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From laboratory to field:
cross-domain few-shot
learning for crop disease
identification in the field
Sen Yang1, Quan Feng1*, Jianhua Zhang2, Wanxia Yang1,
Wenwei Zhou1 and Wenbo Yan1

1College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China,
2Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Few-shot learning (FSL) methods have made remarkable progress in the field of

plant disease recognition, especially in scenarios with limited available samples.

However, current FSL approaches are usually limited to a restrictive setting where

base classes and novel classes come from the same domain such as PlantVillage.

Consequently, when the model is generalized to new domains (field disease

datasets), its performance drops sharply. In this work, we revisit the cross-domain

performance of existing FSL methods from both data and model perspectives,

aiming to better achieve cross-domain generalization of disease by exploring

inter-domain correlations. Specifically, we propose a broader cross-domain

few-shot learning(CD-FSL) framework for crop disease identification that

allows the classifier to generalize to previously unseen categories and

domains. Within this framework, three representative CD-FSL models were

developed by integrating the Brownian distance covariance (BCD) module and

improving the general feature extractor, namely metric-based CD-FSL(CDFSL-

BDC), optimization-based CD-FSL(CDFSL-MAML), and non-meta-learning-

based CD-FSL (CDFSL-NML). To capture the impact of domain shift on model

performance, six public datasets with inconsistent feature distributions between

domains were selected as source domains. We provide a unified testbed to

conduct extensive meta-training andmeta-testing experiments on the proposed

benchmarks to evaluate the generalization performance of CD-FSL in the disease

domain. The results showed that the accuracy of the three CD-FSL models

improved significantly as the inter-domain similarity increased. Compared with

other state-of-the-art CD-FSL models, the CDFSL-BDC models had the best

average performance under different domain gaps. Shifting from the pest domain

to the crop disease domain, the CDFSL-BDC model achieved an accuracy of

63.95% and 80.13% in the 1-shot/5-shot setting, respectively. Furthermore,

extensive evaluation on a multi-domain datasets demonstrated that multi-

domain learning exhibits stronger domain transferability compared to single-

domain learning when there is a large domain gap between the source and target

domain. These comparative results suggest that optimizing the CD-FSL method
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from a data perspective is highly effective for solving disease identification tasks

in field environments. This study holds promise for expanding the application of

deep learning techniques in disease detection and provides a technical reference

for cross-domain disease detection.
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1 Introduction

Plant diseases pose a significant threat to crop growth and yield

(Jadhav et al., 2021; Karthik et al., 2020). Timely diagnosis and

effective control measures are crucial to mitigate disease spread and

optimize agricultural productivity and quality. The characteristics of

crop diseases are intricately linked to agronomic practices, climatic

conditions and management levels, leading to a diverse array of

pathological presentations within the same disease type.

Consequently, disease recognition poses a greater challenge than

traditional image classification methods. Currently, deep learning

techniques have achieved great success in disease detection and

identification (Dai et al., 2023; Pan et al., 2023; Rahman et al.,

2020). However, the generalization ability of deep learning models

depends on the size and diversity of the training datasets. In fact,

collecting abundant labeled instances in field conditions, particularly

for disease categories with low incidence rates, is challenging

(Argüeso et al., 2020; Gui et al., 2021; Lin et al., 2022b). In

addition, the collection of real-time field data under different

atmospheric conditions is very time-consuming and requires a lot

of expert manpower, resulting in high costs (Chouhan et al., 2020a).

Many studies have achieved high accuracy in plant disease

classification using deep learning models trained on PlantVillage
02
(Alaeddine and Jihene, 2023; Alqahtani et al., 2023). Images collected

in the laboratory settings are usually of good quality, with fixed

background, stable illumination and obvious disease spot

characteristics (Figure 1). However, classification networks trained

in laboratory settings suffer significant performance degradation due

to complex backgrounds and random imaging conditions once

applied to new datasets collected from the field. This limitation

severely hampers the practical utility of the model in real-world

field applications. FSL methods provide an effective way to address

the problem of insufficient plant disease data and improve model

generalisation. However, the limitation of such methods is that they

are trained and evaluated only on a single dataset (i.e., single-domain)

and fail to effectively capture model properties across visual domains

(cross-domain). In addition, internal and external factors such as the

complexity of image backgrounds, the diversity of symptom

presentations, and differences in image acquisition conditions

significantly affect the generalisation ability of FSL methods. In

practice, we expect that models trained on arbitrary datasets can be

applied to disease datasets without the need to collect additional

target training samples. Thus, the use of CD-FSL to transfer plant

disease identification to more realistic and challenging field

environments is important for advancing the practical deployment

of intelligent diagnostic technologies.
FIGURE 1

Disease images under different shooting conditions. The images in the first row are from PlantVillage and show only one diseased leaf. The second
row of images was obtained in the wild. Such uncontrolled shooting conditions present challenges to the model.
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To address the scarcity of disease samples, researchers have

focused on developing simple machine learning models such as

support vector machines(SVMs) (Deepa and Umarani, 2017),

artificial neural networks (ANNs) and radial basis function (RBF)

neural networks (Chouhan et al., 2020b) and variants. However,

one of the limitations of these methods is that they require manually

designed features.With the popularity of convolutional neural

networks (CNN), several studies have used deep transfer learning,

data augmentation, and domain adaptive techniques for disease

identification. Deep transfer learning pre-train deep convolutional

neural networks(DCNN) on large datasets and then fine-tune them

the using disease datasets (Nigam et al., 2023; Vallabhajosyula et al.,

2022). This approach is simple and easy to implement and has

achieved good performance in disease recognition. For example,

Chen et al (2020) used deep transfer learning for plant disease

identification, yielding significant improvements in the

classification performance of the DCNN model. Similarly, several

studies have employed pre-trained networks such as VGGNet

(Paymode and Ma lode , 2022) , In c ep t i onRe sNe tV2

(Krishnamoorthy et al., 2021), MobileNetV2 (Hassan et al., 2021),

Vision Transformer (ViT) (Xu et al., 2022), and EfficientNet (Atila

et al., 2021)for crop disease identification. Although transfer

learning is effective in scenarios facing insufficient samples, this

method still relies on medium-sized databases during the fine-

tuning stage. Therefore, its accuracy diminishes when faced with

only a few to dozens of samples. Moreover, most existing disease

recognition method depend on publicly available datasets, such as

PlantVillage, and samples collected in the laboratory settings.

Images obtained in field settings encompass a diverse range of

backgrounds and symptom features (Barbedo, 2018). Some studies

have segmented leaves or spots from complex backgrounds to

improve disease recognition accuracy (Chouhan et al., 2021).

Automatic recognition of plant disease in field environment

remains a formidable challenge, particularly when disease datasets

are scarce. To diversify disease datasets and combat the challenge of

small dataset sizes, many studies have employed data enhancement

techniques to employed overfitting in DCNNs. Common methods

such as image rotation, scaling, shifting, and color transformations

were used to expand capacity of disease datasets (Nagaraju et al.,

2022; Enkvetchakul and Surinta, 2022). However,these techniques

merely apply algorithms to transform raw images into augmented

ones without fundamentally enhancing model generalization.

Therefore, efficient generative adversarial networks (GANs) have

been utilized for disease data enhancement to generate a diverse

array of new disease samples (Cap et al., 2020). For example,

Haruna et al. (2023) used Style-Generative Adversarial Network

Adaptive Discriminator Augmentation (SG2-ADA) and Laplace

filter variance to synthesise images of rice leaf diseases.

Furthermore, variants of GAN architecture (Liu et al., 2020) and

StyleGAN (Pandian et al., 2019) have also been introduced into

deep learning frameworks to improve the accuracy of identifying

diseased plant leaves. The distribution of disease data typically

follows a long-tailed shape, with a small fraction of categories

having abundant data and the majority having limited data.

While data augmentation methods have made significant progress

in addressing data limitations and balancing the distribution of
Frontiers in Plant Science 03
disease data, the model performance remains limited by the size of

the benchmark datasets. Currently, public disease datasets or self-

built datasets are obtained through different sensing platforms,

lighting conditions, and background settings. Discrepancies in

data distribution originating from diverse sources often result in a

decline in model performance. Domain-adaptive techniques aim to

mitigate these differences by minimizing the disparities in

probability distributions between source and target domains,

thereby producing embedded datasets that share a common

subspace. Zhao et al. (2023) proposed a domain-adaptive self-

supervised comparative learning for plant disease identification.

This approach demonstrates high accuracy even in scenarios with

limited training data and cluttered unlabeled data. However, it

requires that the training and test sets have matching label types.

Given the limitations of the aforementioned methods, there is an

urgent need to explore disease classification methods that can be

applied to small datasets.

FSL represents a pioneering paradigm centered on task-driven

methodologies, allowing models to adapt to novel tasks with limited

labeled data (Sun et al., 2023). In general, the standard setup for

learning few-shot classifiers consists of two phases: 1) training the

model on the datasets from the source domain, and 2) testing the

novel task using a small set of supports in the target domain.

Currently, meta-learning plays a crucial role in FSL, addressing the

challenge of limited samples in specific domains such as disease

diagnosis (Chen et al., 2021; Argüeso et al., 2020).Various meta-

learning techniques, including optimization-based, model-based, and

metric-based methods, have been introduced (Parnami and Lee,

2022). Lin et al. (2022a) proposed a solution to the problem of

limited feature extraction in few-shot learning by using cascaded

multi-scale feature fusion and a channel attention module. Li and

Yang, 2021 investigated the impact of domain transfer and meta-

learning parameters (e.g., N-way, K-shot) on the performance of FSL

recognition methods using a meta-learning baseline. Similarly, Yan

et al. (2023) addressed the issue of low accuracy for a single metric

model by combining three metric networks, namely prototypical

network, matching network, and DeepEMD, to create an enhanced

FSL network. Although FSL methods have shown advantages in

overcoming data shortages, two challenging issues remain: (1) The

datasets for bothmeta-training andmeta-testing of existing FSL come

from the same domain or dataset. For example, previous studies have

scaled PlantVillage datasets or self-constructed datasets into base and

new classes. They perform poorly on the more challenging cross-

domain FSL task, where test data come from previously unseen

domains. (2) The performance of FSL models trained on a specific

dataset (controlled environment) is greatly reduced when generalised

to new datasets or environments.

In this work, we attempt take advantage of cross-domain FSLs to

address the problem of inter-domain knowledge transfer and

generalisation, and to improve the accuracy of disease recognition

with small datasets. This method considers learning models from one

or multiple domains and extends them to unknown domains with

fewer samples. This learning paradigm introduces additional

challenges, requiring the use of limited datasets to learn new tasks

and the targeted transfer of prior knowledge from visible domains to

new tasks. Current mainstream methods primarily focus on
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https://doi.org/10.3389/fpls.2024.1434222
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1434222
improving the network structure by incorporating task-specific

learnable modules and feature transformation layers to adapt to

new tasks (Li et al., 2021a; Li et al., 2022). These methods

emphasize the network structure improvement while overlooking

the influence of the data distribution space on model generalization.

For example, Convolutional Autoencoder (CAE), Feature Attention

Module (Rezaei et al., 2024), and Attention Generating Adversarial

Networks combined with FSL are used for plant disease recognition

in low data scenarios. Mu et al. (2024) proposed a small-sample

disease recognition algorithm for supervised comparative learning,

and the model achieved an accuracy of 79.51% in a cross-scene potato

disease recognition task. Garg (2023) developed a lightweight few

shot model for plant leaf disease classification based on aggregated

loss function with MobileNetV2. Additionally, existing CD-FSL

methods have already established standard benchmarks using

shared meta-data. These datasets share the common characteristic

of coarse granularity, meaning a higher degree of class visual

distinctiveness within the datasets. Currently, it is unclear how the

CD-FSL method performs on challenging disease datasets.With this

background, we reexamine the cross-domain problem from a data

perspective and develop an economical, efficient, and broader

applicable cross-domain disease recognition framework for small-

sample. Unlike previous studies that rely solely on network

improvements, the motivation of this work is to introduce

appropriate source domain datasets and optimize network

structures to enhance the accuracy of CD-FSL models for crop

disease diagnosis in field environments. To achieve this goal, the

following research objectives are proposed:
Fron
1. We collected disease images from public resources and real

agricultural fields, and established a crop disease dataset in
tiers in Plant Science 04
a field environment. This dataset contains 9 crops covering

43 different disease types. We hope that this dataset will be

helpful for future research on plant disease diagnosis.

2. We propose a broader CD-FSL framework to address the

shortage of disease samples and verify the adaptability of

different cross-domain FSL methods to disease tasks in field

scenarios. This work provides a new perspective and

approach to disease identification.

3. We thoroughly investigate how inter-domain variability

and the diversity of source domain data affect the accuracy

of crop disease identification. The experimental results can

serve as a benchmark and reference for subsequent cross-

domain FSL in the field of disease identification.
2 Materials and methods

2.1 Image collection

The dataset contains the source domain (base class) and the

target domain data (novel class). Seven public datasets were selected

as source domains, as shown in Figure 2. These datasets have been

widely used in CD-FSL research and have good benchmarking

properties that facilitate comparisons with existing studies. In

addition, these datasets cover a wide range of tasks from fine-

grained classification (e.g., Cars, CUB200) to domain-related (e.g.,

PlantVillage and Pests), and are able to provide a representative

distribution of data. Among them, the Leaves dataset consists of the

Kaggle dataset and the Flavia dataset, while all other source domain

datasets are standard public datasets. CUB200(200 classes)
FIGURE 2

Example source (A) and target (B) domain datasets. The source domain is a publicly available dataset commonly used for image classification tasks. It is
used to train general feature extractors. The CUB200 dataset is rich in visual detail and is designed for fine-grained image classification tasks. The Leaves
dataset covers a wide range of species of healthy plant leaves with a single background. The Flower dataset has a rich variety of colours, shapes and
texture features. In contrast, the Pest dataset presents images with complex backgrounds, exhibiting considerable inter-class variations. The
MiniImageNet dataset has large differences in visual features between classes. The target domain involves a plant disease dataset, collected under field
conditions, where images are subject to intricate backgrounds and uneven lighting, posing additional challenges for accurate classification.
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(Wah et al., 2011) and Cars(100 classes) (Krause et al., 2013) belong

to two broader datasets that differ significantly from disease images

in terms of semantic content, context and colour. While the Cars

and CUB200 data may not seem relevant to the agricultural disease

domain on the surface, the fine-grained classification capabilities

and complex contexts in these two datasets can be migrated to

agricultural disease scenarios. The Flower (102 classes) (Nilsback

and Zisserman, 2006) and Leaves(208 classes) (Azlah et al., 2019)

datasets involve morphological features of plants, flowers and leaves

that are similar to the disease dataset, and the diversity of the field

scenes is also similar to the field disease images as well. These

features contribute to the model’s ability to extract cross-domain

representations that are relevant to disease identification. The

PlantVillage (Hughes and Salathé, 2015) dataset consists of 54,303

leaf images, covering 38 diseases across 14 crops. Although this

disease dataset has a large sample size, all images were collected

under controlled conditions and therefore cannot be used as a

substitute for disease recognition tasks in the field. The backgrounds

of the Pest(102 classes) (Wu et al., 2019) dataset are mostly leaves,

stems or flowers in field environments, which are consistent with

the scenes of disease occurrence. In addition, the collection

environment of the Pest dataset has similar light, angle

and resolution conditions as the field disease images. The

coarse-grained dataset MiniImageNet (Ravi and Larochelle, 2016)

(100 classes) is often used for network pre-training. To

ensure the breadth and diversity of cross-domain learning,

the source domain dataset contains data with various

inter-domain variations. It covers datasets highly similar to plant

disease distribution, such as PlantVillage and Pest, as well as

datasets less relevant to the disease domain, like Cars, CUB200,

and MiniImageNet.

The target domain data are images of crop diseases taken from

field scenes. The database was obtained through three ways: self-

constructed, internet collection and public data download.

The dataset is drawn from different regions and provides

comprehensive coverage of the universality and diversity in

different agricultural environments. It includes nine crop diseases,

namely apple, potato, maize, cotton, cucumber, grape, rice, tomato,

and wheat, amounting to a total of 43 disease categories. The detailed

distribution of disease category is shown in Table 1. In this study, this

dataset was named the Field Crop Disease Dataset (FCDD). In

Figure 2B, examples of disease images are displayed. These images

were taken in field scenes, which present a complex background with

diverse leaf angles and uneven lighting. Additionally, the images

contain confounding factors such as light spots, shadows, and insect

eyes. The distribution of the FCDD dataset is consistent with the

characteristics of the field operating environment, providing a

benchmark database for disease identification research transitioning

from the laboratory to the field. Compared to PlantVillage and Pest,

the main advantage of the FCDD dataset is its realistic simulation of

real agricultural environments, allowing a more comprehensive test

of the model’s performance and migration capabilities in complex,

dynamic and diverse scenarios. This type of data is closer to the actual

needs of agricultural disease monitoring and provides a higher

reference value for model use in the field.
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2.2 Problem description of cross-domain
few-shot learning

The goal of cross-domain few-shot learning is to enable models

to generalize not only across a single data distribution, but also to

previously unseen data distributions. In CD-FSL, the model is

trained on source domain dataset Dseen
s , and then tested on target

domain dataset Duseen
t . Typically, the training and testing of CD-FSL

is performed in an episode-based way. Each task t = (S,Q) is a

small dataset consisting of a support set S and a query set Q. The

support set S and the query set Q are composed of Ks and Kq

samples respectively, taken from each category. Since the support

set has N categories and each category has K samples, this type of

data composition is called the ‘N-way K-shot’ problem. CD-FSL is a

learning approach that emphasizes the acquisition of prior

knowledge from past experiences to enhance the learning of new

tasks. It consists of two primary components: meta-training and

meta-testing, as shown in Figure 3. In meta-training, a large number

of N-way-K-shot source tasks are created using source domain data.

The model has to learn from a support set Sb = xi, yif gN�K
i=1 , and is

then evaluated on a query set Qb = xj, yj
� �N�F

j=1 . Here xi, xj denotes

the samples of the support set and the query set, yi, yj denotes the

labels of the corresponding samples, F denotes the number of

samples of each class in the query set, usually F takes 15. During

meta-testing, the model parameters are re-tuned using the novel

class query set Sn to generate a new classifier g�q(•jSn). The classifier
is able to quickly adapt to the CD-FSL disease task in the target
TABLE 1 The detailed distribution of the FCDD dataset.

Crop Number of
categories

Categories

Apple (Thapa et al., 2020) 4 Apple scab, apple rust, apple
multiple, healthy

Potato 3 Early blight, late
blight, healthy

Corn (Qian et al., 2022) 4 Gray leaf spot, corn leaf
blight, corn rust, healthy

Cotton 7 Areolate mildew, bacterial
blight, cercospora leaf spot,

curl virus, target spot,
verticillium wilt, healthy

Cucumber 4 Powdery mildew, downy
mildew, angular leaf

spot, healthy

Grape 4 Black rot, black measles, leaf
blight, healthy

Rice (Sethy et al., 2020) 4 Bacterail blight, blast, brown
spot, tungro

Tomato 10 Bacterial spot, target spot,
early blight, late blight, leaf
mold, mosaic virus, septoria
spot, spider mites,yellow
virus, healthy

Wheat 3 Strip rust, septoria, healthy
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domain with only a few samples, as it has learned the prior

knowledge q of the N-way K-shot task in the source domain.

Assuming that the joint distribution of tasks t is P(t), then the

joint distributions of the tasks sampled from the source and target

domains are Ps(t) and Pt(t), respectively. The model acquires

knowledge on independently sampled tasks and then generalizes

the model to new tasks. Both the meta-learning and meta-testing

tasks of the generic FSL model come from the same sub-dataset,

so the spatial distribution of data in the source and target domains

are similar, i.e., Ps(t)= Pt(t). In cross-domain learning, the test data

(target domain) is usually sampled from unknown or unseen

domains. For example, in this study, the target domain domain is

a specific FCDD dataset, while the source domain data is any data

source in the Dseen
s . There is usually be a large difference between the

data distributions of the source and target domains, so the task

distribution of a cross-domain FSL usually satisfies Ps(t)≠ Pt(t).
This domain gap poses new challenges for cross-domain

generalisation of models.

According to the number of sub-datasets in the source domain,

CD-FSL is categorized into single-domain learning and multi-

domain learning. In single-domain learning, both meta-training

and meta-test examples are sampled from only one dataset. In

multi-domain learning, (S,Q) are sampled from multiple datasets.

The objective of meta-learning is to enable the classifier to achieve
Frontiers in Plant Science 06
optimal performance in each task ti. The specific optimization

process is described below:
1. Train the classifier gq(•jSb) using the support set Sb;

2. Calculate the classification score pm = gq(•jxQb
j ) for each

sample xQb
j in the query set Qb;

3. Calculate the loss L(gq(•jSb),Qb) based on the query set

labels and classification scores, and optimise the classifier

parameters q.
In the training or meta-training stage, the model is trained (or

meta-trained) on the source domain data to learn generic feature

extractors. This process models aim to capture shared features that

are useful for multiple tasks. In the meta-testing stage, multiple

tasks N-way K shot were extracted from the target domain, each

consisting of a support set Sn and a query set Qn. Before each use of

the query set Qn to evaluate the performance of the model, we use

the support set Sn of the tasks in the target domain to re-fine tune

the model network parameters. By using support sets in each task,

the model is able to dynamically adjust its parameters to better fit

the features of the target domain. This fine-tuning allows the model

to capture patterns specific to the target domain, thus improving its

performance on the query set Qn.
FIGURE 3

Framework of the proposed CD-FSL model for field crop disease recognition.
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2.3 Building CD-FSL model for
disease identification

2.3.1 Universal feature extractor
Extracting effective general feature representations from any

given source domain is essential for the cross-domain

generalization of CD-FSL. Previous research has shown that most

FSL methods directly adopt ResNet12 or ResNet18 backbone

networks as universal feature extractors. However, these methods

use source and target domains from the same data distribution. In

the presence of a domain gap, a good task-agnostic feature extractor

is expected to produce feature representations of previously unseen

tasks and domains. In this study, we propose an augmented ResNet

architecture by incorporating the convolutional block attention

module (CBAM), as shown in Figure 4A. CBAM consists of two

key parts (Figure 4B): channel attention and spatial attention. This

module adjusts the weights of different channels and different

spatial positions to enable the model to better focus on important

channel-wise and spatial location information. Specifically, the

CBAM module is added after each convolutional block of the

ResNet-18 universal feature extractor to enhance the network’s

ability to extract universal features.
2.3.2 CD-FSL model with BDC module
In this study, we designed a cross-domain FSL model based on

the ProtoNet network. This framework consists of a universal

feature extractor, a feature embedding module, and a similarity

measurement and classifier, as shown in Figure 5. This model is

named CDFSL-BDC in this study. To generate efficient generic

feature representations, the shared feature extractor for the support

set and query set adopts the proposed ResNet-18+CBAM model.

Typically, the high-dimensional features extracted from the support

set and query set by the shared feature extractor are often nonlinear.

This complexity makes it difficult to obtain effective low-

dimensional feature embeddings for the metrics module,

potentially reducing its ability to generalise across domains. To

effectively measure the similarity between the support image S and

the query image Q and improve the cross-domain capability of CD-
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FSL, the BDC module is embedded at the back end of the universal

feature extractor (Xie et al., 2022). BDC can evaluate the

dependency relationship between two random variables by

measuring the Euclidean distance between the joint feature

function and the marginal product of embedded features. This

module mainly involves standard matrix operations, and the

specific calculation process is as follows:
1. Reduce the dimensionality of the high-dimensional feature

maps outputted by the universal feature extractor using a

1� 1 convolutional layer, and then reshape them into X ∈
Rwh�d , where w, h, and d are the width, height, and number

of channels of the feature maps.

2. Compute the squared Euclidean distance matrix ~A and the

Euclidean distance matrix Â for the input X.

3. Subtract the row, column, and overall mean from matrix ~A

to obtain the BDC matrix ~A.
In this process, the extraction of the BDC matrix can be

considered as a non-parametric pooling operation. Unlike these

traditional parameterized pooling operations, BDC does not involve

a learning process for the parameters. Rather, it is a non-parametric

method based on distance and covariance, employed for secondary

feature representation extraction from images. During the meta-

training stage, the source domain dataset is sampled into a large

number of tasks for model training. The support set in each task is

used to enable the model to build a classification pattern, while the

query set is used to verify the effectiveness of the pattern.

Specifically, K images of each category in the support set are fed

to the universal feature extractor and BDC module to obtain the

BDC feature matrix for each category. Then, the average of the K

BDC matrices of category c is calculated as the prototype of that

category. The specific expression is as follows:

vc =
1
K o

(xi ,yi)∈Sc

Aq(xi) (1)

Where Sc denotes a subset of category c, (xi, yi) denotes a sample

taken from Sc and the corresponding label.
FIGURE 4

Network structure of universal feature extractor. (A) ResNet 18, (B) CBAM.
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The similarity between a sample from the query set and all

prototypes in the embedding space is determined by mapping the

feature embeddings. Any one of the metric functions, such as

Euclidean distance, cosine distance, inner product and Earth

Mover’s Distance (EMD), can be employed to compute the

similarity between embeddings.

The objective of meta-training is to update the parameters of

the feature extractor and the metric function based on the average

error computed on a query set of multiple N-way-K-shot episodes.

Therefore, the cross-entropy loss is employed to update the

parameters of the network. For a few-shot episode, the loss

function of the proposed method is as follows:

L(q) = − log
exp ( − d(Aq(xq), vc))

oc
0 exp ( − d(Aq(xq), vc 0 )

(2)

where xq is the query set sample, c
0
represents all classes in S, vc 0

represents all prototypes in S, and d(:) represents the Euclidean distance.

During the meta-testing stage, the feature extractor and the

BDC module are applied to the samples within the support set of

the target domain (crop disease data) to obtain the feature
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embeddings for each sample. Subsequently, the distance between

the samples in the query set and the prototypes of each category is

computed. Finally, the test samples are assigned to the category

represented by the prototype with the closest distance.

This work also applies FSL methods to a non-meta-learning

framework for cross-domain disease recognition. We refer to this

method as CDFSL-NML. In this method, a cross-scene spatial

embedding is trained on the source domain, followed by the

transfer of knowledge, features, or model parameters from the

source domain to the disease target domain. Unlike the CDFSL-

BDC approach, CDFSL-NML adopts a non-meta-learning training

mode, where all class samples in the source domain are used as the

training set to optimize the model parameters. During the testing

phase, the target domain still follows the N-way K-shot benchmark.

Each task consists of a support set Sn and a query set Qn. The

support set contains samples used for training and fine-tuning the

model, while the query set is used is employed to evaluate the

performance of CDFSL-NML on unseen samples.

The framework of CDFSL-NML is illustrated in Figure 6. The

process includes the following steps:
FIGURE 6

Cross-domain few-shot classification algorithm based on non-meta learning to solve the crop disease identification task. Unlike CDFSL-BDC,
CDFSL-NML uses non-episodic training on source domain data.
FIGURE 5

Cross-domain few-shot classification algorithm with metric learning to solve the crop disease identification task. The figure shows a specific
example of a 3-way 2-shot classification task.
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Fron
1. Train a cross-domain universal classifier using the entire

data from the source domain.

2. Then retrain a new linear classifier using the support set Sn
of the new task.

3. Finally, evaluate the adaptability of the CDFSL-NMLmodel

on disease classification tasks through the query set Qn.
Given the source data training set or the target domain query

set, we train the feature extraction network and the classifier using

the cross-entropy loss between the predicted and true labels. The

loss function is expressed as (Xie et al., 2022):

arg min
q, Wk

− o
(zj ,yj)∈Ctrain

log
exp (l tr(Aq(zj)

TWyj))

ok exp (l tr(Aq(zj)
TWk))

(3)

Where Wk is the k-th weight matrix, l is a learnable scaling

parameter, and tr( · ) is the matrix trajectory. T represents the

transpose of the matrix, (zj, yi) represents the input image and label

pair of the model, and Aq(zj) represents the BDC matrix generated

by the input network of image zj.

2.3.3 CD-FSL model based on optimization
meta-learning

Model-agnostic meta-learning (MAML) is a important branch

of FSL methods, based on optimization meta-learning techniques

(Ye and Chao, 2021). Due to its model-independent nature, any

network can be used as a learner in its framework. In this study, we

also employed the MAML algorithm and the meta-learner to design

an optimization-based CD-FSL model (CDFSL-MAML). The meta-

learner consists of a ResNet12 feature extractor and a linear layer.

To avoid overfitting, the universal feature extractor of this method

adopts a shallow Resnet-12 network. Figure 7 illustrates the disease

recognition process based on CDFSL-MAML. The meta-learner

consists of a ResNet12 feature extractor and a linear layer. During

the meta-training stage, MAML requires initializing the parameters
tiers in Plant Science 09
of the linear classifiers. For N-way K-shot tasks, standard MAML

initializes N-way different classifiers wcf gNc=1. However, the

randomness of the label assignment permutations during meta-

testing can lead to significant differences in accuracy. To reduce the

sensitivity of MAML to label permutations in cross-domain

learning, consider initializing the linear classifier with N identical

weight vectors w .
The CDFSL-MAML formulation is a two-layer optimisation

problem consisting of an inner-loop optimisation and an outer-loop

optimisation. For the set of input samples x, the meta-learner gq(x)

is defined as:

gq(x) = argmaxwT
c∈Nff(x) (4)

Where ff is the feature extractor, w is the weight vectors of the

linear classification head, and q is the parameter of the meta-

learner, q = w , ff g.
The optimisation process of CDFSL-MAML is as follows:
1. Initialize model parameters q , and extract a collection of

tasks (episodes) to update model parameters q to q 0.

q 0 = q − a∇qLTS(i)(gq) (5)

2. Calculate the sum of the losses of the query set in the

training task as the overall meta-loss and then update q .
q← q − b∇qoTi ∼ P(T)LTQ(i)(gq 0
i
) (6)

Where b is the meta-step size, Task Ti is drawn from the task

distribution P(t), TS(i) is the support set of the i-th task, and a is

the learning rate.

In the meta-training stage, the meta-learner acquires good

initial parameters by optimizing them with the source domain

dataset. This process allows the model to easily adapt to new

tasks. In the meta-testing stage, the model performs gradient

descent on the support set of the target domain, calculates the
FIGURE 7

Cross-domain few-shot classification algorithm with MAML. The goal of CDFSL-MAML is to optimise a parameter q on the source domain so that it
can be quickly adapted to the disease task. During the meta-training stage, both the support set and the query set are sampled from the source
domain. In the meta-testing stage, the support set and query set are sampled from the target domain FCDD.
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gradient by backpropagation, and updates the model parameters to

adapt to the current task. It is important to note that since the meta-

learner has already learned excellent initial parameters during meta-

training, it can quickly optimize for new disease tasks using only a

small amount of data for gradient descent. Finally, different query

sets are selected for multi-task evaluation to comprehensively assess

the model’s ability to learn across different domains.
2.4 Measures of domain similarity

The raw data from both the source and target domains are

encoded into the feature space using a feature extractor. Each domain

is characterized by a feature space mean, reflecting the average

position of all domain samples within the feature space. Cosine

similarity serves as a metric to evaluate the similarity between two

vectors within the feature space, with larger values indicating

heightened similarity. In this study, cosine similarity is employed to

assess the similarity between the feature space means of the source

domain and target domain, determining their inter-domain

correlations in feature distribution. The formula is as follows:

d(X,Y) =
Avgðff(DS)) · Avg(ff(Dt))

Avg(ff(DS))
�� �� Avg(ff(Dt))

�� �� (7)

Where DS denotes the sample of the source domain, Dt denotes

the sample of the target domain, Avg(.) denotes the mean operation

of the feature space vector, X denotes the mean vector of the source

domain, and Y denotes the mean vector of the target domain. The

closer d(X,Y) is to 1, the higher the similarity between different

domains, otherwise the higher the difference of the data distribution

between different domains.

In addition, to ensure the accuracy of the similaritymetric, Euclidean

distance was also used to measure the similarity between the source and

target datasets and the metric was compared with Cosine similarity.
2.5 Evaluation of indicators

We validate the proposed method following the standard CD-

FSC evaluation scheme (Li et al., 2022a). In each target domain, we

randomly sample 600 N-way K-shot 15 query tasks and calculate

the average accuracy of these sampled tasks. The calculation

formula is as follows:

Accav =
1
t o

t

k=1

Acck (8)

where t is the number of extraction tasks, t=600, Acck is the

classification accuracy of the k-th task.
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3 Results

3.1 Experimental details

The datasets involved in this study include disease and other

multi-domain data. The target domain is FCDD, while the source

domain is 9 public datasets. These datasets were used to train the

model with the aim of enabling it to learn universal features that can

be applied to the disease domain. Three methods, namely CDFSL-

BDC, CDFSL-MAML, and CDFSL-NML, are developed based on

cross-domain few-shot learning frameworks. These methods use

ResNet-18+CBAM as the backbone network for feature extraction.

During the meta-training stage, CDFSL-BDC and CDFSL-MAML

adopt an N-way, K-shot task training, while CDFSL-NML uses a

non-episodic training. For the meta-testing stage, all three methods

are tested using 5-way-1shot and 5-way-5shot tasks. In the

experiments, the query set of each category comprises 15 images,

and the average accuracy is evaluated based on 600 randomly

sampled tasks. The pre-training of all CD-FSLs was performed on

MiniImageNet. The hyperparameters of the pre-training stage were

set to batch size 64, epoch 400, learning rate 5×10-2 and dropout

rate 0.6. The hyperparameters of the meta-training stage (training)

stage were set to batch size 64, epoch 60 and learning rate 1×10-3.
3.2 Cross-domain performance evaluation
of CD-FSL under different source domains

The inter-domain similarity between the source and target

domains was quantitatively analysed using Cosine similarity and

Euclidean distance (Table 2; Figure 8). Overall, the two similarity

measure functions show the same trend in 6 different source domain

data sets. The Cars dataset has the lowest domain similarity (d=0.65/

17.13) and demonstrates a significant deviation in semantic content

from the FCDD. The Leaves and CUB200 datasets exhibit a gradual

decrease in difference from crop disease images, with domain

similarity values of 0.77/13.53 and 0.81/13.07, respectively. The

PlantVillage, Flower, and Pest datasets, characterized by their

consistent semantic content and complex backgrounds, belonged to

the source domain datasets with high visual similarity. Among these,

the Pest dataset exhibits the closest data distribution to the target

domain, boasting a domain similarity of 0.93/7.46.

The cross-domain performance of three CD-FSL models for

disease identification was assessed using six datasets as source

domains and FCDD as the target domain. As shown in Table 3,

the classification accuracy of the three CDFSL methods significantly

increased with increasing domain similarity in the 5-way 5-shot

case. Among these source domains, CDFSL-MAML, CDFSL-BDC

and CDFSL-NML perform best in the high similarity Pest dataset,
TABLE 2 Measurement of similarity between the source and target datasets.

Similarity metrics Cars Leaves CUB200 Plant Village Flower Pest

Cosine similarity 0.65 0.77 0.81 0.85 0.88 0.93

Euclidean distance 17.13 13.53 13.07 12.21 9.95 7.46
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with their accuracies of 59.94%, 80.13% and 83.61%, respectively.

Compared to the low-similarity Cars dataset, the accuracy of these

three methods improves by 21.01%, 6.52% and 20.44%, respectively.

Similar trends are observed in the 5-way 1-shot configuration

(Table 4). However, the accuracy shows a substantial decrease on

all source domains. For the Pest source domain, the accuracies of

the three CD-FSL methods in the 5-way 1-shot configuration are

only 42.63%, 63.95% and 66.82%, respectively, which are 17.31%,

16.48%, and 16.79% lower than in the 5-way 5-shot configuration.

The experimental results indicate that the inter-domain distribution

differences have a large impact on the generalization performance of

CD-FSL. It is noteworthy that while the semantic information of the

PlantVillage dataset aligns closely with the target domain and

encompasses most disease types in FCDD, its accuracy trailed

behind Flowers and Pest in both the 5-way 1-shot and 5-way 5-

shot scenarios. One possible reason for this is that the background

of the PlantVillage data remains fixed, while FCDD exhibits diverse

backgrounds. The CD-FSL models may struggle to learn

background variability on the PlantVillage dataset during meta-

training. In addition, we observed consistent domain similarity

intervals for the data from the three source domains, Flower, Pest,

and PlantVillage. However, the CD-FSL model performed better on

the Pest dataset than the other datasets. The main reason for this

phenomenon is that the Pest dataset contains plants and
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environmental conditions similar to the field disease images,

which provides a more representative training sample for the

models. This suggests that increasing the complexity of the data

(e.g., diverse plant species and growing environments) can

significantly improve the cross-domain generalisation ability of

the model in the context of the same domain similarity. In future

research, we will explore the integration of adversarial training,

domain adaptation techniques, and multi-domain co-training

strategies within the framework of FSL to effectively deal with the

FSL disease classification problem under domain shifting.

Overall, CDFSL-BDC and CDFSL-NML show remarkable

performance gains in cross-domain learning. Conversely, CDFSL-

MAML exhibits comparatively poor performance for cross-domain

disease identification. Specifically, for the 5-way 5-shot task on the

Pest dataset, CDFSL-MAML achieves an accuracy of only 59.94%.

Similarly, its accuracy for the 5-way 1-shot task is also relatively low.

These comparison findings suggest that the optimization-based

meta-learning method (CDFSL-MAML) struggles to generalize

meta-learning knowledge to unseen categories when the source

and target domains have large domain gap. Additionally, the

accuracy of the non-meta-learning approach (CDFSL-NML)

exceeds that of the meta-learning approach (CDFSL-BDC) only

on the source domain Pest. This is because CDFSL-NML, unlike

task-driven meta-learning methods, employs a non-episodic
TABLE 3 Disease recognition accuracy of 5way-5shot setting in different cross domain scenarios.

Methods Cars→
FCDD

Leaves→
FCDD

CUB200→
FCDD

PlantVillage→
FCDD

Flower→
FCDD

Pest→
FCDD

CDFSL-MAML 38.93 39.38 41.93 54.16 48.29 59.94

CDFSL-BDC 73.61 72.99 73.82 77.42 78.94 80.13

CDFSL-NML 63.17 66.54 69.74 75.81 75.41 83.61
FIGURE 8

Space of similarity distributions between source and target domains based on.
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training mode on the source domain datasets. Therefore, if this

method aims to achieve better recognition accuracy in CD-FSL task,

it requires a dataset with high domain similarity as the source

domain. This result has a similar conclusion to the traditional

transfer learning plus fine-tuning method.

Another observation shows that the performance of all models

varies significantly across different similarity domains. In particular,

CDFSL-BDC shows significant competitiveness on low similarity

datasets such as Cars, Leaves, and CUB200. Specifically, for the

5way-5shot task, this method achieves accuracy improvements of

10.44%, 6.45%, and 4.08% on these three datasets compared to

CDFSL-NML. In low-similarity domains, the generalisation ability

of the model is limited due to the large feature distribution

differences between the source and target domains, leading to its

poor performance in such domains. This phenomenon is

particularly prominent in CDFSL-MAML, mainly due to the

diversity and complexity of agricultural environments, which

prevents generic initialisation models from effectively adapting to

task-specific features, thus affecting their adaptability and

performance in new domains. In addition, CDFSL-BDC

outperforms CDFSL-NML and significantly outperforms CDFSL-

MAML on the high similarity datasets PlantVillage and Flower. In

these high similarity domains, the feature distributions between the

training data and the test data are more consistent, so the model is

able to extract effective information from the limited samples and

perform inference more easily, thus better migrating the existing

knowledge and improving the inference effect. In the 5-way-1-shot

task, CDFSL-BDC achieves the best average performance, further

validating its advantages in high similarity domains. This result

indicates that the model is able to learn and adapt more efficiently in

high similarity contexts with smaller data volumes, reflecting its

strong domain adaptation and knowledge transfer capabilities.

Overall, we found that the accuracy differences mainly stem

from the differences in high-dimensional feature embedding,

learning approaches, and network structures among the three

models. Specifically, the CDFSL-BDC model effectively mitigates

the problem of inter-domain differences in CD-FSL and enhances

the cross-domain migration capability by embedding the BDC

module and episodic training strategy, especially on low similarity

data. Although CDFSL-NML also achieves comparable accuracy to

CDFSL-BDC, its performance is easily limited by data distribution.

It should be emphasised that CDFSL-MAMLmainly relies on meta-

learning methods, which are less adaptive to inter-domain

differences, especially in cross-domain tasks where inter-domain

feature differences may lead to a model that does not perform as

well as expected in a new domain.
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3.3 Effect of different universal feature
extractors on the cross-
domain performance

To validate the effectiveness of the universal feature extractor

CBAM+ResNet on different inter-domain similarity datasets,

confusion experiments were conducted on the source domain

data Cars and Pest (Table 5). Cars and Pest represent low and

high similarity datasets, respectively. After the integration of CBAM

module into the baseline networks ResNet-18 and ResNet-12, the

accuracy of the three CD-FSL methods on the FCDD target domain

shows significant improvement. Furthermore, compared to the Pest

data, the improved universal feature extractor performs better on

the Cars dataset with larger domain differences. Specifically, on the

Cars and Pest datasets, CDFSL-BDC increased by 3.57% and 1.79%,

CDFSL-NML increased by 3.69% and 2.37%, and CDFSL-MAML

increased by 3.08% and 1.99% respectively. These results

demonstrate that the CBAM module enhances the general feature

representation capability of the CD-FSL model and has a positive

effect on cross-domain generalization.
3.4 Comparison with related methods

The proposed CDFSL-BDC and CDFSL-MAML were

compared with several popular FSL methods, including

ProtoNet (Snell et al., 2017), MAML (Finn et al., 2017), GNN

+LFT (Tseng et al., 2020), and DeepEMD (Zhang et al., 2020). As

can be seen in Figure 9, the CDFSL-BDC model achieves the best

accuracy in both the Cars→FCDD and Pest→FCDD settings. In

all cross-domain scenarios, while the accuracy of the CDFSL-

MAML model is superior to that of the MAML model, its

performance is significantly lower than that of the comparison

methods. This result further indicates that optimization-based

meta-learning methods lose their advantage in cross-domain

learning of diseases, a conclusion that is consistent with

previous research results (Chen et al., 2019). Given that the

CDFSL-BDC model was developed based on ProtoNet, we

compare our model with the ProtoNet model. Specifically, under

the Pest→FCDD 5-shot and 1-shot settings, the accuracy of the

CDFSL-BDC is improved by 10.81% and 15.26% respectively

compared to ProtoNet. Under the Cars→FCDD cross-domain,

the accuracy is improved by17.45% and 10.98%. This result

indicates that the introduction of the general feature extractor

CBAM module and BCD module can effectively improve the

cross-domain learning ability of FSL.
TABLE 4 Disease recognition accuracy of 5way-1 shot setting in different cross domain scenarios.

Methods Cars→
FCDD

Leaves→
FCDD

CUB200→
FCDD

PlantVillage→
FCDD

Flower→
FCDD

Pest→
FCDD

CDFSL-MAML 31.43 32.98 33.94 40.28 37.41 42.63

CDFSL-BDC 52.45 52.98 55.28 62.46 62.42 63.95

CDFSL-NML 47.11 49.68 52.01 58.27 59.16 66.82
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3.5 Cross-domain performance evaluation
under multi-domain learning

In the multi-domain learning, during meta training, (S, Q) tasks

were sampled from multiple datasets. The source domain data is

combined into three multi-domain datasets, namely A, B, and C,

based on their inter-domain differences. The purpose of this

experiment is to investigate how multi-domain learning affects

the recognition accuracy of CD-FSL. The datasets are as follows:

low-similarity dataset A={Cars, Leaves, CUB200}, high-similarity

dataset B={PlantVillage, Flower, Pest} and mixed dataset C = {Cars,

Leaves, CUB200, PlantVillage, Flower, Pest}. The specific procedure

is to extract all the categories of the different domains to reintegrate

them into a new source domain data. In meta-training, the merged

multi-domain dataset is utilised as an overall source domain to train

the CD-FSL model in order to reduce the complexity of model

training. The same network model and parameter settings are used

to train the CD-FSL model using A, B, and C source domain data.

According to Figure 10, the accuracies of the two CD-FSL methods
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show significant improvement when the multi-domain A is used as

the source domain, compared to the single domain. In the 5-shot

case, CDFSL-NML improves the accuracies by 8.95%, 5.58% and

2.38% on multi-domain A compared to single-domain Cars, Leaves,

and CUB200, respectively. For the 1-shot case, CDFSL-NML

improves the accuracies by 8.05%, 5.48% and 3.15% on multi-

domain A, respectively. Similarly, CDFSL-BDC, trained on multi-

domain A, outperforms each single-domain learning. This result

suggests that multi-domain learning can significantly improve the

cross-domain generalisation ability of FSL, especially in cases with

large differences between domains. Except for Pest dataset, the

accuracy of CD-FSL learned on multi-domain B is higher than that

of single-domain PlantVillage and Flower. Although multi-domain

C has a large image capacity, large number of categories and rich

knowledge, the recognition accuracy has not been greatly improved.

On the contrary, multi-domain B obtains better results than multi-

domain C on 5shot and 1shot. In addition, the comparison found

that the performance of multi-domain A, B and C on 5shot and

1shot never exceeded that of single-domain Pest. This result shows

that reducing inter-domain differences is more effective than

increasing domain diversity in cross-domain FSL.
3.6 CD-FSL for single-crop
disease identification

Fine-grained disease classification is of greater significance for

practical applications, but is also a challenging task. This is because

different disease types within the same crop may exhibit similar visual

features. By evaluating the performance of CD-FSL on different crops,

we can gain a more comprehensive understanding of the model’s

generalization ability and adaptability in different environments. The

cross-domain performance of CD-FSL was tested on nine different crop

disease datasets using the Pest dataset as the source domain. As shown

in Table 6, the accuracy of both CDFSL methods under a single crop

dataset is significantly lower compared to the test results under FCDD.

Therefore, CD-FSL has more difficulties in identifying disease types of

single crops. This is because the granularity of single-crop datasets is

finer than FCDD, and the distribution of visual features between

different diseases may be similar. Similarly, the accuracy of CDFSL-
FIGURE 9

Cross-domain comparison of our CD-FSL models with relevant methods in both 5-shot and 1-shot settings. (A) Pest to FCDD. (B) Cars to FCDD.
TABLE 5 Confusion experiments of universal feature extractor.

Feature
extractor

CD-FSL
method

Source
domain

5way-
5shot

ResNet-18 CDFSL-BDC Cars 70.04

ResNet-18+CBAM CDFSL-BDC Cars 73.61

ResNet-18 CDFSL-BDC Pest 78.34

ResNet-18+CBAM CDFSL-BDC Pest 80.13

ResNet-18 CDFSL-NML Cars 59.48

ResNet-18+CBAM CDFSL-NML Cars 63.17

ResNet-18 CDFSL-NML Pest 81.24

ResNet-18+CBAM CDFSL-NML Pest 83.61

ResNet-12 CDFSL-MAML Cars 35.85

ResNet-12+CBAM CDFSL-MAML Cars 38.93

ResNet-12 CDFSL-MAML Pest 57.95

ResNet-12+CBAM CDFSL-MAML Pest 59.94
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NMLwas better than that of CDFSL-BDC under the single crop disease

dataset, which is consistent with the previous conclusion. Overall, with

the exception of tomato and apple crops, CD-FSL achieved satisfactory

results on challenging crops. On the potato and grape datasets, the

accuracy of CDFSL-NML is comparable to the results on the FCDD

dataset. The experimental results show that CD-FSL has a strong

robustness and domain adaptive ability to adapt to a variety of

different crops and disease types. In addition, the experimental

observations also revealed that there is a significant difference in the

accuracy of CD-FSL for different crop diseases. This is due to the fact

that the FCDD dataset was captured by different sensors, backgrounds,

light and noise conditions, resulting in varying levels of background

complexity among different samples.

Potato and grape crops have 3 and 4 disease types respectively. As

shown in Figure 11, the diseased leaves occupy most of the image area

in the image, and all the symptoms have very obvious characteristics.

Therefore, CD-FSL performs better on these two crop datasets. In

contrast, in the tomato and apple examples, the image background area

is extremely complex, occupying a substantial portion of the image.

Observations also show that the diseased areas of the apple crops are

smaller and the symptoms are very similar. Therefore, both CDFSL-

BDC and CDFSL-NML struggle to effectively identify diseases in apples

and tomatoes. This challenge arises because a significant portion of the
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variation between the support set and query set samples in the meta-

test lies within the background, and significant background

disturbances diminish the generalization ability of the model.

We further analyse the classification performance of CDFSL-

BDC for each disease type in potato and tomato. These two crops

represent contexts of different complexity. Figure 12 shows the

cumulative confusion matrix under 5shot. As can be seen in

Figure 12A, CDFSL-BDC accurately identified most of the potato

early and late blight sample images. Similarly, the model also

performed well in distinguishing potato health from other disease

categories. However, the CDFSL-BDC model could not distinguish

the disease types of tomato well. The recognition accuracy range from

46.33% to 55.67%. This indicates that the complex background is still

a major factor in the recognition accuracy of image diseases.
4 Discussions

4.1 Effect of source domain size on disease
recognition accuracy

Large source domain datasets can provide more comprehensive

information for models, but excessively large data sizes can result in
TABLE 6 Comparison of recognition accuracy for different crop categories.

ID Crop types N-Way Number of
categories

CDFSL-BDC CDFSL-NML

5shot 1shot 5shot 1shot

1 Potato 3way 3 76.48 58.95 81.02 62.55

2 Corn 4way 4 60.67 45.38 64.74 52.73

3 Cotton 5way 7 70.50 50.63 75.20 54.89

4 Rice 4way 4 67.71 47.69 72.79 55.49

5 Grape 4way 4 74.21 57.92 85.75 65.83

6 Tomato 5way 10 56.54 45.51 59.38 47.36

7 Wheat 3way 3 69.89 55.05 73.16 58.26

8 Apple 4way 4 53.63 40.47 57.47 41.46

9 Cucumber 4way 4 69.95 47.91 76.63 56.61
FIGURE 10

Compare average accuracy of CDFSL-NML (A) and (B) CDFSL-BDC under multi-domain learning.
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increased computational overhead. To further explore how the size

of the source domain data affects CD-FSL performance, we created

six different sizes of source domain data using the Pest dataset.

Subsequently, CDFSL-NML and CDFSL-BDC were retrained with

the sub-source domain data, followed by meta-testing in FCDD for

both 5-shot and 1-shot tasks. As shown in Figure 13, the accuracy of

both CD-FSL models significantly improves as the number of

source domain categories increases, due to the enriched

knowledge provided by a larger variety of source domain

categories. However, the generalisation performance of the

models stabilises when the number of source domain categories

exceeds 64. This result suggests that larger source domain data sizes

do not necessarily yield better results. Compared to the 1-shot task,

increasing the number of categories in the source domain is more

effective in improving the recognition accuracy of the 5-shot task.

Specifically, when the number of categories is increased from 16C to

64C, the accuracy of CDFSL-NML and CDFSL-BDC is improved by
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8.33% and 13.12%, respectively. In addition, another observation

shows that CDFSL-BDC is more sensitive to changes in the number

of source domain categories. The maximum accuracy change

reached 13.41% and 15.05% in the 5-shot and 1-shot tasks,

respectively, both higher than the maximum change in CDFSL-

NML. One possible reason is that CDFSL-BDC adopts a meta-

learning strategy, focusing on how the model learns rather than

directly learning the knowledge itself. The limited number of source

domain categories may lead to a serious lack of learning capability

of the model. The experimental results show that the size of the

source domain indeed plays a key role in cross-domain learning

tasks, especially in meta-training. Larger source domains can

provide more samples and richer feature information, thus

helping the model to generalise better to the target task. In

practice, when the difference between domains is small, the

number of source domain samples is reduced appropriately, based

on ensuring the diversity of the source domains. Specifically,
FIGURE 12

Tomato and potato classification results by CDFSL-BDC model. (A) Potato. (B) Tomato.
Tomato Apple Potato Grape

Late blight Apple multiple Early blight Leaf blight

Bacterial spot Apple rust Late blight Black measles

FIGURE 11

Visual comparison of difficult disease images with easily recognisable images. The apple and tomato categories are difficult disease images. All these
sample images have complex backgrounds. The potato and grape categories fall into the category of easily recognisable disease images.
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different weights are assigned to the data in different domains

according to the similarity between the tasks in the source

domain and the target domain. In this way, the capacity of the

source domain can be selected based on its similarity to the target

domain, thus maximising the generalisation performance and

reducing unnecessary computational overhead.
4.2 Motivation, contribution of the study

Acquiring a large amount of labeled disease images can be an

expensive and time-consuming task for disease recognition.

Therefore, there is an urgent need to develop a cross-domain

machine learning model suitable for limited labeled data.

Although FSL provide a promising approach to address data

scarcity issues, typical FSL models perform poorly when applied

to the field setting. In addition, most FSL methods have a restrictive

setup for their application scope, where training and testing samples

come from a single domain (or data distribution) (Li and Chao,

2021). For instance, some studies have used some categories from

the PlantVillage dataset as base classes and the remaining categories

as novel classes. This severely limits the usefulness of FSL in

disease applications.

In this work, we attempt to explore a CD-FSL disease

recognition approach from a data perspective, aiming to extend

disease recognition from the laboratory to field scenarios. The

results show that given an arbitrary domain, cross-domain

learning can identify new categories from unknown disease The

three CD-FSL models show their advantages in different application

environments. The CDFSL-BDC model has more potential in

complex field environments with large inter-domain differences.

When dealing with high similarity datasets (e.g., Pest), CDFSL-

NML can achieve high recognition accuracy. Despite the lower

accuracy of CDFSL-MAML in such tasks, its ability to quickly adapt

to a small number of samples makes it still useful in simplified

scenarios or rough estimation tasks. In addition to models and

algorithms, datasets are also a central element to improve the

accuracy of disease recognition. Therefore, we first collected

samples from publicly available resources and large field fields to
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build a more realistic and closer to actual farm conditions crop

disease image dataset for subsequent few-shot classification. Second,

we explored the effect mechanism of cross-domain and multi-

domain learning on disease identification, which will provide

optimization solutions for designing crop disease identification

models. Overall, cross-domain FSL can address the issues of data

scarcity, domain differences, knowledge sharing and generalisation

capabilities in disease identification. The study of this learning

paradigm will contribute to the development of smarter, flexible

and adaptable machine learning systems for field crop diseases.
4.3 Limitations of the study

In complex backgrounds, images may contain a large amount of

background information, such as the texture of plant leaves, light

variations, or other environmental features, which can interfere with

disease recognition.CD-FSL models often have difficulty in effectively

separating disease features from background information, especially

when training samples are scarce, and the models have difficulty in

learning effective background denoising capabilities from the limited

number of annotated samples. Therefore, we propose to use the FSL

detection method to detect the diseased region to reduce the influence

of background. In some cases, the visual features of disease

manifestations may have strong similarities with background objects,

especially as some plant diseases are difficult to distinguish from natural

ageing of leaves or external injuries in the early stages. Diseases in

complex backgrounds may appear at different scales and locations in

the image, and the CD-FSL model may face challenges in learning

cross-scale features. The morphology of crop disease spots has a

significant impact on the recognition performance of the model.

Some disease spots may be single, while others may be complex

spots caused by multiple pathogens together. Samples with

inconspicuous disease symptoms and small spots will be more likely

to be misdiagnosed. In fact, to prevent disease transmission to other

plants, farmers are more likely to need intelligent plant protection

robots that can accurately diagnose the type of crop disease at its

earliest stage of development. In addition, the performance of CD-FSL

is still far from satisfactory when the distribution of different domains
FIGURE 13

Comparison of two CD-FSL models in terms of disease identification accuracy under different source domain data categories. (A) CDFSL-NML,
(B) CDFSL-BDC.
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varies greatly. We expect that models trained on arbitrary data can be

applied to disease identification without the need to collect samples

similar to the target domain. This will greatly reduce the cost of

applying deep learning models to the disease domain. Future research

could explore the integration of different data modalities (e.g., images,

sensor data, meteorological data, etc.) to provide richer information

sources to help the model better adapt to complex backgrounds and

variable environments. In order to improve the recognition ability of

CD-FSL in complex backgrounds, future research can focus on

improving feature extraction techniques. For example, more

advanced CNN architectures, attention mechanisms, or self-

supervised learning methods can be used to enhance the model’s

ability to recognise subtle disease features.
5 Conclusion

Automatic identification of plant diseases plays a pivotal role in

advancing agricultural informatization and intelligence. The challenge

of improving the accuracy of plant disease identification using deep

learning technology is not only related to models and algorithms, but

also to the limited availability of disease data. Therefore, the utilization

of FSL methods, particularly cross-domain FSL, holds immense

promise in addressing the paucity of crop disease samples. This

study proposes a broader cross-domain FSL framework for disease

recognition tasks in field scenarios, based on an improved universal

feature extractor, and explores the differences between three CD-FSL

methods in cross-domain learning. Additionally, a comprehensive crop

disease dataset, FCCD, is constructed to evaluate the adaptability of the

CD-FSL model to new tasks. Experimental results demonstrate that

reducing inter-domain differences can significantly improve the

recognition accuracy of all cross-domain FSL models. For the 5shot/

1shot task, CDFSL-NML, CDFSL-BDC, and CDFSL-MAML achieve

recognition accuracies of 83.61%/66.82%, 80.13%/63.95% and 59.94%/

42.63% on the Pest benchmark data, respectively. Compared to other

relevant FSL methods, CDFSL-BDC shows significant competitiveness

in cross-domain generalization. Multi-domain learning improves the

knowledge transfer capability of all FSL models, but increasing data

diversity is less important when the source domain uses datasets with

high similarity metrics. Overall, considering inter-domain correlation

and optimizing universal feature extractors in CD-FSL can significantly

improve cross-domain disease recognition accuracy.

In this work, we attempt to reveal the impact of inter-domain

differences and the diversity of source domain data on CD-FSL

performance from a data perspective. Although CD-FSL has made

promising progress in addressing the challenging nature of disease

scarcity, its performance is still far from satisfactory when inter-domain

differences are large or when the background of disease images is too

complex. On the other hand, generic CD-FSL models tend to focus on

a few biased and simple visual features, and these unimodal features

may not provide advanced semantic information for cross-domain

generalisation. Possible remedies include the addition of proposing
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smarter multi-domain FSL or multimodal learning methods to

integrate the extracted multimodal knowledge into the target task in

a more efficient fusion way. The future application of the CD-FSL

model is promising. By introducing an adaptive mechanism, the model

can be extended to crops with higher diversity and complex disease

types, while adapting to diverse environmental conditions, such as

greenhouse cultivation, open field, and complex climatic regions. In

addition, by combining multimodal data and time-series information,

the model is expected to achieve dynamic disease prediction and

precision control, and provide low-cost and high-efficiency solutions

for agricultural diseases in resource-poor regions.
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Atila, Ü., Uçar, M., Akyol, K., and Uçar, E. (2021). Plant leaf disease classification
using EfficientNet deep learning model. Ecol. Informatics. 61, 101182. doi: 10.1016/
j.ecoinf.2020.101182

Azlah, M. A. F., Chua, L. S., Rahmad, F. R., Abdullah, F. I., and Wan Alwi, S. R.
(2019). Review on techniques for plant leaf classification and recognition. Computers. 8,
77. doi: 10.3390/computers8040077

Barbedo, J. G. (2018). Factors influencing the use of deep learning for plant disease
recognition. Biosyst. engineering. 172, 84–91. doi: 10.1016/j.biosystemseng.2018.05.013

Cap, Q. H., Uga, H., Kagiwada, S., and Iyatomi, H. (2020). Leafgan: An effective data
augmentation method for practical plant disease diagnosis. IEEE Trans. Automation
Sci. Engineering. 19, 1258–1267. doi: 10.1109/TASE.2020.3041499

Chen, J., Chen, J., Zhang, D., Sun, Y., and Nanehkaran, Y. A. (2020). Using deep
transfer learning for image-based plant disease identification. Comput. Electron.
Agriculture. 173, 105393. doi: 10.1016/j.compag.2020.105393

Chen, L., Cui, X., and Li, W. (2021). Meta-learning for few-shot plant disease
detection. Foods. 10, 2441. doi: 10.3390/foods10102441

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang, J.-B. (2019). A closer
look at few-shot classification. arXiv 1904, 04232.

Chouhan, S. S., Singh, U. P., and Jain, S. (2020a). Applications of computer vision in
plant pathology: a survey. Arch. Comput. Methods engineering. 27, 611–632.
doi: 10.1007/s11831-019-09324-0

Chouhan, S. S., Singh, U. P., and Jain, S. (2020b). Web facilitated anthracnose disease
segmentation from the leaf of mango tree using radial basis function (RBF) neural
network. Wireless Pers. Commun. 113, 1279–1296. doi: 10.1007/s11277-020-07279-1

Chouhan, S. S., Singh, U. P., and Jain, S. (2021). Automated plant leaf disease
detection and classification using fuzzy based function network. Wireless Pers.
Commun. 121, 1757–1779. doi: 10.1007/s11277-021-08734-3

Dai, G., Fan, J., Tian, Z., and Wang, C. (2023). PPLC-Net: Neural network-based
plant disease identification model supported by weather data augmentation and multi-
level attention mechanism. J. King Saud University-Computer Inf. Sci. 35, 101555.
doi: 10.1016/j.jksuci.2023.101555

Deepa, S., and Umarani, R. (2017). Steganalysis on images using SVM with selected
hybrid features of gini index feature selection algorithm. Int. J. Advanced Res. Comput.
Sci. 8, 1503-1509.

Enkvetchakul, P., and Surinta, O. (2022). Effective data augmentation and training
techniques for improving deep learning in plant leaf disease recognition. Appl. Sci. Eng.
Progress. 15, 3810–3810.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks, International conference on machine learning. PMLR,
1126–1135.

Garg, S. (2023). An aggregated loss function based lightweight few shot model for
plant leaf disease classification. Multimedia Tools Applications. 82, 23797–23815.
doi: 10.1007/s11042-023-14372-7

Gui, P., Dang, W., Zhu, F., and Zhao, Q. (2021). Towards automatic field plant
disease recognition. Comput. Electron. Agriculture. 191, 106523. doi: 10.1016/
j.compag.2021.106523

Haruna, Y., Qin, S., and Mbyamm Kiki, M. J. (2023). An improved approach to
detection of rice leaf disease with gan-based data augmentation pipeline. Appl. Sci. 13,
1346. doi: 10.3390/app13031346
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