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Introduction: The emergence rate of crop seedlings is an important indicator for

variety selection, evaluation, field management, and yield prediction. To address

the low recognition accuracy caused by the uneven size and varying growth

conditions of crop seedlings under salt-alkali stress, this research proposes a

peanut seedling recognition model, MS-YOLOv8.

Methods: This research employs close-range remote sensing from unmanned

aerial vehicles (UAVs) to rapidly recognize and count peanut seedlings. First, a

lightweight adaptive feature fusion module (called MSModule) is constructed,

which groups the channels of input feature maps and feeds them into different

convolutional layers for multi-scale feature extraction. Additionally, the module

automatically adjusts the channel weights of each group based on their

contribution, improving the feature fusion effect. Second, the neck network

structure is reconstructed to enhance recognition capabilities for small objects,

and the MPDIoU loss function is introduced to effectively optimize the detection

boxes for seedlings with scattered branch growth.

Results: Experimental results demonstrate that the proposedMS-YOLOv8model

achieves an AP50 of 97.5% for peanut seedling detection, which is 12.9%, 9.8%,

4.7%, 5.0%, 11.2%, 5.0%, and 3.6% higher than Faster R-CNN, EfficientDet,

YOLOv5, YOLOv6, YOLOv7, YOLOv8, and RT-DETR, respectively.

Discussion: This research provides valuable insights for crop recognition under

extreme environmental stress and lays a theoretical foundation for the

development of intelligent production equipment.
KEYWORDS

seedling rate, unmanned aerial vehicle (UAV), object detection, multi-scale, saline-
alkali stress
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1 Introduction

Peanut is rich in functional components and has high

nutritional value, providing various important nutrients for the

human body (Liu et al., 2022b). It has demonstrated significant

advantages and remarkable development potential in the

international edible oil supply (Tang et al., 2022). Peanut exhibits

strong resistance, not only with drought tolerance, soil fertility

adaptability, and the ability to grow in nutrient-poor conditions but

also show certain tolerance to salt-alkali conditions (Huang et al.,

2023). However, soil salinization and alkalization have become

increasingly severe worldwide, and Salt-alkali stress has emerged

as a pivotal factor constraining peanut production. Presently,

saline-alkaline soils can be found in over 100 countries,

encompassing a vast expanse of approximately 93.22 million

hectares. Therefore, cultivating peanut varieties with excellent

salt-alkali tolerance and effectively utilizing salt-alkali land to

grow peanuts on a large scale is of great significance in improving

the utilization rate of global salt-alkali soil and promoting the

sustainable development of global agriculture.

As we all know, the emergence rate of seedlings is an important

indicator to evaluate the salt-alkali tolerance of different crop varieties

in the process of crop breeding. To calculate the emergence rate, it is

necessary to count the number of seedlings. Traditional methods for

calculating crop emergence rate rely heavily on manual counting in

the field, which is time-consuming and lacks timeliness (Li et al.,

2022b). Additionally, manual counting in the field often leads to the

trampling of seedlings, resulting in damage or even death of the

seedlings. To address these problems, the use of close-range remote

sensing by unmanned aerial vehicle (UAV) for crop recognition and

counting has emerged as one of the ongoing areas of active research

focus (Xie and Yang, 2020).

In the field of crop recognition and counting using close-range

remote sensing by UAV, many scholars have conducted early

exploratory research. For example, Zhang and Zhao (2023)

proposed a method for detecting and counting soybean seedlings

based on the Otsu threshold algorithm. Li et al. (2019) used UAV to

acquire high-resolution RGB orthophotos of potato seedlings. Otsu

thresholding algorithm and Excess green index are used to extract

potato seedlings from the soil. Then, the morphological features in

the images are calculated as inputs to the random forest classifier,

which is used to estimate the potato emergence rate. Banerjee et al.

(2021) present a method to estimate the count of wheat seedlings at

the seedling stage by utilizing multispectral images obtained from

UAV. These studies, together with other related studies, have

achieved good results by using image processing techniques or

traditional machine learning models for seedling counting.

However, these methods require manual feature extraction and

threshold setting, which rely on strong professional expertise.

Moreover, the performance of these methods may degrade in the

presence of image data containing noise or outliers.

Some scholars use deep learning to solve the problems described

above in traditional machine learning, especially in the areas of

recognition, detection, and counting tasks (Xiong et al., 2024; Wang

et al., 2022b; Li et al., 2023). Especially in agriculture, deep learning
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has been extensively employed in fruit defect detection (Zhu et al.,

2023a; Xu et al., 2022b; Agarla et al., 2023), plant disease recognition

(Haridasan et al., 2022; Xu et al., 2023a; Nawaz et al., 2024), seed

analysis (Xu et al., 2022a; Zhao et al., 2023; Xu et al., 2023b), and

many other aspects.

In the domain of seedling recognition and counting using close-

range remote sensing by UAV combined with deep learning, Feng

et al. (2020) used RGB images of cotton seedlings captured by UAV

and the ResNet-18 to estimate the number of stands. Liu et al.

(2022a) employ a Faster R-CNN model combined with the VGG16

network to recognize and count corn seedlings and verify the

robustness of the model by RGB images captured at different

locations with varying pixel resolutions. Gao et al. (2022)

proposed an improved YOLOv4 model for detecting the number

of corn seedlings. Liu et al. (2023) developed a rapid estimation

system for corn emergence based on the YOLOv3 model. This

system utilizes RGB images obtained from UAV to recognize the

number, position, and size of seedlings. These studies, along with

other related research, have achieved promising results in seedling

counting based on UAV image data. These methods typically

involve offline calibration and stitching of images, followed by the

generation of ortho mosaic images using specialized software. These

processing steps require high-performance computers and

dedicated software. Therefore, these methods limit the real-time

ability and application scenarios of object detection.

To address the limitations of seedling recognition and counting

based on close-range aerial imagery, some researchers have

proposed methods that utilize videos captured by UAV for

seedling counting (Shahid et al., 2024; Lin et al., 2022). Shahid

et al. (2024) introduce a video-based tobacco seedling counting

model that utilizes YOLOv7 for tobacco seedling detection and the

SORT algorithm for tracking and counting. Lin et al. (2022) employ

an improved version of YOLOv5 combined with Deepsort to count

peanut seedlings in real-time. Currently, research on crop

recognition using close-range aerial sensing videos is in its early

stages. To our knowledge, we have not seen other related literature

reports except the above two papers. However, Shahid et al. (2024)

only consider the detection of tobacco seedlings but do not consider

the influence of weeds on the detection accuracy, and did not

involve the problem of model lightweight required in practical

applications. Although Lin et al. (2022) consider the influence of

weeds on detection, it does not solve the problem of detection

accuracy reduction caused by crop size differences under complex

environmental stress, nor does it consider the problem of adaptive

extraction of object features.

When crops are subjected to saline-alkali stress, different

varieties have different degrees of tolerance. The appearance of

seedlings of stress-resistant varieties is no different from that

of peanuts in normal soil, while seedlings of non-stress-resistant

varieties may be thinner, with smaller leaves and a yellowish color.

These factors are easy to be confused with the soil background,

which brings some difficulties to the accurate detection.

Inspired by the aforementioned studies, this research

investigates the problem of recognition and counting for peanut

seedlings under salt-alkali stress using close-range remote sensing.
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It takes the multi-scale effects of weeds on object morphology into

consideration and proposes a multi-scale adaptive peanut seedlings

recognition and counting model. The proposed Multi-Scale - You

Only Look Once version 8 (MS-YOLOv8) model can directly and

simultaneously recognize peanut seedlings and weeds in videos, and

perform separate counting for each. The main contributions of this

work are as follows:

1. Construction of a multi-scale adaptive convolution module,

Multi-Scale Module (MSModule), which is embedded into the

backbone network to enable the backbone of the model to have

multi-scale feature fusion ability.

2. An object detection model MS-YOLOv8 is proposed. This

model reduces the parameter count while improving the

recognition ability for small objects without compromising

accuracy. Furthermore, this model also solves the issue that

the width and height values of the predicted bounding box

with the same aspect ratio are significantly different from those

of the ground truth box, which leads to the model not being

optimized effectively, thus improving the convergence speed and

regression performance.

3. Comparative analysis of seven typical object detection

models, which provides a basis for selecting different models

based on their detection performance.

The subsequent sections of this paper are structured as follows:

Section 2 introduces the experimental materials, and describes the

proposed model in this paper. Section 3 presents the experimental

process and analyzes the experimental results from different

perspectives. Section 4 discusses some issues encountered during

the research, and explores the limitations of the proposed model as

well as future research directions. In Section 5, a summary of the

research conducted in this paper is provided.
2 Materials and methods

2.1 Data set acquisition

The data of peanut seedlings are collected from the saline-alkali

soil experimental field of Qingdao Agricultural University, which is
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located in Maotuo Village, Lijin County, Dongying City, Shandong

Province, China. This batch of peanuts contains nine varieties and

was planted on the coastal beach saline soil with a cultivated layer of

saline soil of about 20 cm on May 13, 2023, and the data was

collected on May 28, 2023.

The aerial data was collected by DJI Mavic Air 2 UAV (DJI,

Shenzhen, Guangdong, China). The dataset consists of 2696 images,

and the image dataset is automatically divided into a training set, a

validation set, and a test set in an 8:1:1 ratio using a Python script.

The dataset including seedlings with weak growth and uneven

branches blocked by plastic film, and weeds similar in appearance

to peanut seedlings, as shown in Figure 1.
2.2 Proposed MS-YOLOv8 model

In this paper, the lightweight model YOLOv8n (Reis et al., 2023)

is selected. YOLOv8n is a lightweight parametric structure derived

from the YOLOv8 model. To enhance the model’s performance and

capacity for generalization, and to better adapt to the changes and

challenges in actual scenarios, the MS-YOLOv8 model is proposed in

this paper. Firstly, a multi-scale adaptive convolution module

MSConv is designed and embedded into the C2f module to form a

new feature extractionmodule, namedMSModule. Embedding it into

the backbone network can not only improve the multi-scale feature

fusion ability of the model but also reduce the amount of calculation.

Due to the dense density and different sizes of peanut seedlings, this

paper introduces the Bidirectional Feature Pyramid Network

(BiFPN) feature fusion method to improve the neck network used

for feature fusion, and the 160 × 160 × 128 feature map of the P2 layer

is fused to enhance the recognition effect of the model for small

objects. In addition, to solve the problem of the model judgment of

branches as single crops caused by long branches and the leaves are

far from the main stem in some peanut seedlings, the MPDIoU loss

function is used to enhance the bounding box regression effect and

improve the detection performance of the model. The MS-YOLOv8

structure is shown in Figure 2, where the red dotted box marked with

a red five-pointed star in the upper left corner is the modified or

innovative part of this paper.
FIGURE 1

Examples of peanut seedlings images in different scenes. (A) Occluded by the plastic film; (B) Stunted peanut seedlings; (C) Uneven branching;
(D) weed.
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2.2.1 Proposed module MSModule
In a convolutional neural network, each feature map is

composed of a series of channels. Each channel represents a

different feature that the layer of the network focuses on when

extracting features from the input image, such as edges, textures, or

shapes of objects. Generally, a larger number of channels can

provide more feature information, but it also increases the

computational and storage costs of the model. Moreover, there is

a lot of redundant information between the feature maps output by

each layer (Han et al., 2020), which also affects the training effect of

the model.

To realize lightweight multi-scale adaptive feature fusion, this

paper designs a multi-scale adaptive convolution module MSConv,
Frontiers in Plant Science 04
which makes the backbone network have the feature fusion effect.

The structure of the MSConv module is shown in Figure 3.

In the schematic diagram of Figure 3, firstly, the input feature

maps are divided into four groups A, B, C, and D in the channel

dimension. The width and height of these four groups of feature

maps are the same as the feature maps before grouping, and the

number of channels is one-fourth of the original feature maps. The

feature maps of group A, group B, and group C are passed through

the convolution layer with 1 × 1, 3 × 3, and 5 × 5 size convolution

kernels respectively, and the feature extraction operation is

carried out.

Softmax function can adjust the output probability distribution

according to the different input values. When the elements of the
FIGURE 2

Structure of the proposed MS-YOLOv8 model.
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input vector have large differences, the softmax function will

enhance these differences and make the probability distribution

more obvious. The softmax function is used to automatically assign

weights to each group of different channels to reflect their

contribution to the network performance. The mathematical

expression of the softmax function is as follows:

Softmax(ei) =
expðeiÞ

oN
j=1expðeiÞ

(1)

where ei represents the first element in the input vector, andN is

the dimension or length of the input vector.

By executing the softmax function on the channel dimensions

of these feature graphs, the weight of interest for each channel can

be obtained. These attention weights indicate how much each

channel contributes to the final feature representation. A higher

weight means that the channel is more important for the current

input. By applying attention weight to each channel of the feature

map, it can be weighted between feature maps at different scales. In

this way, the important feature maps will have a greater influence

on the final feature representation. Inspired by the idea of point-by-

point convolution in the Mobilenetv2 (Sandler et al., 2018) model,

the weighted feature map is concatenated with the original feature

map. The channel information is exchanged through a convolution

layer with a 1 × 1 convolution kernel to obtain the feature map after

adaptive multi-scale feature fusion.

Then, the MSConv module is combined with the ordinary

convolution module and the residual connection is introduced to

form the MSBottleneck module. The residual structure of the

MSBottleneck module directly transmits the input residual

information by introducing residual connection and multi-layer
Frontiers in Plant Science 05
convolution functions, making the gradient signal spread

more smoothly.

Finally, the MSBottleneck module is embedded into the

backbone network of YOLOv8, that is, the MSBottleneck module

is used to replace the DarknetBottleneck module in the original C2f

module to form a new feature extraction module MSModule.

2.2.2 Improved neck network for enhancing
feature fusion

In this research, BiFPN is improved and used in the neck

network of the YOLOv8 model. The neck network structure is

shown in Figure 4.

As shown in Figure 4, P2-P5 represents the second to fifth layers

in the feature pyramid structure of BiFPN, and the corresponding

relationship with the convolution layer of the YOLOv8 backbone

network is shown in the figure. The output feature maps of the P5,

P4, and P3 layers of the feature pyramid structure are convolved

and downsampled. The features are fused by bidirectional weighted

fusion, and the detection heads of three scales are obtained. In

particular, the feature map of the P4 layer is obtained by the feature

extraction operation of MSModule designed in this paper. The size

of these feature maps of different levels decreases gradually with the

increase of the level, but the semantic information will increase.

Finally, to enhance the detection effect of small objects, this research

also uses the feature map extracted by the second layer C2f module,

which is the P2 layer of the feature pyramid structure.

The process of BiFPN can be expressed as follows:

Ftd
i = Conv

a1 � Fin
i + a2 � R(Fin

i+1)
a1 + a1 + b

� �
(2)
FIGURE 3

Structure of the MSConv module.
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Fout
i = Conv

a   0
1 � Fin

i + a   0
2 � Ftd

i + a   0
3 � R(Fout

i−1 )

a   0
1 + a   0

2 + a   0
3 + b

 !
(3)

where R stands for downsampling or upsampling operation, Fin
i

is the input feature at level i, Ftd
i is the intermediate feature at level i,

Fout
i is the output feature at level i. Additionally, a represents the

parameter learned by the model, which determines the significance

of various features in the process of feature fusion. Meanwhile, b is a

predefined small value employed to prevent numerical instability.

The above improvements enable the network to effectively

transmit and fuse the features from different levels. It can also

realize bidirectional multi-scale feature fusion, enhance the fusion

ability of deep and shallow feature information of images, and

effectively deal with peanut seedlings and weeds of different sizes.

And it provides fast detection speed while maintaining

high accuracy.

2.2.3 Improved loss function
To further enhance the precision and efficiency of bounding box

regression while reducing computational overhead, the MPDIoU

loss function (Siliang and Yong, 2023) is used in this paper. The

MPDIoU loss function is a novel similarity measure for bounding

boxes based on the minimum point distance. Its purpose is to

address the limitation of existing loss functions, which fail to

effectively optimize when the predicted bounding box and the

ground truth box have the same aspect ratio but completely

different width and height values. Simultaneously, it simplifies the

computational process. The MPDIOU loss calculation process is

as follows.

First, calculate the area of the intersection between the predicted

bounding box and the ground truth box, as well as the sum of the

areas of the two boxes. Then, use the difference between the area of

the intersection and the sum of the areas to calculate the IoU. The

calculation formula is as follows:

IoU =
X ∩ Y
X ∪ Y

(4)

where X and Y represent the area values of the predicted

bounding box and the ground truth box, respectively.
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Then, calculate the square of the distance between the upper-left

point of the ground truth box and the predicted bounding box, and

calculate the square of the distance between the lower-right point of

the ground truth box and the predicted bounding box. It is

calculated as follows:

d21 = (xprd1 − xgt1 )
2 + (yprd1 − ygt1 )

2 (5)

d22 = (xprd2 − xgt2 )
2 + (yprd2 − ygt2 )

2 (6)

where, d1 represents the distance between the predicted bounding

box and the top-left corner point of the ground truth box, and d2
represents the distance between the predicted bounding box and the

bottom-right corner point of the ground truth bounding box. (xprd1 ,

yprd1 ) and (xprd2 , yprd2 ) represents the coordinates of the upper left corner

and lower right corner of the predicted bounding box, (xgt1 , y
gt
1 ) and

(xgt2 , y
gt
2 ) represent the coordinates of the upper left corner and lower

right corner of the ground truth box, respectively.

Finally, the normalized center distance and the difference in IoU

score are used to calculate the value of MPDIoU, and the value of

MPDIoU loss function is obtained by subtracting the value of

MPDIoU from 1. It is calculated as follows:

MPDIoU = IoU −
d21

w2 + h2
−

d22
w2 + h2

(7)

L
MPDIoU

= 1 −MPDIoU (8)

where L
MPDIoU

represents the MPDIoU loss function, w represents

the width of the image, and h represents the height of the image.

The current YOLOv8 model utilizes the CIoU loss function

(Zheng et al., 2019), which only considers the distance and size

between the predicted bounding box and the ground truth box.

However, most existing bounding box regression loss functions fail

to optimize when the predicted box and the ground truth box have

the same aspect ratio but significantly different width and height

values. Therefore, this paper uses a more efficient MPDIoU loss

function to replace the CIoU loss function in the original model,

which not only improves the convergence performance of the

model but also improves the effect of bounding box regression.
FIGURE 4

Structure of the improved neck network.
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2.3 Real-time video object detection

The model is based on the BoT-SORT tracking model built in

the YOLOv8 model, enabling real-time counting of peanut

seedlings and weeds. The specific procedure is as follows:

First, configure the NGINX server and RTMP module, start the

RTMP server, and set up the RTMP address of the UAV to stream

the footage to the server. Then, import the necessary libraries such

as OpenCV and FFmpeg in the script, and use the VideoCapture

class to read the real-time video from the RTMP stream. Within the

loop of video frames, read each frame and draw a reference line in

the center of the image. Utilize the MS-YOLOv8 model combined

with the BoT-SORT model for object tracking, obtaining the ID and

position information of the objects. Draw bounding boxes and

labels for objects based on their type, and update the position

history of the object. Finally, based on the position relationship of

the objects with the reference line, continuously update the count of

seedlings and weeds crossing the line, displaying the count

information on the image. The marked frame images are

displayed and written into a video file. The process is illustrated

in Figure 5.
3 Experimental results and analysis

3.1 Evaluation index of the
model performance

This research evaluates the performance of the object detection

model using the following performance evaluation metrics:

precision (P), recall (R), F1 score (F1), Average Precision (AP),
Frontiers in Plant Science 07
mean Average Precision (mAP), and Frames Per Second (FPS). The

calculation formulas for these performance metrics are as follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F1 =
2TP

2TP + FP + FN
(11)

AP =
Z 1

0
P(R)dR (12)

mAP = o
N
n=1AP(n)

N
(13)

FPS =
1000ms

Tpre + Tinf + Tpos
(14)

where TP represents the number of instances correctly detected

as peanut seedlings or weeds by the model. FP represents the

number of instances incorrectly detected as peanut seedlings or

weeds when they are actually non-peanut seedlings or non-weeds

(such as background or other objects). FN represents the number of

instances incorrectly detected as non-peanut seedlings or non-

weeds when they are actually peanut seedlings or weeds. The Tpre

represents the time for image preprocessing, including maintaining

aspect ratio scaling and padding, channel transformation and

dimensionality expansion, etc. The Tinf represents the inference

speed, which refers to the time required for an image to be
FIGURE 5

Illustration of real-time video object detection.
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preprocessed and output through a model. The Tpos represents the

post-processing time.
3.2 Experimental results

In this research, the improved YOLOv8 model is trained on a

Windows 10 64-bit host, and all models are based on Python

language. The deep learning model is built using the Pytorch2.10

framework and its built-in torch module. The processor is an Intel

(R) Xeon(R) Silver 4316 CPU @ 2.30GHz. The graphics card is

NVIDIA A40, and the deep learning framework is based on CUDA

for GPU parallel acceleration.

To facilitate better training of the model on the GPU, the batch

size is set to 32, the image size is set to 1280, and the model is

trained for 300 epochs. The remaining parameters are kept the same

as the original parameters in the YOLOv8 model. The loss curve

during training and testing is shown in Figure 6.

It can be seen from Figure 6, that the loss curves of box, object,

and classification on the training set continue to decrease after using

the above settings, which indicates that the model parameters are

set appropriately and the model is trained well. Figure 6 shows that

the loss curves of boxes and objects on the testing set have

converged after 150 epochs of training, and the loss curves of

classification have converged after 250 epochs of training,

indicating that 300 epochs of training can make the model fully

learn. In addition, the loss curves of training and testing are close to

each other, indicating that the model does not overfit.

To evaluate the actual effect of the MS-YOLOv8 peanut

seedlings detection model in the recognition of various classes

more intuitively, the confusion matrix of the MS-YOLOv8 model

is plotted in this research, as shown in Figure 7.

From the confusion matrix, it can be observed that the MS-

YOLOv8 model achieves an accuracy of 97% for peanut seedlings

recognition and 77% for weeds recognition. The corresponding

misclassification rates are 3% and 23%, respectively. This indicates

that the MS-YOLOv8 model can accurately recognize peanut

seedlings, but it exhibits a slightly higher misclassification rate for

weeds. This could be attributed to the limited number of weed

samples, which may have resulted in the model not being able to

learn sufficient features for accurate weed classification.
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Figure 8 illustrates the P-R curve of the MS-YOLOv8 model on

the peanut seedlings dataset under salt-alkali stress. Experiments

show that the MS-YOLOv8 model has high AP under different R

levels. The P-R curve exhibits a smooth and upward-bending shape,

indicating a good balance between P and R. The area under the P-R

curve, known as the AP, is measured as 0.975 for peanut seedlings

and 0.755 for weeds, resulting in an overall mAP of 0.865 when the

IoU threshold is set to 0.5. Additionally, slight fluctuations in the P-

R curve can be observed, which may be attributed to noise present

in the dataset.

After the improvements proposed in this paper, the MS-

YOLOv8 model achieves more remarkable performance

compared to the YOLOv8. Figure 9 showcases the results of the

object detection experiments on randomly selected images of

peanut seedlings.

It can be seen from Figure 9 that the YOLOv8 it easy to

recognize weeds as peanut seedlings, resulting in missed

detection. However, the MS-YOLOv8 not only has higher

detection accuracy, but also improves the detection performance

of small objects and partially occluded objects, but the improved

model still has a phenomenon of missed detection of seedlings with

serious occlusion.
3.3 Ablation experiment

To validate the detection performance of the proposed model

and explore the impact of specific substructures on the model, this

research conducted 8 ablation experiments based on the YOLOv8

model. The experimental results are shown in Table 1. (“+”

indicates the introduced improvement, “-” indicates the non-

introduction of improvement, and bold data indicates the optimal

results in the experiments. Model 0 represents the YOLOv8 without

any improvements).

Table 1 shows that the MS-YOLOv8 model outperforms the

YOLOv8 model in terms of R, mAP50, and parameter size. The R

andmAP50 have improved by 5.2% and 6.1% respectively, while the

parameter size has decreased by 1.1M. When the BiFPN feature

fusion structure, MPDIoU loss function, and MSModule are

independently applied, the overall performance of the model is

significantly improved.
FIGURE 6

Training and Testing loss curves.
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Model 1, after introducing the MSModule, shows

improvements of 1.7% in P and 1.4% in mAP50 compared to the

YOLOv8. However, the R slightly decreases. This shows that the

MSModule designed in this paper enhances the ability to recognize

and classify the object by using a new feature extraction method,

and improves the accuracy rate. This means that the model can

more accurately distinguish the real object from the background or

other categories, and reduce the case of false detection. However,

due to the filtering operation in the added module, the model is

more cautious in accepting the detection results, resulting in some

real objects being missed and thus reducing the R.
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In this research, the thermal map (EigenGradCAM) technology

was used to visually analyze the feature layer of Model 0 and Model

1 after adding MSModule, as shown in Figure 10. (Brighter colors

indicate the areas that the model pays more attention to, while

darker colors represent lower levels of attention.)

Since the subject of this research was peanut seedlings under

saline-alkali stress, the size of the seedlings was different for

different varieties. The before improvement network pays more

attention to larger objects, while the after improvement network

improves the attention to small objects.

A smaller convolution kernel excels at capturing intricate details

and local features, whereas a larger kernel is adept at encompassing

a broader scope of contextual information. Because MSModule uses

the softmax function to adaptively select the proportion of feature

maps extracted by convolution kernels of different sizes, the model

can fully learn the characteristics of peanut seedlings with various

appearances during training, instead of only focusing on easy to

learn objects. Therefore, the addition of MSModule in this research

is more conducive to the detection of peanut seedlings.

Model 2, after introducing the BiFPN feature fusion structure,

shows improvements of 0.3% in P and 0.1% in AP50 for peanut

seedlings recognition compared to the YOLOv8. Although the R

decreases by 0.4%, the parameter size of the model is greatly reduced.

This indicates that by introducing BiFPN in the neck network and

redesigning the structure, it is possible to effectively retain feature

information while reducing model parameters and computational

complexity, thereby improving efficiency and performance.

Model 3, after introducing the MPDIoU loss function, also

demonstrates satisfactory performance. It shows improvements of

1.0% in P and 0.4% in AP50 for peanut seedling recognition

compared to the YOLOv8. Moreover, changing the loss function

does not have any impact on the parameter size of the model.
FIGURE 7

Confusion matrix of different categories.
FIGURE 8

P-R curve of the MS-YOLOv8 model.
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The above results indicate that the adopted improvements are

effective for model optimization. Model 4, by simultaneously

introducing the MSModule and BiFPN feature fusion structure, P

andmAP50 are improved by 0.3% and 0.4% respectively compared to

the YOLOv8. Although the improvement in model detecting ability is

not as significant as when the MSModule is used alone, the parameter

size further decreases with the use of the BiFPN structure. Model 5

and Model 6 show good performance in P and R, respectively.

In this research, P-R curve of all models was drawn in Figure 11.

As shown in Figure 11, by comparing the P-R curves of different

model architectures, it becomes evident that MS-YOLOv8
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consistently exhibits superior performance compared to other

model architectures across the entire range of R. In particular, the

precision stays high when the recall is between 0.6 and 0.8. This

indicates that the proposed model can effectively balance precision

and recall under a specific threshold, which is suitable for scenarios

with high requirements for both false positives and missed

detections. The experimental results show that these

modifications have a positive impact on balancing P and R.

Overall, the MS-YOLOv8 model proposed in this paper

achieves the best results. Particularly, it shows improvements of

1.5% in P, 3.9% in R, and 5.0% in AP50 compared to the YOLOv8,
FIGURE 9

Comparison of actual detection effect between (A) YOLOv8 and (B) MS-YOLOv8.
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with a significant reduction in parameter size. The parameter size of

the model is reduced while enriching feature extraction by

embedding the designed MSModule into the backbone network,

using the BiFPN structure in the neck network, and replacing the

loss function with the MPDIoU loss function.
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3.4 Comparison with other models

In this section, a comparison is made among eight different

object detection models: EfficientDet, Faster R-CNN, YOLOv5,

YOLOv6, YOLOv7, YOLOv8, RT-DETR, and MS-YOLOv8, to
TABLE 1 Result of ablation experiment.

Models MSModule BiFPN MPDIoU Class P (%) R (%) mAP50 (%) Params (M)

Model 0 – – –

All
Seedling
Weed

82.5
90.1
74.8

78.9
90.9
66.9

80.4
92.5
68.2

3.0

Model 1 + – –

All
Seedling
Weed

84.2
91.3
77.0

78.0
90.9
65.1

81.8
92.9
70.8

2.7

Model 2 – + –

All
Seedling
Weed

81.6
90.4
72.8

78.5
90.5
66.4

80.2
92.6
67.9

2.0

Model 3 – – +
All

Seedling
Weed

84.7
91.1
78.3

75.0
90.2
59.8

81.7
92.9
70.5

3.0

Model 4 + + –

All
Seedling
Weed

82.8
90.7
74.8

77.8
90.4
64.9

80.8
92.8
68.7

1.9

Model 5 + – +
All

Seedling
Weed

83.4
90.2
76.5

76.8
90.9
62.7

81.0
92.6
69.3

2.7

Model 6 – + +
All

Seedling
Weed

80.1
89.5
70.7

78.9
91.5
66.3

81.6
92.9
70.3

2.0

MS-YOLOv8
(Ours)

+ + +
All

Seedling
Weed

81.3
91.6
71.0

84.1
94.8
73.4

86.5
97.5
75.5

1.9
Bold data indicates the optimal results in the experiments.
FIGURE 10

Heat map of the output feature map. (A) before improvement; (B) after improvement.
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validate the performance of the proposed model. The results are

shown in Table 2. (Bold numbers in the table indicate the optimal

performance achieved in the experiments.)

From Table 2, experimental results show that the MS-YOLOv8

is superior to the other seven models in mAP50 and mAP50-95

indicators. Although the detection speed and overall recognition
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accuracy of MS-YOLOv8 have slightly decreased compared to the

previous version, it shows improvements in R, mAP50, mAP50-95,

and P by 5.2%, 6.1%, 3.0%, and 1.5%, respectively. Moreover, the

parameter size has decreased by 1.1M. Additionally, MS-YOLOv8

achieves the highest F1 score for peanut seedlings detection, with a

value of 93.2, which is an increase of 2.7 compared to the YOLOv8.

This indicates that MS-YOLOv8 achieves a good balance between P

and R. In practical testing, the FPS for detecting a single image was

272.2, meeting the real-time recognition requirements for peanut

seedlings under stress conditions. Furthermore, the advantage of

MS-YOLOv8 is that it is a lightweight model with only 1.9MB,

indicat ing re lat ive ly lower demands on storage and

computational resources.

On the other hand, from Table 2, it can be seen that RT-DETR

(Real-Time Detection Transform) achieves the highest R, indicating

that it can better capture objects and detect them as much as

possible, reducing the number of missed objects. A high R indicates

good sensitivity of the model, effectively avoiding misclassifying

true peanut seedlings as negative instances. However, its P is lower.

This is because although RT-DETR performs well in detecting large

objects by leveraging the global information brought by self-

attention mechanisms, its performance in detecting small objects

is relatively weaker, and it also has a lower real-time ability.

Additionally, EfficientDet shows a higher P for weeds. This

suggests although there is a smaller number of weed samples, this

model can generalize better when dealing with categories with fewer

samples and has better adaptability.
FIGURE 11

P-R curve for ablation experiment.
TABLE 2 Experiment comparison with different detection models.

Models Class
P
(%)

R
(%)

mAP50
(%)

mAP50-
95 (%)

F1 (%)
Params
(M)

FPS
(f/s)

Faster R-CNN
(Ren et al., 2015)

All
Seedling
Weed

70.8
81.2
60.4

77.4
82.5
72.3

75.5
84.6
66.4

35.7
41.0
30.4

74.0
81.8
65.8

31.3 187.4

EfficientDet
(Tan et al., 2019)

All
Seedling
Weed

82.1
86.5
77.7

78.6
87.1
70.1

80.3
87.7
72.9

51.2
59.2
43.2

80.3
86.8
73.7

4.1 215.4

YOLOv5
(Dong

et al., 2022)

All
Seedling
Weed

79.3
89.5
69.1

80.3
91.3
69.2

81.2
92.8
69.6

53.3
70.0
36.7

79.8
90.4
69.1

2.5 322.6

YOLOv6
(Li et al., 2022a)

All
Seedling
Weed

81.2
90.1
72.3

80.0
91.4
68.6

80.7
92.5
68.9

53.2
69.9
36.5

80.6
90.7
70.4

4.2 312.5

YOLOv7
(Wang

et al., 2022a)

All
Seedling
Weed

81.6
89.2
73.2

78.5
86.7
70.3

85.6
86.3
84.9

47.6
61.2
34.0

80.0
87.9
71.7

6.8 312.9

YOLOv8
(Reis et al., 2023)

All
Seedling
Weed

82.5
90.1
74.8

78.9
90.9
66.9

80.4
92.5
68.2

53.8
69.7
37.9

80.7
90.5
70.6

3.0 333.3

RT-DETR
(Lv et al., 2023)

All
Seedling
Weed

72.5
82.1
62.9

84.2
95.5
73.0

80.8
93.9
67.7

49.1
65.6
32.6

77.9
88.3
67.6

32.0 208.3

MS-
YOLOv8(Ours)

All
Seedling
Weed

81.3
91.6
71.0

84.1
94.8
73.4

86.5
97.5
75.5

56.8
72.2
41.3

82.6
93.2
72.2

1.9 272.2
fro
Bold data indicates the optimal results in the experiments.
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3.5 Experiment of counting
peanut seedlings

Finally, the performance of the peanut seedling counting model

proposed in this paper in the actual test is introduced. To evaluate

the generalization ability of the model in field experiments, this

research conducted experiments in two experimental fields, Test

field 1 was saline soil, and Test field 2 was normal soil. The model

was compared with the manual counting effect. The experimental

results are shown in Table 3.

Because the data collected in this research is diverse and

contains peanut seedlings with different appearances and

varieties. Therefore, the experimental results show that the model

has strong generalization ability. The accuracy of the model in

counting peanut seedlings in saline soil reaches 92.6%, and the

accuracy of counting seedlings in normal soil was 99.1%.

Showing a significant advantage in terms of computation time

compared to manual counting. The counting model based on videos

is more convenient and easily applicable to practical crop

cultivation compared to previous image-based counting models.

The research results demonstrate that with the improvements made

in this research, the model can detect peanut seedlings under salt

stress more accurately and efficiently. The proposed model is

practical and effective, and it has a positive impact on improving

the emergence rate and breeding research.
4 Discussion

4.1 Performance analysis of MSModule

Lightweight convolutional neural networks are designed to

achieve efficient inference with limited computational power (Li

et al., 2021). These networks often use a series of optimization

strategies to realize the lightweight, such as reducing network depth,

minimizing the number of parameters, and using lightweight

convolution operations. These lightweight designs allow models

to run on lower hardware configurations. However, conventional

lightweight models often suffer from a decrease in detection

performance due to the reduction in parameters, resulting in the

inability to capture complex object features and semantic

information effectively. The proposed MSModule in this paper

solves the decreased problem of detection performance effectively.

The reasons of its effectiveness can be summarized as follows:
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(1) This MSModule performs feature map grouping and feeds

them into convolutional layers with different convolutional kernel

sizes. This module enhances the ability of the model to select multi-

scale features and improves feature extraction by adaptively

adjusting the weights of feature map channels. (2) This module

significantly enhances feature fusion by weighted information

exchange between multi-scale feature maps. Additionally, the

MSModule retains one-quarter of the input feature maps without

any processing, which reduces redundant information and the

number of parameters between feature maps, improving the

inference speed of the model.

These structures of the MSModule enable it to learn and

represent object features under limited computational power

efficiently, allowing the object detection model to adapt to

practical requirements better.
4.2 Detection effect analysis of model

Based on the YOLOv8 framework, MS-YOLOv8 demonstrates

improved detection performance compared with YOLOv8, as

shown in Table 3. The MS-YOLOv8 addresses some challenges

for YOLOv8 to some extent, including missed detection, false

detection, and imprecise bounding box regression. The reason

may be summarized as follows:

(1) The designed MSModule uses convolution kernels of

different sizes to extract multi-scale features of peanut seedlings

and uses the softmax function to adjust the weight of different

channels so that the feature channels with great contribution are

paid more attention by the network. This enables MSModule to

improve the feature selection ability and feature extraction ability

and enables the model to distinguish peanut seedlings and weeds

more accurately. (2) In this paper, the BiFPN feature fusion

structure is introduced and the neck network is redesigned to

enhance the feature fusion ability of the network. This enables the

network to effectively fuse feature information at different levels and

achieve more comprehensive semantic information transfer (Chen

et al., 2024). (3) The MPDIoU loss function is used to improve the

accuracy of the detection box and the ability to position the object

precisely, as well as reduce false detections and missed detections of

seedlings caused by the large phenotypic differences of peanuts

under salt-alkali stress (He et al., 2024).
4.3 Cause analysis of missed and
false detection

The MS-YOLOv8 model achieves 86.5% and 56.8% mAP50 and

mAP50-95 scores, respectively, which are 6.1% and 3.0% higher

than those of the YOLOv8 model. Although MS-YOLOv8 is better

than YOLOv8 in detection effect, missed detections and false

detections still occur. Several factors contribute to this problem:

(1) The used dataset is small, and the number of occluded and

stunted peanut seedlings is limited, which makes the model unable

to fully learn richer features, affecting the detection effect of the

model (Wang et al., 2021). (2) The white translucent mulching film
TABLE 3 Experiment results of manual and model.

Counting
type

Quantity
Rate
(%)

Time
(min)

Test field 1
Manual 689 100.0 20.0

model 638 92.6 3.0

Test field 2
Manual 948 100.0 30.0

model 940 99.1 4.5
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is easy to reflect light, and the recognition effect of the model is

affected when the peanut seedlings are blocked by the mulching

film. (3) The number of samples is unbalanced. The few and limited

weed species in the field make the model unable to fully learn the

characteristics of weed samples, resulting in the model sometimes

misdetecting weeds with shapes similar to peanut seedlings (Li and

Zhang, 2021). (4) In the process of model training, the improper

setting of hyperparameters can prevent effective learning of object

characteristics and contextual information. Therefore, this may

cause the model to fail to detect the peanut seedlings.
4.4 Future work

Future work will first focus on enhancing the feature learning

ability of the model and reducing the probabilities of false detection

and missed detection. First, the semantic segmentation method

(Zhu et al., 2023b) can be extended to use for the detection of

peanut seedlings based on the existing work. Second, the

propagation path of the feature layer or the structure of the

convolutional module can be optimized to reduce the loss of the

network when learning seedling features. In fact, this issue has been

considered in some researches (Pang et al., 2022). Third, the

structure of the whole model still has room for improvement,

which has mentioned in some researches (Zhang et al., 2024).
5 Conclusions

To solve the problem of recognition difficulties caused by the

existing models not considering the differences in size and shape of

peanut seedlings under a saline-alkali stress environment, this paper

proposes a peanut seedlings recognition and counting model MS-

YOLOv8. The proposed approach improves the detection accuracy

of peanut seedlings while maintaining a lightweight design.

Experimental results demonstrate that the proposed MS-YOLOv8

model performs the peanut seedlings detection with the AP50 of

97.5%. Compared to typical models such as EfficientDet, Faster R-

CNN, YOLOv5, YOLOv6, YOLOv7, YOLOv8, and RT-DETR, the

MS-YOLOv8 achieves the highest detection accuracy with the

minimum number of parameters. This research establishes a

foundation for object recognition in extreme environments by

close-range remote sensing. It provides a certain theoretical

guidance for the development of an intelligent monitoring

platform for peanut.
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