvolution 4.58 6.02 0.8815

GhostNet +
dense upsampling

4.46 5.87 0.9145
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435042
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1435042
and unbalanced density distribution. We also found that the MAE

and RMSE of FIDMT-GhostNet model test results were reduced by

63% and 48.04% respectively compared to CSRNet, and R2

increased by 22.37%. The possible reason is that the backend of

the CSRNet model uses atrous convolution to expand the receptive

field, which affects the extraction of small target features of wheat

ears. It may be that the atrous convolution in the back end of the

CSRNet model expands the receptive field, which affects the

extraction of small target features of wheat ears.
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Figure 10 shows random samples of specific density estimation

results for the above four models. The wheat ear counting results of

the four density estimation models in Figure 10. We found that the

wheat ear density map predicted based on these four models

compared with the ground truth label density map, the errors

from large to small are MCNN, CSRNet, FIDTM and FIDMT-

GhostNet, respectively. Among them, the number of wheat ears

predicted based on the FIDMT-GhostNet model is closest to the

ground truth. In the third row of Figure 10, the wheat ear density
FIGURE 10

Results of wheat ear counts for different models.
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map estimated based on MCNN was showed. In this part, we see

that the estimated density map in the third row is quite different

from the real density map in the second row, which indicates that

the wheat ear counting effect of the multi-column convolutional

neural network MCNN is poor. The possible reason is that MCNN

has network structure redundancy, which results in low feature

extraction efficiency. Although it has successfully overcome

problems such as target occlusion and scale differences to a

certain extent, it is difficult to effectively extract the global

features of complex wheat field scenes. To solve the above

problems, Li et al. (2018) introduced a single-column

convolutional neural network CSRNet, which uses dilated

convolution to expand the receptive field. In particular, as the

depth of the convolutional neural network deepens, the

performance of the network structure will gradually increase.

Compared with the multi-column structure, the single column

convolutional neural network has certain advantages.

As can be seen from Figure 10, the detection accuracy of

CSRNet model with the single column is higher than that of

MCNN model with multi-column structure. At the same time, we

also provide the density map estimated using FIDMT-GhostNet in

the sixth row of Figure 10, which shows that the FIDMT-GhostNet

model using the dense upsampling algorithm has better results in

counting wheat ears in the field. In summary, compared with other

common density map models, the FIDMT-GhostNet model

proposed in this article has the highest accuracy and the lowest

RMSE, indicating that it has good robustness.
4.4 Performance comparison of
different models

Table 7 shows the performance parameters of the four models.

Among them, the Parameter, FLOPs, Model Size, and FPS of the

proposed FIDMT-GhostNet reached 8.42M, 134.09G, 96.8568MB,

and 9.26 respectively. Compared with CSRNet, the Parameter of our

model is reduced by 48.2% and the FLOP is reduced by 69.1%.

Previous studies have shown that Bao et al. (2020) used CSRNet to

count wheat. The poor performance of wheat ear counting based on

the CSRNet model is mainly due to its deep network structure,

which results in a large number of parameters. Although this design

can capture more complex wheat ear features in images, it may also

cause problems such as high computational complexity, difficulty in

model training, and overfitting. Therefore, when counting wheat

ears in the field, it is necessary to weigh the balance between the
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depth and performance of the network to achieve a more efficient

wheat ear counting task.

According to the wheat ear counting efficiency evaluation indicators

in Table 7, MCNN performs well for the Parameter, FLOPs, Model Size,

and FPS performance evaluation results of the model. On the one hand,

MCNN removes the fully connected layer, resulting in reduced network

parameters and a simple structure. In the experimental results, MCNN

has the smallest Parameter, reaching 0.13M. Model Size reaches

0.5186MB. On the other hand, the MCNN model contains multiple

columns of networks, so network training takes longer than an end-to-

end network. This results in the performance indicators of wheat ear

counting results based onMCNN, includingMAE, RMSE, and R2, being

worse than the other three models.

In addition, it can be seen from Table 7 that the number of

parameters in the FIDTM model is 66.58M, and its FLOPs are

569.59G. The parameter size of lightweight FIDMT-GhostNet is

8.42M, and the FLOPs are 134.09G. Compared with the original

model, the Parameter, FLOPs and FPS of our proposed lightweight

model were reduced by 87.4%, 76.5% and 87.3% respectively. In

fact, the FIDTM model has good robustness in scenarios with

unbalanced density distribution, but it counts wheat ears evenly

distributed in the field. After extensive compression, some

parameters in the model were removed, which improved the

generalization ability of the FIDMT-GhostNet model, increasing

R2 by 5.6% and reducing RMSE by 5.9%.
5 Conclusions and future work

In this study, an automatic positioning and counting method

based on FIDMT-GhostNet was proposed to address the challenges

faced by counting wheat ears, including complex backgrounds,

dense ears, and different sizes. This method achieves precise

positioning and counting of wheat ears through multi-scale

feature extraction and point labeling networks, combined with

dense upsampling and local maximum detection strategies. Three

wheat ear databases including WEC, WEDD and GWHDwere used

for model training and testing. Experimental results show that the

FIDMT-GhostNet model achieved high accuracy on the wheat

image data set, and the number of parameters was small. RMSE

and R2 reached 5.87 and 0.9145 respectively, and the number of

parameters and FPS reached 8.42M and 9.16 respectively.

Therefore, the experimental results show that the FIDMT-

GhostNet has good robustness for wheat ear counting. With the

continuous advancement of technology, the wheat ear counting

model based on FIDMT-GhostNet is expected to be directly

deployed to edge devices and play a greater role in precision

agriculture with fewer parameters, faster inference speed, and

good counting performance.

To further enhance the robustness and generalization ability of

the model, we plan to continue to collect more wheat datasets in the

future. These new datasets will not only focus on the increase in

quantity, but also emphasize the diversity of data, covering wheat

images of different varieties, different growth stages, and different

environmental conditions, to ensure that the model can perform

well in various practical scenarios.
TABLE 7 Wheat ear count results for different models.

Model
Parameter

(M)
FLOPs
(G)

Model Size
(MB)

FPS

MCNN 0.13 28.23 0.5186 52.63

CSRNet 16.26 433.36 62.0512 8.92

FIDTM 66.58 569.59 763.5506 3.13

Ours 8.42 134.09 96.8568 9.16
M/G in the table represent 106/109 respectively.
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GhostNet has achieved remarkable results in reducing the

computational requirements of the model with its efficient network

structure. To ensure that this combined model can be widely used in

real-world scenarios, especially in resource-constrained agricultural

environments, we will conduct in-depth analysis and optimize its

computational efficiency. At the same time, in view of the diversity of

agricultural image data scale and complexity, exploring how to adjust

the model structure to better adapt to these data and enhance the

scalability of the model will become a key direction for future

research. To this end, we can use model compression and

acceleration techniques, such as parameter pruning, quantization,

and hardware acceleration, to further optimize the performance of

the combined model. These advanced technologies can significantly

reduce the storage occupancy and computational requirements of the

model without significantly sacrificing model performance, thereby

providing strong support for the widespread application of the

combined model in resource-constrained agricultural environments.
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