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Species of Tulipa are important ornamental plants used for horticultural purposes in

various countries, across Asia, Europe, and North Africa. The present study is the first

report on typical features of the complete chloroplast genome sequence of four

local and endangered species including T. alberti, T. kaufmanniana, T. greigii, and T.

dubia from Kazakhstan using Illumina sequencing technology. The comparative

analyses revealed that the complete genomes of four species were highly conserved

in terms of total genome size (152. 006 bp - 152. 382 bp), including a pair of inverted

repeat regions (26. 330 bp - 26. 371 bp), separated by a large single copy region

(82.169 bp - 82,378 bp) and a small copy region (17.172 bp -17.260 bp). Total GC

content (36.58-36.62 %), gene number (131), and intron length (540 bp - 2620 bp) of

28 genes. The complete genomes of four species showed nucleotide diversity (p
=0,003257). The total number of SSR loci was 159 in T. alberti, 158 in T.

kaufmanniana, 174 in T. greigii, and 163 in T. dubia. The result indicated that ten

CDS genes, namely rpoC2, cemA, rbcL, rpl36, psbH, rps3, rpl22, ndhF, ycf1, and

matK, with effective polymorphic simple sequence repeats (SSRs), high sequence

variability (SV) ranging from 2.581 to 6.102, and high nucleotide diversity (Pi) of these

loci ranging from 0,004 to 0,010. For all intergenic regions longer than 150 bp,

twenty one most variable regions were found with high sequence variability (SV)

ranging from 4,848 to 11,862 and high nucleotide diversity (Pi) ranging from 0,01599

to 0,01839. Relative synonymous codon usage (RSCU) analysis was used to identify

overrepresented and underrepresented codons for each amino acid. Based on the

phylogenic analysis, the sequences clustered into four major groups, reflecting

distinct evolutionary lineages corresponding to the subgenera Eriostemons, Tulipa,

and Orithyia. Notably, T. greigii was distinctively grouped with species from Orithyia

and Eriostemons rather than with other Tulipa species, suggesting a unique
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evolutionary history potentially shaped by geographical isolation or specific

ecological pressures. The complete chloroplast genome of the four Tulipa species

provides fundamental information for future research studies, even for designing the

high number of available molecular markers.
KEYWORDS

Tulipa L., chloroplast genome, comparative analysis, simple sequence repeat (SSR),
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1 Introduction

The Liliaceae family includes approximately 250 genera and 3500

species distributed worldwide (Ju et al., 2021). Tulipa. L. belongs to the

subfamily Lilioideae and tribe Lilieae, and includes four subgenera

Clusianae, Tulipa, Eriostemones, and Orythia (Christenhusz et al.,

2013). The center of diversity of the genus is in the Pamir and

Hindu Kush mountains and the steppes of Kazakhstan.

Approximately 150 species of the genus Tulipa grow and develop

well in the geographical regions of Asia, Europe, and North Africa

(Marasek-Ciolakowska et al., 2018). Tulipa is a perennial plant that

produces flowers in the spring during March to May. Tulips come in a

wide range of colors, including red, pink, yellow, and white, with warm

colors being the most common. Detailed accession-related passport

information on 1257 Tulipa accessions is available on the online

platform of the Genesys database and major Tulipa germplasm

banks. The majority of accessions in the Genesys database are from

Poland (636 accessions), followed by the Czech Republic (340

accessions), Ukraine (121 accessions), United Kingdom (72

accessions), Israel (64 accessions), United States (9 accessions),

Russia (7 accessions), and Armenia (2 accessions) (https://

www.genesys-pgr.org/). The Gardenia and Missouri Botanical

Garden websites provide a comprehensive platform for exploring

the botanical characteristics of various tulip species (https://

www.gardenia.net, https://www.missouribotanicalgarden.org/).

Tulips are economically critical ornamental plants used for

horticultural purposes in many countries (Marasek-Ciolakowska

et al., 2018). In addition to their horticultural use, tulips have great

value in the culinary world. Many varieties of edible flowers have

been popular since ancient Greek and Roman times for enhancing

the flavor of sweet and savory dishes (Rop et al., 2012). Tulip flowers

are eaten to gain strength and as a classic dish for special occasions

and have a wide range of medical and health benefits. For example,

tulip flowers are the best remedy for coughs and colds, reduce the risk

of cancer, used for sinus pain, hay fever and headaches; tulip flower

extracts are an excellent poultice for insect bites, bee stings, burns,

and rashes on the skin, as it gave quick relief with a soothing effect;

tulip extracts have cosmetic uses in creams, hand lotions and in

essential oils and perfumes. So, focusing on the nutritional and

beneficial health benefits is essential. It is worth noting that not

much research has been done on the medicinal use of Tulipa species.
02
The chemical composition of flowers from five T. gesneriana

cultivars with different flower colors was analyzed for phenolic

compounds (phenolic acids and flavonoids) and organic acids by

Krzymińska et al. (Krzymińska et al., 2020). According to the results

of this study, the total phenolic content in tulip petals is not affected

by the place of cultivation, but the accumulation of organic acids in

the petals is strongly correlated with the cultivars used, the duration

of storage and the field or greenhouse conditions.

Tulipa species are believed to originate from Central Asia and is

represented by 63 species in Central Asia (Vvedensky and

Kovalevskaja, 1971). Scientists have confirmed that southern

Kazakhstan and adjacent areas of Central Asia were the centers of

origin of wild tulips (Rouhi et al., 2010). In the wonderful book

«Tulips and other bulbous plants of Kazakhstan», published by

Ivaschenko in 2005, a total of 34 species belonging to the three

subgenera Tulipa, Eriostemones, and Orythia were described. These

species are widely distributed throughout Kazakhstan (Ivaschenko,

2005). Eighteen species are listed in the Red Book and are protected

by the state (https://astana.citypass.kz/en/2021/03/10/v-

kazakhstane-35-vidov-dikih-tyulpanov/).This study discussed the

typical characteristics of four local and endangered species of

Tulipa, including T. alberti, T. kaufmanniana, and T. greigii.

These species are listed in the Red Book and are protected at the

state level.

T. alberti is native to Kazakhstan, Kyrgyzstan and Uzbekistan, and

its distribution spans several regions of Kazakhstan, including the

Karatau Mountains in the Syrdaria area, Chu Ili, the south of the

Betpakdala desert, southwestern foothills of the Zhungar Alatau (in

southern Kazakhstan). Its historical importance dates back to 1877,

when Edward Regel described the flower of T. alberti based on samples

collected by his son, Albert E. Regel, in the Karatau Mountains. The

Karatau Mountains (are mainly located in the Zhambyl region of

Kazakhstan, and the reference samples are now housed in the

herbarium of the St. Petersburg Botany Research Institute.

Morphologically, T. alberti is characterized by ovoid bulbs up to 3-

4 cm in diameter, adorned with coriaceous, dark, fulvous, elongated

scales. Its stems are robust, typically reaching 20 cm in height, while

each bulb produces 3-4 linear, glaucous, wavy, broadly lanceolate,

bluish-green leaves without spots (Zonneveld, 2009). The flower shows

wide range of colors, from pure yellow and orange to mixed shades of

crimson and incarnadine vermilion. Its fruits, up to 6 cm long and
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2.5 cm wide, are produced from early April to the first decade of May,

with fruiting occurring in May-June (Ivaschenko, 2005).

T. kaufmanniana, commonly known as the water lily tulip, is a

species native to Central Asia, initially discovered in Turkestan region

and described by Eduard August von Regel in the botanical journal

“Gartenflora” in 1877 (POWO, 2024). This tulip species is well suited

for rock gardens, beds, and borders. The bulbs of T. kaufmanniana

vary in shape, from oblong to egg-shaped and turnip-like, up to 4 cm

thick, covered with black-fulvous or golden-brown coriaceous scales.

Their stems range from 10 to 50 cm in height, are often anthocyanin-

colored, and typically bear two bluish grey leaves, occasionally three

or four. Flower shapes vary greatly, from cup or wineglass to flat

radial, with pointed or blunt tips of the perianth leaves. The colors are

diverse, ranging from white, cream, gold, bright yellow, and orange to

light red and burgundy. T. kaufmanniana blooms from late March to

early July (Ivaschenko, 2005).

T. greigii was originally discovered in Turkestan region and

widely distributed throughout Kazakhstan, from the northern

deserts around Kyzylorda to the mountains and gentle foothills of

Karatau. It is also found in the mountain ranges of West Tien-Shan,

Kyrgyz, and Chu-lli, up to the Kordai Pass in the Ile Alatau

Mountains, covering areas in Zhambyl, South Kazakhstan

regions, and the eastern part of Kyzylorda region. It grows in

loamy soils in valleys, foothills, and rocky slopes up to 2400 m

altitude. The first sample of T. greigii was brought from the Karatau

Mountains by Eduard August von Regel, who published its

description in Gartenflora Vol. 22, on page 290 in 1873. The

species was named after Samuel A. Greig (1827-1887), and the

reference specimen was kept in the herbarium of the Botanical

Research Institute of St. Petersburg. The bulb of T. greigii has ovoid

bulb of up to 2-4 cm in diameter, 10-50 cm long fuzzy stem. The

plant typically bears four leaves, although three or five leaves have

also been observed, with leaf size decreasing towards the top. The

lower leaf is oval-elliptic or broadly elliptic, while the upper leaf is

spear-shaped. The leaves are bluish-grey with dark purple or violet

spots of varying intensity. The flowers of T. greigii are usually single,

quite large, and wineglass-shaped, reaching a height of 10-12 cm

and a width of 10 cm. Their colors range from predominantly red

with shades of orange, bright yellow, and light cream, with the

undersides of red flowers being either black or yellow. The fruit can

be up to 8 cm long and 25 cm wide. Propagation is primarily by

seed, with cloning extremely rare (Ivaschenko, 2005). T. greigii

flowers from early April to early June and bears fruit in June and

July. The bulbs of this species can be eaten fresh or baked, and in

Uzbek and Kazakh folk medicine, the petals are used to relieve

headaches, while the seeds are used to treat boils.

T. dubia is endemic to the western Tian-Shan region and is

widespread in Kazakhstan, Kyrgyzstan, and Uzbekistan. It grows

mainly on the rubbly-melkosem slopes of the Tallas and Ugam ridges

(Ivaschenko, 2005). It is distributed on dry, stony slopes and screes

and typically inhabits the middle and upper mountain zones at

altitudes from 1,500 to 3,300 meters above sea level. The T. dubia

populations occur at higher altitudes compared to T. kaufmanniana.

However, in the Aksay Valley, all three species discussed in this study

grow at almost the exact altitudes but occupy different habitats. The
Frontiers in Plant Science 03
plant is characterized by a short, perennial bulb that grows up to

20 cm high. Its broad green leaves are adorned with red stripes. The

flower opens as a wide star with perigone segments that are 2-4 cm

long, equal, yellow, red, or variegated yellow-red with a small

indistinct yellow spot in red form or an orange spot in yellow form

(Tojibaev et al., 2022).

It’s worth noting T. alberti, T. kaufmanniana, and T. dubia are

listed as Critically Endangered or near-threatened on the IUCN Red

List of Threatened Species, underscoring the importance of

conservation efforts for these species. On the other hand, T. greigii

was listed as Least Concern in the 2022 assessment, indicating a

relatively stable population status for this species (https://

www.iucnredlist.org/).

Chloroplast is an essential double membrane-bound organelle

responsible for photosynthesis, primarily found in plant and algal

cells. The complete chloroplast genome exists in both circular and

linear configurations. It typically ranges in length from 120,000 and

170,000 base pairs (bp) and consists of two copies of inverted repeat

regions (IRA and IRB) each spanning 20-28 kb, a large single copy

(LSC) region of 80-90 kb, and a small single copy (SSC) region of 16-27

kb (Li and Zheng, 2018). The chloroplast genome comprises 120-130

genes, primarily involved in photosynthesis, transcription, and

translation (Wicke et al., 2011; Turudić et al., 2023). Advances in

high-throughput sequencing technologies have revolutionized the

sequencing of chloroplast genomes due to their time-saving and

cost-effective advantages. The complete chloroplast genome

sequences of Nicotiana tabacum (tobacco) (Shinozaki et al., 1986)

and Marchantia polymorpha (liverwort) (Ohyama et al., 1986) were

first determined by Japanese scientists in 1986. Since then, numerous

studies and reviews have discussed the structure and composition of

chloroplast genomes from various land plant species (Wicke et al.,

2011; Higgs, 2009; She et al., 2020; Lu et al., 2017; Daniell et al., 2016b;

Ruang-Areerate et al., 2021; Dobrogojski et al., 2020; Tonti-Filippini

et al., 2017). Chloroplast genomes have several favorable characteristics

compared to nuclear genomes: their high abundance in the cell, small

genome size, and haploid nature (Lu et al., 2017; Song et al., 2017). In

addition, chloroplast genomes are predominantly maternally inherited

(Park et al., 2021; Raspé, 2001; Villanueva-Corrales et al., 2021)

although rare exceptions have been observed (Mccauley et al., 2007;

Korpelainen, 2004). For example, Park et al. showed that the cucumber

(Cucumis sativus var. sativus) chloroplast genome is maternally

inherited in F1 hybrids, consistent with observations in other plant

species (Park et al., 2021). However, investigations by McCauley et al.

revealed rare non-maternal inheritance of chloroplast DNA in Silene

vulgaris (Mccauley et al., 2007). Furthermore, chloroplast genomes

exhibit highly conserved genome structure and gene order (Song et al.,

2017; Lu et al., 2017; Chang et al., 2021; Ruang-Areerate et al., 2021).

Despite their high conservation, chloroplast genomes exhibit

significant microstructural variation at the boundaries of the four

regions. As a result of these features, they serve as valuable sources

for exploring neutral DNA markers for intraspecific and interspecific

identification, evolutionary studies and phylogenetic relationships

(Park et al., 2019a, Park et al., 2019b; Li et al., 2021a, Li et al., 2021b;

Lu et al., 2017; Song et al., 2017). For example, Song et al. (2017); Lu

et al. (2017), and Li et al. (2021c) studied the complete chloroplast
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genomes of three Cardiocrinum, three Paris, and five Tulipa species.

They reported that while length, gene content, and gene order were

nearly identical, these genomes exhibited nucleotide variability (Pi) in

simple sequence repeats (SSRs, 1-10 bp), single nucleotide

polymorphisms (SNPs), and long repeat sequences (greater than 30

bp) such as forward, palindromic, and complement repeats.

Comprehensive studies have shown that microstructural variations

are higher in non-coding regions than in coding regions (Li and Zheng,

2018). In addition to microstructural variation, major structural

rearrangements occur during chloroplast genome evolution,

including pseudogenization (Abdullah et al., 2021; Scobeyeva et al.,

2021; Esfeld et al., 2018), gene deletions, and intron or exon losses

(Frailey et al., 2018). Events such as the complete loss of one of the

inverted repeats (Sabir et al., 2014), and large inversion of LSC and SSC

regions as well as switching between these regions (Choi et al., 2021;

Liang et al., 2022) have also been documented. These evolutionary

processes contribute to the dynamic nature of chloroplast genomes and

provide valuable insights into plant evolution and adaptation.

Whole chloroplast genome sequence analyses of species from

different taxa are crucial for understanding chloroplast structures,

gene organizations, diversity, genetic changes, recurrent adaptive

evolution, and relationships among different groups of plant species

(Ju et al., 2020a; Wicke et al., 2011; Ruang-Areerate et al., 2021; Fan

et al., 2018; Cui et al., 2006). In addition, they can address challenging

problems such the characterization of plastid-to-nucleus signaling

mutants (Leister, 2003), plastome transformation (Olejniczak et al.,

2016; Daniell et al., 2016b), developing chloroplast-derived vaccines

against human diseases (Lössl and Waheed, 2011; Daniell et al.,

2016a), understanding biogeographic history (Zhai et al., 2023),

phylogeographic structure (Zhou et al., 2017) and obtaining

information from plant fossils (Middleton et al., 2014).

The genus Tulipa contains about 150 species (Ju et al., 2021),

however, based on the NCBI database, whole chloroplast genome

sequences of several Tulipa species are available, including T. altaica,

T. thianschanica, T. iliensis, T. patens, T. sinkiangensis, T. schrenkii, T.

gesneriana , T. buhseana, T. sylvestris, T. brachystemon ,

T. kolpakowskiana, T. fosteriana, T. zenaidae, T. alberti, and T.

lemmersii (Ju et al., 2021; Yuan et al., 2022; Ju et al., 2020b; Do

et al., 2020; Zhou et al., 2019; Ju et al., 2020a; Li et al., 2021c). The

present study is the first report on the complete chloroplast genome

sequence of T. alberti, T. kaufmanniana, T. greigii, and T. dubia from

Kazakhstan. The objectives of this study were (1) to determine and

characterize the organization of the complete chloroplast genome

sequence of T. greigii, T. kaufmanniana, T. alberti and T. dubia from

Kazakhstan (2) to gain insight into the overall polymorphism and

evolutionary dynamics of Tulipa chloroplast genomes; (3) to provide

genes with effective SSRs and high nucleotide diversities for species

identification in the genus Tulipa, and (4) to calibrate the

phylogenetic position of T. alberti, T. kaufmanniana, T. greigii and

T. dubia based on phylogenomic analysis by comparing with

published complete chloroplast sequences of Tulipa species from

the NCBI database. These results provide a more comprehensive

understanding of the phylogeny of Tulipa and contribute primary

genetic information for the phylogenetic relationship analysis of the

genus and other relevant research.
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2 Materials and methods

2.1 Materials

In this study, all plant materials of T. alberti (43о38’16’’ N,

68о37’46’’ E), T. kaufmanniana (42о20’51’’ N, 70о28’9’’ E), T. greigii

(42о20’39’’ N, 70°25’29’’ E), and T. dubia (42о24’7’’ N, 70о35’43’’ E)

were gathered at the collection sites in Karatau State Nature Reserve

and Aksu-Zhabagly State Nature Reserve with the guidance of state

reserve botanists in May of 2021 and 2022. Permission to collect

samples of endangered species was obtained from the Forestry and

Wildlife Committee of the Ministry of Ecology, Geology, and

Natural Resources of the Republic of Kazakhstan. The detailed

source information of species is described in Table 1.
2.2 Plant material, DNA extraction
and sequencing

Fresh leaves of Tulipa species were stored at -80°C until DNA was

extracted. DNA was extracted following the protocol as described by

Shi et al. (2012). The extracted DNA was checked for its intactness,

homogeneity, and purity by 1% agarose gel electrophoresis and run at

120V for 30 min. The concentration and quantitative analysis were

performed by NanoDrop™ 2000/2000c spectrophotometers (Thermo

Fisher Scientific). To prepare the DNA libraries, Illumina® DNA Prep,

(M) Tagmentation (96 samples) (Illumina, 20018705) was used.

Libraries were sequenced on the MiSeq sequencer using MiSeq

Reagent Kit v3 (600-cycle) (MS-102-3003). All reagents and

protocols were used according to the manufacturer’s instructions.
2.3 Chloroplast genome assembly
and annotation

Raw data assembly was performed using Geneious Prime

2024.0.4 software (https://www.geneious.com). Genome

annotation was performed using the MPI-MP CHLOROBOX

GeSeq (Tillich et al., 2017) software tool based on the reference

chloroplast genome of T. altaica (NC_044780.1), manually checked

for errors and corrected. In addition, circular maps of the complete

chloroplast genomes were illustrated by Chloe (Zhong, 2020) and

were edited in Inkscape. Finally, the complete chloroplast genomes

of four tulips were submitted to the NCBI Nucleotide database.
2.4 Analysis of chloroplast
genome features

The alignment of four complete chloroplast genome sequences of

Tulipa species was performed using BioEdit 7.7 (Alzohairy, 2011) and

then subsequently used for further analyses. MEGA 11 (Tamura et al.,

2021) software was used to calculate codon usage frequencies and

relative synonymous codon usage (RSCU) values. RSCU values greater

than 1.6 indicated overrepresented codons and RSCU values less than
frontiersin.org
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0.6 indicated underrepresented codons (Noor et al., 2023). Next,

boundary regions were visualized using IRscope (Amiryousefi et al.,

2018) online software. All gene structures and varying relative positions

near junctions were defined. Furthermore, Krait V1.5.1 (Du et al.,

2017) was also used for the simple sequence repeat (SSR) identification

and localization. The SSR sequences detected from the genome were

divided into ten groups by length, 10 bp apart, namely 10-20, 21-30, 31-

40, 41-50, 51-60, 61-70, 71-80, 81-90, >91 (Zhao et al., 2023). Genes

with effective SSR-rich regions within the CDS and introns were

selected and analyzed to identify divergent hotspots across Tulipa

genomes). The value of nucleotide diversity (Pi) was calculated using

DnaSP v5.10 (Librado and Rozas, 2009).
2.5 Characterization of sequence variability
hotspot in CDS genes and
intergenic regions

Sequences of each CDS and intergenic regions of more than 150

bp were blasted by the GenBank nucleotide BLAST of NCBI (https://

blast.ncbi.nlm.nih.gov/Blast.cgi). Blast parameters were as follows:
Frontiers in Plant Science 05
percent identity = 99-100, query coverage=99-100, and organism

optional was Tulipa (taxid:13305). DnaSP v5.10.1 was used to

sequence variability (SV) in each protein-coding gene (CDS) and

intergenic regions. The number of mutations, indel events,

conserved sites and nucleotide diversity (Pi) for each sequence

were obtained by DnaSP (Librado and Rozas, 2009). SV was

calculated according to the method of (Shaw et al., 2014; Smidt

et al., 2020): SV = (number of nucleotide mutations + the number of

indel events)/(the number of conserved sites + the number of

nucleotide mutations + the number of indel events) × 100%.
2.6 Phylogenetic analysis based on SNPs

The whole chloroplast genome sequences of four Tulipa species

in this study, together with previously published whole chloroplast

genomes from NCBI were used to infer the phylogenetic

relationships. SNPs were identified by comparing the mapped

reads to the reference genome T. altaica (NC_044780) using

BioNumerics. The tree was conducted using the Maximum

Likelihood method and Kimura 2-parameter model in MEGA 11
TABLE 1 The detailed Source information and genome features of four species of Tulipa L. in this study.

Source information
and genome features

T. alberti T. kaufmanniana T. greigii T. dubia

GenBank accession numbers OR458821 PP329299 PP335814 OR662047

Coordinates 43038’16’’ N, 680 37’46’’ E 420 20’51’’ N, 700 28’9’’ E. 42о 20’39’’ N, 70° 25’29’’ E 42о 24’7’’ N, 70 о 35’43’’ E

Altitude (m) 710 2050 1830 1910

Source Karatau
Nature State Reserve

Aksu-Zhabagly
Nature State Reserve

Aksu-Zhabagly
Nature State Reserve

Aksu-Zhabagly
Nature State Reserve

Collection Date 16.05.2022 14.05.2021 14.05.2021 19. 05.2022

Genome size (bp) 152,382 152,374 152,006 152,175

SSC(bp) 17,259 (1-17,259) 17,260 (1-17,260) 17,172 (1-17,172) 17,253 (1-17,253)

IRA (bp) 26,371 (17,260-43,631) 26,371 (17,261-43,632) 26,330 (17,173-43,503) 26,370 (17,254-43,624)

LSC (bp) 82,378 (43,632-126,010) 82,369 (43,633-126,002) 82,169 (43,504-125,673) 82,179 (43,625-125,804)

IRB (bp) 26,371 (126,011-152,382) 26,371(126,003-152,374) 26,330 (125, 674-152,006) 26,370 (125,805-152,175)

Number of total genes 131 131 131 131

Protein-coding gene 85 85 85 85

tRNAs 38 38 38 38

rRNAs 8 8 8 8

A content (%) 32.08 32.1 32.02 31.33

T content (%) 31.35 31.33 31.36 32.07

C content (%) 18.13 17.96 18.15 18.46

G content (%) 18.45 18.62 18.47 18.14

Total GC content (%) 36.58 36.58 36.62 36.60

SSC GC content (%) 29.85 29.85 30.01 29.88

IR GC content (%) 42.02 42.01 42.01 42.01

LSC GC content (%) 34.5 34.49 34.53 34.54
frontiersin.org

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://doi.org/10.3389/fpls.2024.1433253
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tussipkan et al. 10.3389/fpls.2024.1433253
with a bootstrap value of 500. The whole chloroplast genome of

Smilax China (accession number: HM_536959) was used as

an outgroup.
3 Results

3.1 Structure and content characteristics of
the four Tulipa chloroplast genomes

The complete chloroplast genomes of T. alberti (152,382 bp),

T. kaufmanniana (152,374bp), T. greigii (152,006 bp), and T. dubia

(152,175 bp) were analyzed. The structure of these Tulipa

chloroplast genomes consisted of a pair of IRA and IRB regions

with lengths ranging from 26,330 to 26,371 bp, an SSC region with

lengths ranging from 17,172 to 17,260 bp, and an LSC region

with lengths ranging from 82,169 to 82,378 bp. The total GC

content of T. alberti and T. kaufmanniana species were 36.58%,

and that of T. greigii and T. dubia were 36.62% and 36.60%,

respectively, in the whole genome. The GC contents of the SSC

(29.85-30.01%) and LSC (34.49-34.54%) regions were almost

identical among the species, while the IR regions showed higher

GC contents, up to 42.02% (Figure 1; Table 1). A total of 151. 478
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nucleotide pairs were analyzed for nucleotide pair frequency

analysis, which revealed 99,64% identical pairs, 0,19% transitional

pairs, and 0,17% transversional pairs in the four chloroplast

genomes of Tulipa species (Supplementary Figure S1). Based on

the results from Tajima's Neutrality Test, the nucleotide diversity

((p) was 0,003257. The annotated genome sequences of T. alberti

(accession number OR458821.1), T. kaufmanniana (PP329299), T.

greigii (PP335814) and T. dubia (OR662047.1) are available in the

NCBI database Further details on the genome characteristics are

given in Table 1.

A total of 131 functional genes, including 85 protein-coding

genes, were annotated in T. Alberti and T. greigi, while 130 genes,

including 84 protein-coding genes, were annotated in

T. kaufmanniana and T. dubia (Table 1). All these chloroplast

genomes had 38 tRNA and 8 rRNA genes. In addition, all four

genomes had 18 duplicated genes located in IR regions, including

six coding genes (ndhB, rpl2, rpl23, rps7, rps12B and ycf2), four RNA

genes (rrn4.5, rrn5, rrn16, rrn23), and eight tRNA genes (trnA-

UGC, trnH-GUG, trnI-CAU, trnI-GAU, trnL-CAA, trnN-GUU,

trnR-ACG, and trnV-GAC). ycf1 and ycf2 were found in the

genomes of T. alberti, T. greigii, T. kaufmanniana, and T. dubia,

while ycf15 and ycf68 were pseudogenes in all four genomes

(Table 2). The intron lengths (540 bp- 2620 bp) of 28 genes were
FIGURE 1

Chloroplast genome maps of four Tulipa species in this study.
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well conserved across the four genomes (Supplementary Table S1).

The matK gene was located in the intron of trnK gene in all

four genomes.
3.2 Comparison of LSC, IR, and SSC
junction position among the four
Tulipa species

Analysis of the IR/SC boundary areas for the four Tulipa

chloroplast genomes was conducted by comparing them to closely

related species within the common genus: T. sinkiangensis and T.

uniflora from subgenus Orithyia, T. sylvestris from subgenus

Eriostemones, T. altaica and T. schrenkii from subgenus Tulipa

(Figure 2). In general, plastid genome regions’ lengths and gene

number as well as order among 9 Tulipa species were conserved.

An identical haplotype was observed in within the SSC regions

of T. alberti, T. kaufmanniana, T. greigii, and T. dubia, resulting in

the maintenance of approximately equal amounts of base pairs,

number of genes, and orientations. The ycf1 gene was located in the
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boundary area of the IRA and SSC regions (JSA), while the ndhF

gene was found in the boundary area of the SSC and IRB (JSB)

regions of these species (Figures 1, 2).

In the LSC regions of all four species, the same haplotype was

identified, with approximately equal amounts of base pairs, number

of genes, and orientations. The rps19 gene was located in the

boundary area of the LSC and IRA regions (JLA), ranging from

43,398 bp to 43,805 bp in the genome of these species. psbA gene

was located in the boundary area of the IRB and LSC regions (JLB),

ranging from 124,484 bp to 125,842 bp in the genome of these

species (Figures 1, 2).
3.3 Simple sequence repeat (SSR) pattern
and variation analysis

The total number of SSR loci was 159 in T. alberti, 158 in

T. kaufmanniana, 174 in T. greigii, and 163 in T. dubia. SSRs are

repeated DNA sequences consisting of tandem repeats of 10-20 in

length per unit distributed throughout the genomes of all four
TABLE 2 List of genes in the whole chloroplast genomes of four species of Tulipa L. in this study.

Category for genes Group of genes Gene names

Self-replication Transfer RNAs trnA-UGC*, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-
CAU, trnG-GCC, trnG-UCC, trnH-GUG*, trnI-CAU*, trnI-GAU*,
trnK-UUU, trnL-CAA*, trnL-UAA, trnL-UAG, trnM-CAU, trnN-
GUU*, trnP-UGG, trnQ-UUG, trnR-ACG*, trnR-UCU, trnS-GCU,
trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC*, trnV-
UAC, trnW-CCA, trnY-GUA

Ribosomal RNAs rrn4.5*, rrn5*, rrn16*, rrn23*

RNA polymerase rpoA, rpoB, rpoC1, rpoC2

Small subunit of ribosomal Protein (SSU) rps2, rps3, rps4, rps7*, rps8, rps11, rps12A, rps12B*, rps14, rps15,
rps16, rps18, rps19

Large subunit of ribosomal Protein (LSU) rpl2*, rpl14, rpl16, rpl20, rpl22, rpl23*, rpl32, rpl33, rpl36

Gene for photosynthesis Subunits of NADH-dehydrogenase ndhA, ndhB*, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI,
ndhJ, ndhK

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL,
psbM, psbT, psbZ

photosystem I assembly factor pafI (the former ycf3), pafII (the former ycf4)

Subunits of cytochrome b/f complex petA, petB, petD, petG, petL, petN

Subunits of ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

Large subunit of rubisco rbcL

Other genes Protease clpP1

Maturase matK

Subunit of acetyl-CoA-carboxylase accD

Envelope membrane protein cemA

C-type cytochrome synthesis gene ccsA

Genes of unknown function and pseudogenes Hypothetical chloroplast reading frames ycf1 and ycf2* appeared in all four genomes, while ycf15 and
ycf68 were pseudogenes in all four genomes.
*Duplicated genes.
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Tulipa species, followed by 21-30 bp and 31-40 bp in length.

Through comparative genomic analysis, abundant SSRs were

detected in the LSC region ranging from 63.19% to 67.2%,

followed by the SSC region ranging from 18.39% to19.63% and

the IR region ranging from 14.37% to 17.72%. There were 59 types

and six categories of SSRs (mono-, di-, tri-, tetra-, penta-, and

hexanucleotide repeats) in the chloroplast genomes of studied

Tulipa species. The distribution of motif types consisted of 57-70

mono, 37-39 di, 51-53 tri, 7-10 tetra, 1-3 penta, and 2-3 hexa SSRs.

The frequency of occurrence was 35.85-40.80% for mono, 22.41-

23.93% for di, 29.31-33.54% for tri, 5.03-5.75% for tetra, 0.63-1.72%

for penta, and 1.26-1.84% for hexa SSRs (Figure 3; Supplementary

Table S2).

3.3.1 Common types of SSRs in the four genomes
of Tulipa species

Twenty types of SSRs, including two types of monomers, six

types of dinucleotides, and eighteen trinucleotides, were found in all

chloroplast genomes of Tulipa species. T and A nucleotides were

reported as the most abundant motifs, according to 35.22%, 36.08%,

40.23%, and 36.81% of all SSR motifs in the chloroplast genomes of

T. alberti, T. kaufmanniana, T. greigii, and T. dubia, respectively.

The major types of dinucleotide SSRs were AT and TA, followed by

TC, CT, GA, and AG. The most abundant trimotifs were AAT,

TAA, TTA, TAT, TTC, GTT, GAA, CTT, ATT, ATA, TCA, AGA,

AAG, TGA, GGT, ATG, ACC and AAC.
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3.3.2 Common types of SSRs in the three
genomes of Tulipa species

Monomers of type C, trimotifs of type TGC, tetranucleotide

repeats of type TTAT and TTTA were common for the genomes of

T. alberti, T. kaufmanniana, and T. greigii.
3.3.3 Common types of SSRs in the two genomes
of Tulipa species

The TCT type of tri-motif was found in the genomes of T. albert

and T. kaufmanniana, while the CAA of tri-motif was found in the

genomes of T. greigii and T. dubia. The tetranucleotide repeats,

including AATA, AATT, CATT, TCTA, and TTCT, were

distributed in the genomes of T. alberti and T. greigii, and GAAT,

TAGA, and TATT were distributed in T. kaufmanniana, and

T. dubia. Only three types of hexanucleotide repeats were found,

among which TTTGTT and AAACAA were distributed in the

genomes of T. alberti and T. kaufmanniana. No hexanucleotide

repeats were found in the genome of T. greigii.

3.3.4 Unique SSRs only found in one genome of
Tulipa species

The AGT type of tri-motif was found in T. greigii. G type of

monomer, CAT, TCT, and GCA type of tri-motifs, AGAA, ATAA,

and TAAT of tetranucleotide repeats and CCATAG type of

hexanucleotide repeats were found in only T. dubia.
FIGURE 2

Comparison of SSC, IR, and LSC junction position among four Tulipa species. JSA, junction of SSC and IRA; JLA, junction of LSC and IRA; JLB,
junction of LSC and IRB; JSB, junction of SSC and IRB.
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3.3.5 SSRs in the intergenic, protein coding gene
sequences (CDS), intronic, tRNA regions

The intergenic regions of the four genomes of Tulipa species

had the highest SSR density, ranging from 84 to 102, followed by

CDS (38-64), intron (16-22), and tRNA (1-3). T. dubia had the

most intergenic and tRNA SSRs, T. greigii had the most CDS SSRs,

and T. alberti had the most intronic SSRs (Supplementary

Figure S2).

3.3.6 Characterization of sequence variability
hotspot in CDS genes and intergenic regions

We found a total of 10 CDS genes that have effective

polymorphic SSRs, with high sequence variability (SV) ranging

from 2.581 to 6.102 and high nucleotide diversity (Pi) of these loci

ranging from 0,004 to 0,010. They are rpoC2, cemA, rbcL, rpl36,

psbH, rps3, rpl22, ndhF, ycf1 and matK (Supplementary Table

S3) (Figure 4).
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For all intergenic regions longer than 150 bp, twenty one most

variable regions were found with high sequence variability (SV)

ranging from 4,848 to 11,862 and high nucleotide diversity (Pi)

ranging from 0,01599 to 0,01839. They are ndhF_rpl32, trnR-

UCU_trnG-UCC, trnY-GUA_trnD-GUC, trnT-GGU_trnE-UUC,

rpoA_petD, rps15_ycf1, psbI_psbK, trnF-GAA_trnL-UAA,

psbB_clpP1, trnfM-CAU_trnG-GCC, ndhE-ndhG, psaJ_trnP-UGG,

rps8_rpl36, pafII_psaI, rpl14_rps8, ndhG-ndhI, trnQ-UUG_rps16,

cemA_pafII, petL_psbE, rpl32_trnl-UAG, and rpl33_psaJ (Figure 4).
3.4 Codon usage patterns

The CDS of four Tulipa species were used for codon usage

analysis. The total number of codons in the genomes of the

analyzed species ranged from 22,457 (T. dubia) to 25,695 (T.

greigii) (Supplementary Figure S3). The third most abundant
FIGURE 3

Type and number of identified SSR motifs (mono, di, tri, tetra, penta and hexa) in the whole chloroplast genome of four Tulipa species. (A) frequency
of different SSR motif types in the whole chloroplast genome; (B) frequency of Identified SSR motifs in the SSC, IRA, LSC, and IRB regions;
(C) percentage of mono, di, tri, tetra, and penta SSR motifs in each chloroplast genomes; (D) type and number of identified SSR motifs (mono,
di, tri, tetra, penta, and compound).
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codons were T (36.065%), followed by A (31.065%), G (17.02%), and

C (15.85%) in the genomes T. alberti, T. kaufmanianna and T. greigii,

whereas in the genome of T. dubia, A (29.68%) was the most

abundant codons followed by T (26.65%), G (24.6%), and C (19%).

Identified twenty-one high frequency (HF) codons (RSCU>1) were

general for all Tulip species (Figure 5). Two HF codons (RSCU>1),

GCT and CTT, were identified in the genomes of T. alberti,

T. kaufmanianna and T. greigii. ACT (RSCU>1) was found in

T. kaufmanianna, T. greigii, and T. dubia. GGG and AGG

(RSCU>1) were identified in the genomes of T. alberti and

T. dubia. Five HF codons (RSCU>1), including TTA, CGA, CGT,
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GGT, and AGT were found in T. kaufmanianna and T. greigii. Four

unique codons (RSCU>1), namely GTT, TCG, TGT, and ATA, were

found only in the genome of T. dubia. Seven codons (TTA, AGA,

GCT, TCT, TAT, ACT, and GAT) were considered overrepresented

codons (RSCU>1.6) in the genomes of T. greigii and

T. kaufmanianna. In contrast, only one (AGA) overrepresented

codon (RSCU>1.6) was found in the genomes of T. alberti and

T. dubia. Twenty-four underrepresented (RSCU<0.6) codons were

found in the genomes of T. greigii and T. kaufmanianna. They are

AAC, AAG, ACG, AGC, AGG, ATC, CAC, CAG, CCG, CGC, CGG,

CTC, CTG, GAC, GAG, GCG, GGC, GTC, GTG, TAC, TCG, and
FIGURE 4

Sequence variability (SV) and nucleotide diversity (Pi) within each protein-coding sequences (CDS) and intergenic regions.
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TGC. Five underrepresented (RSCU<0.6) codons, such as AGC,

CGC, CGT, CTC and CTG were found in the genomes of T. alberti

and T. dubia. According to the codon usage analysis, at amino acid

levels, Leucine was the most abundant amino acid in the genomes of

Tulipa species, with an average of 11.51%. Cysteine was the least

abundant amino acid in the genomes of T. greigii, T. kaufmanianna,

and T. dubia, with an average of 1.38%, and methionine was the least

frequent amino acid in the genome of T. alberti. The results of the

total RSCU values are shown in Supplementary Table S4.
3.5 Phylogenetic analysis

According to SNP-based on the phylogenic analysis, all 40

sequences across 25 species were clustered into four main groups

(Figure 6). Group 1, group 3, and group 4 contained species of

subgenus Tulipa, while group 2 contained species of subgenus

Orithyia and Eriostemons.

Three Tulipa species including T. alberti, T. kaufmanniana, and

T. dubia from Kazakhstan were formed one group with species

from subgenus Tulipa and the sections Tulipa and Vinistriatae,

however, T.greigii in formed a separate with species from subgenus

Orithyia and Eriostemons.
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4 Discussion

4.1 Structure and content characteristics of
the four Tulipa chloroplast genomes

The results presented in this study provide a comprehensive

analysis of the chloroplast genomes of four Tulipa species, namely

T. alberti, T. kaufmanniana, T. greigii, and T. dubia. These genomes

shared typical structural features, including a pair of IR, SSC, and LSC

regions, with slight vitiations in the lengths ranging from 152,006 bp

to 152,382 bp. Consistency in chloroplast genome sizes across all

species in the Liliacae family has been observed previously in other

studies (Li et al., 2021c; Lu et al., 2017; Do et al., 2020). All Tulipa

species that we analyzed from NCBI database for phylogenetic

relationship had whole genome sizes between 151,691 bp and

152,382 bp, except for T. altaica (146,887 bp, NC_044780) and

T. fosteriana (153,308 bp, NC_070244). The GC content of the

chloroplast genomes was consistent across species, with minor

variations (36.58-36.62%) observed. Notably, the GC content was

higher in the IR regions compared to the SSC and LSC regions. This

phenomenon is consistent with findings in other plant species

(Li et al., 2021d; Jiang et al., 2023; Li et al., 2022b) and is thought to

be related to the IR regions’ functional significance and structural
FIGURE 5

Codon content of 20 amino acids and stop codons in the CDS of four Tulipa species. The color of the histogram corresponds to the color of
the codons.
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constraints. Nucleotide pair frequency analysis reveals the distribution

of identical, transition, and transversion pairs, and the nucleotide

diversity of the four chloroplast genomes showed differences,

providing insight into the genetic diversity within these genomes.

In this study, based on the relative order and the orientation of

the genes, identical haplotypes were identified in the SSC and LSC

regions. There were no detected inversion events in the regions of

all four species. However, inversion events in the SSC regions were
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first reported in the chloroplast genomes of Gossypium barbadense

(Ibrahim et al., 2006), Phoenix dactylifera (Yang et al., 2010),

Artemisia frigida (Liu et al., 2013), Lasthenia burkei (Walker

et al., 2014), and various Asteraceae species (Zhang et al., 2014).

Despite being overlooked in several studies, Walker et al. discussed

the sources of inversion variation in the SSC region of chloroplast

genomes in the American journal of botany in 2015 (Walker et al.,

2015). Three structural haplotypes were reported in 61 land plant

species from 19 orders of angiosperms, gymnosperms, and

pteridophytes. Wild variation in the orientation of the SSC region

was found in the Malvaceae family (Cheng et al., 2020). Using the

relative order of genes, Liang et al. (2022) revealed SSC region

switching in the chloroplast genome of wild rice (Liang et al., 2022).

Inversion events in the LSC regions have also been reported in

many plant studies. In addition, the occurrence of flip-flop

recombination on short inverted repeat sequences has been

demonstrated, generating different isoforms of the transformed

plastid genome that differ in the orientation of a 70 kb segment

in the LSC region of tobacco (Rogalski et al., 2006). A structural

inversion occurred in the LSC region of wild rice, resulting in the

reverse orientation of 36 genes (Liang et al., 2022). The LSC region

between the accD and rps16 genes contains a 54 kb inversion, the

most prominent difference in the chloroplast genome of Oenothera

elata (Hupfer et al., 2000). Three inversions (Inversion I, rps4;

Inversion II, trnH-GUG/rps16; and Inversion III, trnS-GCU/trnS-

GGA) occurred in Anemoclema, Anemone, and Pulsatilla (Choi

et al., 2021). A total of 35 gene inversions spanning 44.8 kb,

including 21 protein-coding genes and 14 tRNAs from trnT-UGU

to rps16 genes, were detected in the chloroplast genome of Adonis

mongolica (Nyamgerel et al., 2023).

Ibrahim et al. (2006) suggested that the faster divergence of SSC

and LSC regions than IR regions may be caused by the differences

between their introns and intergenic regions. Liang et al. (2022)

explained it by comparing it with the analogous to the mating-type

(MAT) region of a yeast genome in the study of Haber (2012) and

suggested that SSC switching, MAT switching, or even more

transposon-like elements may share common mechanisms. All

research studies attempted to explain this phenomenon, generally

attributing it to the results of intramolecular recombination event

(Ibrahim et al., 2006; Liu et al., 2013; Walker et al., 2015).
4.2 CDS Genes and intergenic regions
could be used as novel chloroplast
markers for species identification in the
genus Tulipa

The results of previous studies have shown that comparative

analyses of chloroplast genome sequences of species in a family help

to identify sequence variability (SV) and nucleotide variability and

subsequently to determine highly variable genes and intergenic

regions as genetic markers used for genetic or phylogenetic studies

(Hong et al., 2020; Li et al., 2021c; Cheng et al., 2020; Fan and Ma,

2022). In this study, the comparative analysis of four Tulipa species

and species from NCBI showed that ten genes, and twenty-one

intergenic regions with high nucleotide diversity (Pi) and sequence
FIGURE 6

Phylogenetic relationship for Tulipa L. species. Inferred from
Maximum likelihood model.
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variability (SV) could be used as molecular markers for future

phylogenetic analysis and species identification studies in the

Liliaceae family.

These genes, including rpoC2, rbcL, psbH, rpl22, ndhF, ycf1, and

matK have been proposed as high divergence and novel chloroplast

markers for species identification, discrimination, and in Tulipa (Li

et al., 2021c; Almerekova et al., 2024; Sutula et al., 2024), Poaceae

(Moon et al., 2016), Meconopsis (Li et al., 2019), Orchidaceae

(Huyen-Trang et al., 2017), Siraitia Merrill (Huyen-Trang et al.,

2017), Paris (Song et al., 2017) species. There was no information

about cemA, rpl36 and rps3 used as markers.

ndhF_rpl32, trnR-UCU_trnG-UCC, rpoA_petD, rps15_ycf1,

ndhG-ndhI, trnY-GUA_trnD-GUC, ndhE-ndhG, psaJ_trnP-UGG,

trnT-GGU_trnE-UUC, trnQ-UUG_rps16, rpl14_rps8, cemA_pafII,

rpl33-psaJ, and petL_psbE were most variable loci in Adenophora

racemose, Iridaceae species, Broomcorn Millet, Glycyrrhiza

eurycarpa, Camellia ‘Xiari Qixin’, Apiaceae species, Primula

sinensis (Primulaceae), Hibiscus sinosyriacus, Atropa vs. Nicotiana,

Lotus vs. Medicago, and Saccharum vs. Oryza, Medicago sativ (Kim

and Cheon, 2021; Xiao et al., 2024; Oyuntsetseg et al., 2024; Nie

et al., 2018; Zhang et al., 2022; Elyor et al., 2023; Xu et al., 2023; Gou

et al., 2020; Kwon et al., 2023; Shaw et al., 2007; Li et al., 2022a).

psbI-psbK (Baraket et al., 2011), trnL (UAA)-trnF (GAA) (Sen

et al., 2020; Abdessamad et al., 2016; Baraket et al., 2008),

rps8_rpl36 (Seberg and Petersen, 2009), rpl14-rps8 (Ikinci et al.,

2011), were used as robust markers for sequence variations,

molecular evolution phylogenetic analysis in Pisum sativum L.

Palisota (Commelinaceae), Ficus carica L., Quercus suber L.,

Crocus L., Scorpiris. To our knowledge, trnfM-CAU_trnG-GCC

and pafII_psaI were found as newly explored regions.
4.3 Codon usage patterns

SCUB analysis is a powerful tool for investigating species

specificity, evolutionary relationships, mRNA translation, and

discovering novel genes, all of which are important for

understanding gene function and molecular phylogeny (Song et al.,

2022). This study analyzed the CDS of four Tulipa species to

investigate codon usage patterns and amino acid frequencies. The

total number of codons in the genomes of the four species ranged

from 22,457 to 25,695, indicating slight differences in genome size

among the species. Interestingly, the distribution of codons showed

different patterns among the species. For example, in the genomes of

T. alberti, T. greigii, and T. kaufmanianna, the most abundant third

codon base was T, followed by A, G and C. In contrast, in the genome

of T. dubia, it was A, followed by T, G, and C. This variation suggests

potential differences in evolutionary pressures and genome

composition among the species. In T. greigii and T. kaufmanianna,

significantly overrepresented codons reflect conserved codon

preferences within the Tulipa genus. However, only one unique

and overrepresented codon was specific to the T. alberti and T.

dubia chloroplast genomes, indicating species-specific evolutionary

dynamics. Furthermore, the analysis of underrepresented codons

revealed species-specific trends. T. greigii and T. kaufmanianna
Frontiers in Plant Science 13
exhibited a larger number of underrepresented codons compared

to T. alberti and T. dubia, indicating potential differences in codon

bias and evolutionary constraints between the species. Analysis of

amino acid frequencies revealed that leucine was the most abundant

amino acid in all Tulipa species, which is consistent with a previous

study (Li et al., 2021c) on chloroplast genomes. Conversely, cysteine

was the least abundant amino acid in T. greigii, T. kaufmanianna, and

T. dubia, while methionine was the least frequent in T. alberti.

Overall, the codon usage patterns observed in this study suggest a

complex interplay between evolutionary forces, functional

constraints, and environmental adaptation in shaping the

chloroplast genomes of Tulipa species. Further research is needed

to elucidate the precise mechanisms underlying these codon usage

patterns and their implications for the biology and conservation of

these endangered species.
4.4 Phylogenetic analysis

The evolutionary development of Tulipa species has been

extensively studied through phylogenetic analysis. Phylogenetic

studies use various methods, including molecular data analysis

and morphological comparisons, to understand the evolutionary

relationships among species within the genus. These studies aim to

elucidate the genetic ancestry, divergence patterns, and evolutionary

history of Tulipa species, shedding light on their evolutionary

trajectories and the factors driving their diversification.

The results of the phylogenetic analysis revealed interesting

patterns in the relationships among the 40 sequences from 25

species. The analysis indicates that the sequences were grouped

into four major clusters, suggesting a significant degree of genetic

variation among the species. These clusters likely represent

evolutionary connections and may signify different evolutionary

lineages or adaptations. Groups 1, 3, and 4 all contain species from

the subgenus Tulipa. This indicates that the species within this

subgenus are relatively closely related compared to species from

other subgenera. This clustering is consistent with the idea that

subgenus Tulipa represents a coherent evolutionary unit. Group 2,

which contains species from subgenus Orithyia and Eriostemons, is

separate from the groups containing Tulipa species. This separation

highlights distinct evolutionary pathways or other three adaptations

that have occurred in these subgenera.

The separation of T. greigii from other three Tulipa species and

its clustering with species from subgenus Orithyia and Eriostemons

is particularly noteworthy. It suggests that T. greigii might have a

unique evolutionary history or genetic background that sets it apart

from other Tulipa species, even though it belongs to the same genus.

This could be due to historical geographic isolation, specific

ecological adaptations, or other evolutionary pressures. These

findings collectively contribute to our understanding of Tulipa

species evolutionary relationships and highlight the impact of

geographical and ecological factors on their genetic diversity and

divergence. Further studies incorporating larger datasets and

refined methodologies will continue to enhance our knowledge of

Tulipa evolution and its underlying mechanisms.
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5 Conclusion

In conclusion, this study achieved its objectives by determining

and characterizing the complete chloroplast genome sequences of

T. greigii, T. kaufmanniana, T. alberti, and T. dubia from Kazakhstan.

Through this, we gained insights into the overall evolutionary

dynamics of Tulipa chloroplast genomes. Our research also aimed to

provide novel chloroplastmarkers for species identification within the

genusTulipa.We identified ten genes with effective polymorphic SSRs

and high nucleotide diversity, serving as valuable molecular markers

for Tulipa species identification. Furthermore, by comparing our

sequences with published data from the NCBI database, we

calibrated the phylogenetic position of T. alberti, T. kaufmanniana,

T. greigii, and T. dubia, contributing to a more comprehensive

understanding of Tulipa phylogeny. The newly identified chloroplast

genes with high SSRs offer valuable tools for species identification and

population studies, aiding conservation efforts and future Tulipa

genetics and evolution research.
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