
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Andrés J. Cortés,
Colombian Corporation for Agricultural
Research (AGROSAVIA), Colombia

REVIEWED BY

Moyses Nascimento,
Universidade Federal de Viçosa, Brazil
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Explainable artificial intelligence
for genotype-to-phenotype
prediction in plant breeding: a
case study with a dataset from
an almond germplasm collection
Pierfrancesco Novielli 1,2, Donato Romano1,2, Stefano Pavan1,
Pasquale Losciale1, Anna Maria Stellacci1, Domenico Diacono2,
Roberto Bellotti2,3 and Sabina Tangaro1,2*

1Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo
Moro, Bari, Italy, 2Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy, 3Dipartimento
Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, Bari, Italy
Background: Advances in DNA sequencing revolutionized plant genomics and

significantly contributed to the study of genetic diversity. However, predicting

phenotypes from genomic data remains a challenge, particularly in the context of

plant breeding. Despite significant progress, accurately predicting phenotypes from

high-dimensional genomic data remains a challenge, particularly in identifying the

key genetic factors influencing these predictions. This study aims to bridge this gap

by integrating explainable artificial intelligence (XAI) techniques with advanced

machine learning models. This approach is intended to enhance both the

predictive accuracy and interpretability of genotype-to-phenotype models,

thereby improving their reliability and supportingmore informed breeding decisions.

Results: This study compares several ML methods for genotype-to-phenotype

prediction, using data available from an almond germplasm collection. After

preprocessing and feature selection, regression models are employed to predict

almond shelling fraction. Best predictions were obtained by the Random Forest

method (correlation = 0.727 ± 0.020, an R2 = 0.511 ± 0.025, and an RMSE = 7.746

± 0.199). Notably, the application of the SHAP (SHapley Additive exPlanations)

values algorithm to explain the results highlighted several genomic regions

associated with the trait, including one, having the highest feature importance,

located in a gene potentially involved in seed development.

Conclusions: Employing explainable artificial intelligence algorithms enhances

model interpretability, identifying genetic polymorphisms associated with the

shelling percentage. These findings underscore XAI’s efficacy in predicting

phenotypic traits from genomic data, highlighting its significance in optimizing

crop production for sustainable agriculture.
KEYWORDS

genotype-phenotype prediction, machine learning, explainable artificial intelligence,
shelling fraction, almond
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1 Background

Next generation DNA sequencing technologies nowadays allow

the cost-effective identification and call of a large number of single

nucleotide polymorphisms (SNPs), using whole genome

resequencing (WGS) and reduced representation sequencing

(RRS) approaches Pavan et al. (2020). In turn, this facilitates the

prediction of phenotypes based on genomic data, using genomic

selection (GS) methods. For both annual and perennial crops, GS

has the potential to dramatically reduce the time and the cost

required for the development of new cultivars Crossa et al. (2017).

The advantage of GS is even more noticeable for fruit tree species,

for which phenotypic selection requires to grow plants for several

years until the completion of the juvenile period. However, despite

these remarkable strides, the accurate prediction of phenotypes

from genomic data remains an enduring challenge in the field of

plant breeding van Dijk et al. (2021). In the contemporary

landscape of “big data” available for crop species, the ability

predict phenotypes from genotypic information holds paramount

importance, particularly in the context of breeding applications.

The comprehension of the dynamic interplay between genotypic

variation and resulting phenotypes offers profound insights into

fundamental aspects of plant physiology and development Tong

and Nikoloski (2021).

While traditional linear regression models have been valuable

tools in genetic studies, they may have limitations in capturing the

nuanced relationships between genotypes and phenotypes. These

models often assume linearity, which may not hold true for complex

biological interactions. Additionally, they may struggle with high-

dimensional genomic data, leading to issues such as overfitting and

multicollinearity, which can reduce predictive accuracy and

reliability Guzzetta et al. (2010); Okser et al. (2014); Danilevicz

et al. (2022). However, the emergence of Machine Learning (ML)

techniques, notably non-linear models and tree-based models, has

heralded a paradigm shift in this domain Li et al. (2018); Abdollahi-

Arpanahi et al. (2020); Wang et al. (2022); Azodi et al. (2019). These

sophisticated methodologies excel at generating precise predictions

from the extensive biological datasets generated in plant genotyping

and phenotyping studies John et al. (2022); Sehrawat et al. (2023).

ML, as a computational approach for discerning predictive patterns

within data, holds significant promise in revolutionizing genotype-

to-phenotype predictions in plant science Guo and Li (2023); Wang

et al. (2023). ML techniques have become essential tools for plant

researchers, facilitating the processing and integration of vast

datasets to unveil deeper insights into the intricate relationships

between genotypes and phenotypes. Recent reviews and studies

highlight the application and comparison of various ML models in

genomic prediction, showcasing their effectiveness in different

contexts Chafai et al. (2023); Lourenço et al. (2024). Moreover,

recent advancements in machine learning have led to the

development of explainable artificial intelligence (XAI)

algorithms, aimed at elucidating the inner workings of machine

learning models often deemed as “black boxes” Novielli et al.

(2024); Linheiro et al. (2023); Mostafa et al. (2023); Van Stein

et al. (2022); Cilli et al. (2022); Lombardi et al. (2022). These XAI

algorithms enhance the reliability and interpretability of results by
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elucidating the variables that have the most significant impact on

the predictive outcome. The connection between prediction

accuracy and interpretability is crucial in breeding applications, as

understanding the genetic mechanisms underlying trait predictions

can inform better breeding decisions. For example, recent studies

have applied explainable AI to genomic prediction in crops,

demonstrating the value of this approach in identifying marker

effects and estimating heritability Coelho de Sousa et al. (2022);

Sousa et al. (2020). This development is particularly promising in

the context of crop breeding, as it enables the identification of key

SNPs driving the regression model, potentially leading to significant

breakthroughs in predicting phenotypic traits such as yield.

Despite the advances in genomic selection, there remains a

significant gap in accurately predicting phenotypes from high-

dimensional genomic data, particularly in identifying the key

genetic factors that most impact these predictions. This study

aims to address these challenges by leveraging XAI techniques in

conjunction with advanced machine learning models to enhance

the predictive accuracy of genotype-to-phenotype predictions. Our

specific research goals are to demonstrate the effectiveness of XAI in

identifying key genomic regions associated with phenotypic traits.

We hypothesize that advanced machine learning models,

particularly tree-based methods, will outperform traditional linear

models in predicting phenotypic traits from genomic data.

Additionally, we expect that the use of XAI will reveal significant

SNPs and genomic regions that are strongly associated with

phenotypic traits, such as shelling fraction.
2 Materials and methods

2.1 Phenotipic and genotipic data

Our study aimed to compare three machine learning methods

to investigate the relationship between plant genetic data and

phenotypic traits. To accomplish this, we utilized genotypic and

phenotypic data from 98 cultivars from the CREA-AA (Italian

Council for Agricultural Research and Analysis of Agricultural

Economics—Section Agriculture and Environment) ex situ

germplasm collection, previously described by Pavan et al. (2021);

Pavan et al. (2021). Almond, as one of the primary tree nut species

worldwide and among the oldest domesticated tree species, has its

genome organized into eight chromosomes Delplancke et al. (2013).

The dataset comprised 98 individuals, each represented by a

unique cultivar genotyped. SNP data were obtained by the

genotyping-by-sequencing (GBS) RRS approach Elshire et al.

(2011), using the Lauranne genome for the alignment of reads

Sánchez-Pérez et al. (2019). Four-year data on kernel and fruit

weight were used to calculate the average shelling fraction (i.e. the

ratio of kernel weight to total fruit weight), which was further

considered as target phenotypic variable. Detailed information

about the cultivars and the phenotypic variable can be found in

Supplementary Table 1. This variable is very important for the

technological quality of the product and it is strongly linked to the

genotype rather than the agronomic practices The International

Union for the Protection of New Varieties of Plants-UPOV (https://
frontiersin.org
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www . u p o v . i n t / e d o c s /mdo c s / u p o v / e n / t c _ e d c / 2 0 1 1 /

tg_56_4_proj_3_e.pdf). Data were preprocessed to ensure quality

control using TASSEL v.556. Marker quality control involved

filtering for biallelic SNP loci with a minor allele frequency > 0.05

and a call rate > 0.7, resulting in 93119 single-nucleotide

polymorphisms (SNPs) available for analysis. Subsequently,

Linkage Disequilibrium (LD) pruning was conducted using the

LD pruning algorithm in PLINK v.1.90 Ye et al. (2019);

Nimmakayala et al. (2014). This algorithm calculates pairwise R2

for all marker pairs in sliding windows with a size of 50 markers and

an increment of 5 markers, removing the first marker of pairs in

which R2< 0.5.

The Variant Call Format (VCF) file containing the SNPs

underwent additional encoding to prepare it for the subsequent

machine learning framework phase: homozygous variants,

indicated by 0/0, were encoded as 0; heterozygous variants,

indicated by 0/1 and 1/0, were encoded as 1; and homozygous

variants, indicated by 1/1, were encoded as 2. Here, “0” denotes the

reference allele, and “1” denotes the alternative allele.
2.2 Workflow analysis

Figure 1 illustrates the general schema followed to conduct the

analysis. After preparation, SNP and phenotypic data were input

into the ML framework. Due to the limited number of plants

available for study compared to the number of SNP variables, to

avoid the curse of dimensionality Crespo Márquez (2022); Altman

and Krzywinski (2018), a feature selection algorithm was adopted.

The curse of dimensionality refers to various phenomena that arise

when analyzing and organizing data in high-dimensional spaces. In

our study, having a high number of SNPs relative to the number of

plants can lead to overfitting and poor model generalization because

the model may fit the noise in the data rather than the actual signal.
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Subsequently, three tree-based ML regression models and

traditional regression models (e.g., gBLUP and rrBLUP) were

compared, and their performance was evaluated using different

evaluation metrics (Pearson correlation, R2, and RMSE). The SHAP

(SHapley Additive exPlanations) values algorithm was utilized to

provide an interpretable explanation for the model’s predictions.

This method helps to identify and quantify the contribution of each

SNP to the predicted phenotypic traits, ensuring transparency and

understanding of the model’s decision-making process. To validate

the procedure, 10-fold cross-validation (CV) was employed. Feature

selection was nested within the cross-validation to prevent data

leakage. Data leakage occurs when information from outside the

training dataset is used to create the model, leading to overly

optimistic performance estimates. When performing feature

selection on all of the data and then cross-validating, the test data

in each fold of the CV procedure could be used to choose the

features, which biases the performance analysis (Samala et al.

(2020); Saravanan et al., 2018). Thus, feature selection was

applied to each split of the CV, followed by training an ML

regression model. Moreover, the cross-validation procedure was

repeated 15 times to ensure robustness in the analysis, with each

repetition involving different splits of the folds. After each repetition

of the cross-validation, the model assessment metric was computed,

providing uncertainty associated with the results to obtain a

statistical analysis of the findings.

The sequence of steps involved in the analysis are summarized

in Table 1.
2.3 Feature selection

Feature selection is a critical step in data preprocessing,

aiming to identify and retain the most informative features while

discarding irrelevant ones, thereby enhancing the model’s
FIGURE 1

Flowchart illustrating the analysis workflow. Input genetic data underwent preprocessing steps before being subjected to a feature selection
algorithm. Subsequently, the preprocessed data were fed into tree-based machine learning algorithms to evaluate regression results and
provide explanations.
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performance Ross (2014); Kraskov et al. (2004); Tangaro et al.

(2015). In our study, we employed a feature selection technique

based on Mutual Information (MI) Gain. This method, a univariate

filtering approach, calculates the mutual information for

continuous target variables in regression problems, relying on the

entropy of the variables Guo et al. (2020).

Mutual Information quantifies the dependency between

variables, where higher values indicate stronger dependency. It

essentially measures the amount of information one variable

provides about another. Like other feature selection techniques,

the goal of MI Gain is to reduce the size of the input feature set. This

reduction can simplify the problem, decrease computational time,

and potentially improve model performance.

In our approach, SNPs are ranked based on their MI scores, and

those above the 80th percentile of the MI scores are selected for

further analysis. This percentile-based threshold ensures that we

retain the most informative SNPs, focusing on the top 20% that

provide the highest dependency information.
2.4 Benchmark methods

To provide a comprehensive comparison, we included

traditional genomic regression methods as benchmarks.

Specifically, we performed genomic best linear unbiased

prediction (GBLUP) and ridge regression best linear unbiased

prediction (rrBLUP) as benchmark methods Crossa et al. (2017).

These models do not involve variable selection and serve as a

reference for evaluating the performance of the machine learning

models with feature selection.

GBLUP and rrBLUP are widely used in genomic prediction due

to their simplicity and robustness. GBLUP uses a mixed linear

model approach that incorporates all available SNPs as random

effects, assuming a common variance for all SNPs. rrBLUP is a

variant of GBLUP that applies ridge regression to handle

multicollinearity among SNPs, thus providing stable and reliable

predictions Clark and van der Werf (2013); Tan et al. (2017);

Nazzicari and Biscarini (2022).
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2.5 Tree-based ML regressors

The machine learning models chosen for regression are tree-

based ML models, which typically perform effectively on tabular

data Grinsztajn et al. (2022); Manduchi et al. (2021). The models

selected are AdaBoost, RandomForest, and Gradient Boosting.

AdaBoost: The core principle of AdaBoost is to fit a sequence of

weak learners, such as small decision trees, on repeatedly modified

versions of the data Freund and Schapire (1997). The predictions

from all weak learners are then combined to produce the final

prediction. At each boosting iteration, the data modifications

involve adjusting weights assigned to each training sample based

on prediction accuracy.

Gradient Boosting: Gradient boosting regression tree

algorithms utilize an ensemble learning technique, amalgamating

multiple individual regression trees, also known as weak learners, to

construct robust forecasting models. This algorithm effectively

reduces the error rate associated with weakly learned models,

characterized by high bias, low variance, and minimal

regularization, thereby enhancing their predictive performance.

Boosting algorithms typically comprise three key components: an

additive model, weak learners, and a loss function. In the case of

gradient boosting machines, the approach involves identifying the

deficiencies of weak models by leveraging gradients. Through an

iterative process, the algorithm progressively addresses these

limitations by iteratively combining base learners to minimize

prediction errors. This integration is achieved by employing an

additive model while simultaneously minimizing the loss function

using gradient descent techniques Friedman (2001).

Random Forests: In random forests Breiman (2001), each tree

in the ensemble is built from a sample drawn with replacement

from the training set. When splitting each node during tree

construction, the best split is found through an exhaustive search

of feature values from either all input features or a random subset.

This randomness decreases the variance of the forest estimator,

reducing overfitting. Random forests achieve reduced variance by

combining diverse trees, sometimes at the cost of a slight increase

in bias.
TABLE 1 Modelling strategy steps and cross-validation details.

Step Description Validation

[S1] Data Preparation SNP and phenotypic data were prepared for input into the Machine Learning (ML)
framework. The SNP data underwent quality control filtering, including marker
quality control (MAF, call rate) and Linkage Disequilibrium (LD) pruning.

[S2] Feature Selection Due to the limited number of plants compared to the number of SNPs, a feature
selection algorithm was applied to mitigate the curse of dimensionality. Mutual
information was used to identify and retain the most informative SNPs. Steps S2 to S4 were done by employing 10-fold cross-

validation (CV). The procedure was repeated 15 times
to ensure robustness, with each repetition involving
different splits. After each repetition, the model
assessment metric was computed, providing
uncertainty associated with the results for
statistical analysis.

[S3] Model
Comparison

Three tree-based ML regression models
(Random Forests, Adaboost, and Gradient Boosting) and traditional regression
models (e.g., gBLUP and rrBLUP) were compared. Their performances were
evaluated using Pearson correlation, R², and RMSE.

[S4] Interpretability The SHAP (SHapley Additive exPlanations) algorithm was used to provide
explanations for the model results. This method helps identify and quantify the
contribution of each SNP to the predicted phenotypic traits.
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Hyperparameters play a crucial role in controlling the

complexity of the models, avoiding overfitting, and achieving

better performance. The hyperparameters varied for the tree-

based models used in this study include:

• Learning Rate (learning_rate): This parameter controls the

contribution of each weak learner to the final model in boosting

algorithms. A smaller learning rate makes the model more robust to

overfitting but requires more trees to achieve optimal performance.

• Number of Estimators (n_estimators): This parameter

specifies the number of weak learners (trees) to be used in the

ensemble. Increasing the number of estimators generally improves

the model’s performance but also increases computational cost.

• Maximum Depth (max_depth): This parameter controls the

maximum depth of the trees. Limiting the depth of the trees helps to

prevent overfitting by ensuring the trees do not become too complex.

To determine the optimal performance of regression in the

cross-validation (CV) mode, the following parameters for Gradient

Boosting and AdaBoost were varied:
Fron
• learning_rate ∈ {0.01, 0.05, 0.1, 0.2}

• n_estimators ∈ {30, 50, 100, 500}
For Random Forests, the following parameters were varied:
• max_depth ∈ {4, 7, 10}

• n_estimators ∈ {30, 50, 100, 500}
Hyperparameter tuning was performed using the

RandomizedSearchCV Python library to find the best

combination of hyperparameters for each model. The optimal

hyperparameters identified were as follows:

• Random Forest:

•n _ estimators: 500

•max _ depth: 7

• Gradient Boosting:

•n _ estimators: 100

•learning _ rate: 0.1

• AdaBoost:

•n _ estimators: 500

•learning _ rate: 0.05

To assess the regression results and compare different

algorithms, the following metrics were used:

• Pearson correlation:

corr = on
i=1(yi − �y)(ŷ i − ŷ )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(yi − �y)2on

i=1(ŷ i − ŷ )2
q (1)

• Coefficient of determination:

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(2)

• Root mean squared error:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(3)
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where ŷ i represents the predicted values, ŷ denotes their

average, yi are the observed values of the phenotypic trait, and �y

denotes its average.
2.6 SHAP values

Based on game theory, SHAP values assign an importance score

to each feature for a given prediction. A positive SHAP value means

that the feature has increased the prediction, while a negative SHAP

value means that it has decreased the prediction. The larger the

absolute value of the SHAP value, the stronger the feature’s impact

on the prediction. One of the main benefits of SHAP values is that

they are model-agnostic, meaning they can be used to interpret any

machine learning model.

The computation of SHAP values involves evaluating the effect

of including or excluding each feature from the model. Imagine we

have a set of features used to make a prediction. By calculating the

difference in the prediction with and without each feature across

all possible subsets of features, we can determine the contribution

of each feature. This approach ensures that the feature

contributions are fairly distributed. To compute SHAP values,

we look at the difference in model output when a specific feature is

included versus when it is excluded, across all possible

combinations of features. This process can be mathematically

represented as follows:

SHAPj(x) = o
F ⊆ S− jf g

Fj j ! ( Sj j − Fj j − 1) !
Sj j ! ½fx(F ∪ j) − fx(F)� (4)

where Fj j ! represents the permutations of features in the subset

F, ( Sj j − Fj j − 1) ! denotes the permutations of features in the subset

S − (F ∪ jf g), Sj j ! is the total number of feature permutations, and

fx(F ∪ j) and fx(F) represent the regression score obtained by

including and not including the j-th feature, respectively

Lundberg and Lee (2017).

In simpler terms, this formula aggregates the change in

prediction when the feature j is added to every possible subset

of other features. The aggregation is weighted to ensure fairness,

considering all possible orders in which features can be added.

To make this concept clearer, let’s consider a simplified example

with a dataset containing three features: A, B, and C. To

compute the SHAP value for feature A for a specific instance,

we would:
1. Calculate the model prediction using all subsets that

include A and those that don’t.

2. Measure the difference in predictions for each subset pair

(with and without A).

3. Aggregate these differences, applying the weighting formula

to ensure a fair contribution.
Details about the software and packages used in all the analysis

are provided in the Supplementary Material.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1434229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Novielli et al. 10.3389/fpls.2024.1434229
3 Results

The aim of this work was to explore the application of

explainable artificial intelligence (XAI) principles to tree-based

machine learning models (Random Forests, AdaBoost, and

Gradient Boosting) for genomic prediction using almond

germplasm data. Specifically, we aimed to construct regression

models with feature selection and calculate SHAP values to

provide interpretability for the predictions.

The result of data filtering and pruning indicated a substantial

reduction in the SNP count from 93119 to approximately 43711.

Dimensionality reduction was applied by performing feature

selection as described previously. The initial filtering approach

served as a quality control measure for SNPs, while LD pruning

was used to remove multicollinearity from the SNP data.

Subsequently, feature selection was employed to further reduce

the number of SNPs, effectively addressing the ‘curse of

dimensionality’ and ensuring that only the most informative

markers were used in the analysis. For the phenotypic trait of

shelling fraction, we analyzed its Manhattan plot, wherein each

point denotes a SNP. The x-axis represents the SNPs organized by

chromosome, while the y-axis depicts mutual information values.

SNPs with mutual information values above the 80th percentile

were selected, resulting in the retention of approximately 8600

SNPs. An example of the Manhattan plot corresponding to one

fold of the cross-validation is depicted in Figure 2. The horizontal

white line denotes the threshold corresponding to the

80th percentile.

Table 2 presents the results of the five models in terms of

correlation, R2, and RMSE. The table displays the results obtained

by repeating the cross-validation procedure 15 times, presenting the
Frontiers in Plant Science 06
average values along with their standard deviations. Figure 3 depicts

the performance of the three algorithms as boxplots of the

distributions obtained in the 15 repetitions of the procedure.

Figures 3A–C represent correlation, R2, and RMSE, respectively.

Each boxplot on the x-axis corresponds to one algorithm (Random

Forest, Gradient Boosting, and AdaBoost), while the y-axis represents

the scores. It can be observed that Random Forest statistically

outperforms the other two algorithms in terms of correlation.

Regarding R2 and RMSE, Random Forest outperforms Gradient

Boosting, gBLUP and rrBLUP but has statistically comparable

results to AdaBoost. Consequently, Random Forest is considered

the best regressor, with average results of correlation of 0.727 ± 0.020,

a R2 of 0.511 ± 0.025, and an RMSE of 7.746 ± 0.199. XAI results are

shown for this algorithm, but the results of the other models are

consistent with those of Random Forest. The statistical tests for

comparing the distributions were conducted using the Mann-

Whitney U test Mann and Whitney (1947).

Figure 4 depicts the scatter plot of the cross-validated prediction

results of the best model (Random Forest). The x-axis represents the

actual shelling fraction values, while the y-axis represents the

predicted values. Additionally, two lines are plotted to highlight

the regression results: the gray line represents the bisector, and the

blue line represents the regression line.

After evaluating the performance, SHAP values were computed.

Figure 5 illustrates the feature importance calculated using SHAP

values. The variables are ordered by importance, with the 20 most

important variables depicted from most to least important based on

the mean absolute value of the SHAP values. These values represent

the average impact on the model output magnitude. It’s worth

noting that the feature importance visualized in Figure 5 is for the

features common to all folds post-feature selection. Therefore, for
FIGURE 2

Manhattan plot illustrating the distribution of SNPs for the phenotypic trait of almond shelling fraction. Each point represents a SNP, grouped by
chromosome on the x-axis. The y-axis depicts mutual information values. SNPs with mutual information above the 80th percentile were selected for
further analysis, as indicated by the horizontal white line. P value < 10-4.
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explainability, only the most stable features, those selected in every

fold of cross-validation, were considered.

By far, the SNP “S4_8267”, located at the beginning of

chromosome 4, was associated with the highest feature importance.

Using available annotation for the Lauranne, genome, this SNP was

found to reside within the gene Prudu_010622, predicted to encode a

member of the plant QWRF motif-containing protein family. Protein

BLAST revealed similarity with the Arabidopsis endosperm defective
Frontiers in Plant Science 07
protein 1, previously shown to be essential for seed development

Pignocchi et al. (2009).
4 Discussion

In this research, we developed an artificial intelligence workflow

to apply eXplainable Artificial Intelligence (XAI) principles to tree-

based machine learning models (Random Forests, Adaboost, and

Gradient Boosting) for genomic prediction using almond

germplasm data. The primary focus was on predicting phenotypic

traits from SNP values obtained from 98 almond cultivars, aiming

to study the correlation between genotype and phenotype and to

provide interpretability for the predictions through SHAP values.

Predicting shelling fraction from genomic data carries significant

implications for both plant science and agricultural practices.

Understanding the genetic foundations of shelling fraction is very

important for the breeding programs, in order to predict the

efficiency of the tree in producing seeds Sun et al. (2019);

Upadhyaya et al. (2010). By leveraging genomic information,

breeders can identify and select plants with desirable traits,

accelerating the process of crop improvement. Furthermore,
FIGURE 3

Performance comparison of machine learning algorithms in terms of (A) correlation, (B) R2, and (C) RMSE. Each boxplot represents the distribution
of scores obtained from 15 repetitions of crossvalidation for the following algorithms: Random Forest, Gradient Boosting, AdaBoost, gBLUP and
rrBLUP. Significance stars indicate the results of Mann-Whitney U test comparing the distributions of each algorithm’s performance scores. The
significance levels are denoted as follows: ns (not significant), ∗ (10−2 < p − value < 5 × 10−2), ∗∗ (10−3 < p − value < 10−2), ∗∗∗ (10−4 < p − value < 10−3),
and **** p value < 10-4.
TABLE 2 Results of regression models in terms of correlation, R2,
and RMSE.

Regressor Correlation R2 RMSE

Random Forest 0.727 ± 0.020 0.511 ± 0.025 7.746 ± 0.199

Gradient
Boosting

0.682 ± 0.025 0.464 ± 0.035 8.106 ± 0.264

AdaBoost 0.703 ± 0.024 0.489 ± 0.031 7.912 ± 0.243

gBLUP 0.666 ± 0.009 0.173 ± 0.014 10.072 ± 0.084

rrBLUP 0.695 ± 0.014 0.481 ± 0.018 7.979 ± 0.142
The values represent the average performance across 15 repetitions of cross-validation, along
with their standard deviations.
The best model is highlighted in bold.
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FIGURE 4

Scatter plot of cross-validated prediction results for the best model (Random Forest). The x-axis represents the actual shelling fraction values, while
the y-axis represents the predicted values. The gray line represents the bisector, and the blue line represents the regression line.
FIGURE 5

Feature importance calculated using SHAP values. The variables are ordered by importance, with the 20 most important variables depicted from
most to least important based on the mean absolute value of the SHAP values. These values represent the average impact on the model
output magnitude.
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precise yield predictions enable farmers to optimize resource

allocation, improve crop management practices, and mitigate

risks associated with environmental variability and climate change

Van Klompenburg et al. (2020); Alhnaity et al. (2019); Pant

et al. (2021).

Our results have shown that the phenotypic variable, shelling

fraction, is correlated with SNPs, as evidenced by a coefficient of

determination of 0.511 ± 0.025. The R2 value of 0.511 indicates that

our model explains about 51.1% of the variance in the phenotypic

trait based on genetic data alone. This level of accuracy is significant

in the context of genomic prediction, where multiple factors

influence phenotypic traits.

Machine learning models have proven effective in predicting

this trait. In our study, we compared the machine learning models

to benchmark models (gBLUP and rrBLUP), and the results

demonstrated the added value of incorporating feature selection

and advanced machine learning techniques in genomic prediction.

One of the strengths of this study is the utilization of an

eXplainable Artificial Intelligence (XAI) framework. By employing

SHAP values, which are model-agnostic, we were able to estimate

the importance of SNPs in predicting phenotypic variation.

Notably, we found that the SNP locus associated with the highest

importance resides in a gene, Prudu 010622, showing high level of

homology with Arabidopsis endosperm defective 1, previously

implicated in seed development Pignocchi et al. (2009). Further

functional studies might test whether Prudu 010622 is also playing a

role in kernel development, thus affecting kernel yield.
4.1 Caveats and future perspectives

While this study demonstrates the potential of combining XAI

with advanced machine learning models for genotype-to-phenotype

predictions, there are several caveats and limitations to consider.

Firstly, the dataset used in this study is relatively small, consisting of

only 98 almond cultivars. This limited sample size may affect the

generalizability and robustness of the findings. Future studies should

aim to include larger and more diverse datasets to validate the results

and improve the model’s predictive performance. Additionally, while

our study focused primarily on genetic data, we acknowledge that

incorporating environmental variables alongside genetic information

holds promise for further improving prediction accuracy.

Environmental factors, such as temperature, precipitation, soil

composition, and management practices, play a crucial role in

shaping crop yields Rebetzke et al. (2012). The absence of

environmental data in our current models could be seen as a

limitation of this study. Integrating environmental data into

machine learning models can provide a more comprehensive

understanding of the genotype-environment-phenotype interactions,

leading to more accurate predictions and tailored agricultural

interventions Gagneur et al. (2013); Guo and Li (2023); Barros and

Offenbacher (2009). Future work should aim to combine genetic data

with relevant environmental variables to enhance the robustness and

applicability of genomic prediction models.

Validation steps are crucial for the broader application of these

models in real-world breeding programs. Independent validation
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using external datasets should be performed to ensure the reliability

and reproducibility of the findings. Moreover, functional validation of

the identified SNPs and genomic regions is necessary to confirm their

biological relevance and potential utility in breeding applications.

Future research should also explore the application of these models to

other crop species and phenotypic traits, expanding the scope of

genotype-to-phenotype predictions in plant breeding.
5 Conclusions

The analysis presented in this study underscores the model’s

predictive capacity, revealing a significant correlation between

genotypes and shelling fraction across 98 almond cultivars. Our

best ML model achieved an R2 of 0.511 ± 0.025, outperforming

traditional GS methodologies like gBLUP and rrBLUP. In addition,

the application of XAI highlighted specific chromosomal regions and

SNP positions of major importance in predicting the target

phenotype, offering valuable insights for further genetic studies and

contributing tomore conclusive results. These findings emphasize the

potential of integrating machine learning models with explainable AI

to enhance the interpretability and accuracy of genomic predictions,

ultimately advancing the field of plant breeding.

Furthermore, this study paves the way for future research

endeavors exploring similar associations in other cultivar types

and various phenotypic traits. By expanding the scope of

investigation, we can deepen our understanding of genotype-

phenotype relationships in plant science, ultimately contributing

to advancements in agricultural practices and crop optimization.
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