Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Sustainable and Intelligent Phytoprotection
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1435042
This article is part of the Research Topic Leveraging Phenotyping and Crop Modeling in Smart Agriculture View all 14 articles

FIDMT-GhostNet: A lightweight density estimation model for wheat ear counting

Provisionally accepted
Baohua Yang Baohua Yang *Runchao Chen Runchao Chen Zhiwei Gao Zhiwei Gao Hongbo Zhi Hongbo Zhi
  • Anhui Agricultural University, Hefei, China

The final, formatted version of the article will be published soon.

    Wheat is one of the important food crops in the world, and the stability and growth of wheat production have a decisive impact on global food security and economic prosperity. Wheat counting is of great significance for agricultural management, yield prediction and resource allocation. Research shows that the wheat ear counting method based on deep learning has achieved remarkable results and the model accuracy is high. However, the complex background of wheat fields, dense wheat ears, small wheat ear targets, and different sizes of wheat ears make the accurate positioning and counting of wheat ears still face great challenges. To this end, an automatic positioning and counting method of wheat ears based on FIDMT-GhostNet (focal inverse distance transform maps -GhostNet) is proposed. Firstly, a lightweight wheat ear counting network using GhostNet as the feature extraction network is proposed, aiming to obtain multi-scale wheat ear features. Secondly, in view of the difficulty in counting caused by dense wheat ears, the point annotation-based network FIDMT (focal inverse distance transform maps) is introduced as a baseline network to improve counting accuracy. Furthermore, to address the problem of less feature information caused by the small ear of wheat target, a dense upsampling convolution module is introduced to improve the resolution of the image and extract more detailed information. Finally, to overcome background noise or wheat ear interference, a local maximum value detection strategy is designed to realize automatic processing of wheat ear counting. To verify the effectiveness of the FIDMT-GhostNet model, the constructed wheat image data sets including WEC, WEDD and GWHD were used for training and testing. Experimental results show that the accuracy of the wheat ear counting model reaches 0.9145, and the model parameters reach 8.42M, indicating that the model FIDMT-GhostNet proposed in this study has good performance.

    Keywords: FIDMT, Ghostnet, Counting, Convolutional Neural Network, wheat

    Received: 19 May 2024; Accepted: 24 Sep 2024.

    Copyright: © 2024 Yang, Chen, Gao and Zhi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Baohua Yang, Anhui Agricultural University, Hefei, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.