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Non-destructive assessment of
apple internal quality using
rotational hyperspectral imaging
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1College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China,
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This work aims to predict the starch, vitamin C, soluble solids, and titratable acid

contents of apple fruits using hyperspectral imaging combined with machine

learning approaches. First, a hyperspectral camera by rotating samples was used

to obtain hyperspectral images of the apple fruit surface in the spectral range of

380~1018 nm, and its region of interest (ROI) was extracted; then, the optimal

preprocessing method was preferred through experimental comparisons; on this

basis, genetic algorithms (GA), successive projection algorithms (SPA), and

competitive adaptive reweighting adoption algorithms (CARS) were used to

extract feature variables; subsequently, multiple machine learning models

(support vector regression SVR, principal component regression PCR, partial

least squares regression PLSR, and multiple linear regression MLR) were used to

model the inversion between hyperspectral images and internal nutrient quality

physicochemical indexes of fruits, respectively. Through the comparative analysis

of all the model prediction results, it was found that among them, for starch,

vitamin C, soluble solids, and titratable acid content, 2nd Der-CARS-MLR were

the optimal prediction models with superior performance (the prediction

coefficients of determination Rp
2 exceeded 90% in all of them). In addition,

potential relationships among four nutritional qualities were explored based on t-

values and p-values, and a significant conclusion was drew that starch and

vitamin C was highly correlated.
KEYWORDS

hyperspectral imaging, apple, physicochemical property, machine learning, rotational
acquisition method
1 Introduction

As one of the major fruits in the stable annual supply of global fruit markets, apples are

highly valued for their market and nutritional qualities. Global demand for fresh apples and

their processed products continues to grow, with consumers paying increasing attention to

the internal quality of apples (Ma et al., 2018). With the innovation of fruit germplasm
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resources and the breeding of new special purposed apple varieties,

the external quality of the fruit has been significantly improved, yet

how to easily, quickly and accurately identify its internal quality has

attracted great attentions from breeding and horticultural

experts worldwide.

Currently, scientific researchers mainly use physical, chemical,

molecular and biotechnological methods to systematically test and

calibrate the internal nutritional quality and physicochemical

indexes of apple fruits in the laboratory. Although this method is

highly accurate, the fruit samples have to be destructively processed,

which is expensive and time-consuming, and the process of

processing and operation is both complicated and professional,

which is not only not applicable to ordinary consumers but also not

easy to be realized by general scientific researchers and horticultural

workers. In addition, the use of chemical reagents may cause

environmental pollution. Given this, there is an urgent need to

develop an efficient and non-destructive assay to assess the internal

nutritional qualities of apple fruits, which is of great significance in

realizing the grading and marketing of apples, branding and

industrial development (Mo et al., 2017).

HSI (Hyperspectral imaging) technology, as an emerging non-

destructive testing method, has gained wide recognition in the field

of fruit and vegetable quality assessment. This technique combines

the strengths of spectral analysis and machine vision, and is able to

synchronize the acquisition of spectral data and spatial distribution

information of fruits and vegetables (Li et al., 2023). With HSI, the

average spectral information of specific regions of fruits and

vegetables can be accurately acquired, thus improving the

robustness of the detection results (Liu et al., 2022). Recently, this

technique has been applied in the internal qualities assessment of

apples, e.g., Tian et al. combined HSI with an output correlation-

based deep learning algorithm-stacked weighted adaptive encoder

(SWAE) to detect the soluble solids content of Fuji apples (Tian

et al., 2022). Ma et al. utilized HSI to detect the total sugar content

(Ma et al., 2022), and Wang et al. predicted apple hardness using

HSI (Wang et al., 2012). However, few studies have been reported

on the HSI detection of vitamin C, titratable acid and starch content

in apple fruits. Moreover, it is well known that nutrients in apples

must be interrelated, and quality measurements of a single or a few

indicators are insufficient to accurately reflect the overall quality

(Shao et al., 2022). Apparently, the integrated consideration of

multiple indicators more comprehensively reflects the quality

of apple fruits, enabling a deeper and more systematic exploration

of the apples’ potential value. In the existing research reports on

fruit and vegetable quality, two of the internal nutritional qualities

(hardness and soluble solids) are generally considered at most, e.g.,

Peng et al. utilized hyperspectral scattering technology combined

with multivariate linear regression to predict the hardness and

soluble solids content of apple fruits (Peng and Lu, 2008), Xie et al.

utilized HSI technology combined with a new band extraction

method to predict the color and hardness of banana (Xie et al.,

2018) and Gao et al. predicted the hardness and soluble solids

content of begonia fruit using HSI (Gao et al., 2022). Given this, this

study used HSI combined with machine learning approaches to

construct an inverse model of four major nutritional qualities within
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apples, accurately predict their contents and explore the relevant

potential relationships among the four major nutritional qualities.

More than spectral data acquisition from a single angle is

required to pursue comprehensiveness and accuracy in fruit

quality inspection. Therefore, researchers in the field of HSI have

advanced the development of imaging techniques capable of

capturing images of samples in all directions in recent years. For

example, Sun et al. achieved all-round (360°) imaging of peaches to

assess their degree of decay by configuring a HSI system with a

rotating platform (Sun et al., 2018). Similarly, the Ma et al. research

team innovatively designed a rotating carrier platform-based HSI

system applied to kiwifruit image acquisition as a means to assess its

pH and soluble solids distribution (Ma et al., 2021). In addition,

Shang et al. researched and developed a rotary clamping device with

an integrated hyperspectral camera for detecting defects on navel

orange surfaces (Shang et al., 2023). However, due to the variability

of fruit size and morphology, it is not easy to maintain a constant

speed during fruit rotation. Oscillations or wobbles may occur

during fruit rotation, leading to data overlap or omission of

spectral scan lines in specific regions (Pham and Liou, 2020).

Given this, this study used a combination of fixed viewing angle

and manual rotation to acquire hyperspectral images and, to reduce

the negative effects of fruit shape, illumination conditions, and data

overlap, did not use the entire fruit as the focus area of the study, but

rather the center region of the apple fruit was used as the ROI.

As is well known, due to the shape and surface characteristics of

apple fruits, the coloring of the apple surface is not completely

uniform. This is primarily because the apple surface cannot receive

light evenly, and there will always be a backlit side. This leads to

variations in the nutritional content across the apple surface, with

particularly large differences between the light-facing and backlit

sides. Collecting spectral data from a single angle makes it difficult

to accurately capture the true distribution of internal nutrients. To

objectively and accurately model and assess the nutritional content

of the entire fruit, we adopted a rotational acquisition method. By

stably rotating the fruit, spectral information from all four sides was

collected, providing a more comprehensive reflection of the entire

apple’s true condition. Stable rotation is crucial for linear-array

scanning imaging systems, as it improves image quality and reduces

imaging errors caused by irregular shapes or unstable movements.

This method aligns with the pursuit of comprehensiveness and

precision in the field of hyperspectral imaging, ensuring the

reliability of the study results.

In this study, a HSI method based on rotated samples is

proposed, with the specific objectives of (1) utilizing HSI

technology combined with a manual rotation method to obtain

360° spectral information of the whole apple surface; (2) comparing

and selecting the optimal fusion of different preprocessing

techniques, feature extraction methods, and machine learning

methods to establish the optimal prediction model for inversion

of four internal qualities of apple fruits; (3) based on the CARS-

MLR model, the t-values and p-values were used to identify the

characteristic bands related to starch, vitamin C, soluble solids and

titratable acids in apple fruits, and the potential relationship

between the four internal nutrient qualities was further explored.
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2 Materials and methods

2.1 Sample preparation

The experimental samples were obtained from the orchard of

Fruit Tree Research Institute, Jingning County, Gansu Province

(35°28’N, 104°44’E, average altitude 1600 m). A total of five apple

varieties, Chengji No. 1, Ruixue, Ruiyang, Yanfu No. 3, and Jingning

No. 1, which are the main cultivars in Gansu Province, were selected

and harvested at the beginning of October 2023 during the ripening

period of the samples. Twelve fruit of each variety were selected

from 12 different fruit trees listed and labeled, and the fruit samples

with similar size, uniform coloring, no insect damage, and no

mechanical damage were selected as much as possible.

Immediately after harvesting, the fruit were protected with plastic

foam, boxed, and transported back to the College of Information

Science and Technology, Gansu Agricultural University laboratory.

Numbered one by one, A_1∼A_12 represented Chengji No.1;

B_1∼B_12 represented Ruixue; C_1∼C_12 represented Ruiyang;

D_1∼D_12 represented Yanfu No.3; and E_1∼E_12 represented

Jingning No.1.
2.2 Hyperspectral imaging acquisition and
spectral extraction

2.2.1 Hyperspectral imaging system
This experiment collected the reflectance data of 320 spectral

bands in the 380-1018 nm range using a GaiaField portable

hyperspectral system (Sichuan Dualix Spectral Imaging

Technology Co., Ltd). The system consists of a GaiaField-V10E

hyperspectral imager, an imaging spectrometer with a resolution of

2.8 nm, a 2048-pixel × 2048-pixel HSIA-GL16 imaging lens, four

shadowless light sources (adjusted at an angle of about 30° to

illuminate the field of view of the camera), and a height adjustable

platform and data acquisition software (SpecView). The effective slit

length is 14.2 mm, the slit width is 30 mm, the detector is SCMOS,

and the numerical aperture is F/2.8. The HSI system operates on
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push-broom scanning, integrating a linear array detector with an

imaging spectrometer. The motorized platform is engineered to

facilitate scanning motion, causing the imaging spectrometer’s

entrance slit to traverse across the focal plane of the imaging lens,

thereby enabling the capture of hyperspectral data. The detector

captures real-time spectral data corresponding to the linear target,

compiled into a comprehensive data cube, as depicted in Figure 1.

2.2.2 Acquisition of hyperspectral
image information

Accurate adjustment of acquisition parameters is crucial to

capture high-quality, undistorted hyperspectral imagery. In this

study, the distance between the SCMOS lens and the carrier stage

was set to 40 cm, and the camera’s exposure time, gain mode, and

actual frame rate were set to 49 ms, 2, and 18 mm/s, respectively.

The samples must be placed in an HSIA-DB dark box during the

data acquisition to avoid the interference of stray rays. Four spectral

acquisitions were performed for each apple sample to analyze and

process the full range of data. One apple sample was placed on the

carrier stage to collect spectra, keeping the petiole-calyx axis parallel

to the carrier stage so that the center was aligned with the camera.

For the second, third, and fourth spectra acquisition, the apple

sample was rotated 90 degrees around its petiole-calyx axis in the

same direction each time until all four images were acquired.

Hyperspectral images for 60 apple samples were systematically

acquired using a consistent methodology, resulting in a dataset

comprising 240 hyperspectral images. After imaging, the apple

specimens were dispatched to Suzhou Dream Rhinoceros

Biomedical Technology Co. Ltd. for detailed analysis of their VC,

TA, SSC, and starch content. Table 1 lists the maximum, minimum,

average, and standard deviation of each parameter.

To eliminate the effects of noise due to differences in the shape

of the apples, the uneven distribution of the light source intensity

under each wavelength band, and the presence of dark current in

the camera, the acquired raw hyperspectral image (Rorigin) needs to

be corrected for black and white. The image is first acquired on a

standard white correction plate made of PTFE material to obtain an

all-white calibration image (Rwhite), and then an all-black
FIGURE 1

The hyperspectral imaging system and 3D data cube.
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calibration image (Rdark) is acquired. The corrected hyperspectral

image (R) was obtained using Equation 1.

R =
Rorigin−Rdark

Rwhite−Rdark
(1)
2.2.3 Spectral extraction
For the calibrated hyperspectral images, 480 pixels × 480 pixels

ROI hyperspectral data were extracted using ENVI 5.6 software.

The abnormal information due to the light on a particular place of

the apple samples was also eliminated in the extraction of ROI.

Finally, the average of all the spectral information within the ROI

was used as the corresponding reflectance spectral value.

To ensure the accuracy of the region of interest (ROI), we chose

the Region Growing Algorithm to eliminate abnormal information.

Initially, an area unaffected by abnormal information was selected as

the seed point, and then the ROI was gradually constructed by

expanding similar pixels. The reason why we chose the Region

Growing Algorithm is that it can effectively handle irregular shaped

ROIs and reduce abnormal interferences by lighting reflection, sample

curvature, or other factors. The specific parameters in this study are as

follows: Growth Size was set to 480 × 480 pixels, the Std Dev

Multiplier was set to 2.2, and the number of iterations was set to 50.
2.3 Physicochemical
properties measurement

2.3.1 VC content
First, 10 ml of ascorbic acid standard solution was extracted with

30 ml of 2% oxalic acid solution, titrated with 2.6-dichlorophenol

indophenol solution until the pink color lasted for 30 seconds as the

endpoint, and the amount of dye was recorded to determine the titer.

The sample was treated similarly: 10 ml of filtrate was taken for

titration, and VC was calculated according to Equation 2.

VC(‰ ) = (v3 − v2)� d=m� vt=vs � 100 (2)

where v2 and v3 denote the volume of dye used to titrate the

blank versus the sample, respectively, d denotes the degree of

titration, m denotes the weight of the sample, vt denotes the total

volume of the extracted sample solution, and vs denotes the volume

of the sample used in the titration.

2.3.2 TA content
Prepare homogenate by taking 250g of the edible portion of the

specimen and mashing it with an equal amount of water. Take 50-
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100g of homogenate, wash with water into a 250mL volumetric

flask, heat to 75-80°C, shake, calm, and then set the volume and

filter. Take 50 or 100mL sample solution, add phenolphthalein

indicator, and titrate with sodium hydroxide standard solution until

slightly red color for 30 seconds without retreating. Calculate the

TA according to Equation 3.

TA(‰ ) = c � (v1 − v0)� k� F=m� 1000 (3)

where c denotes the concentration of sodium hydroxide

solution, v1 denotes the volume consumed for the sample’s

titration, v0 denotes the volume used in the blank titration, k

denotes the acid conversion factor, and m denotes the mass of

the specimen.

2.3.3 SSC
Take the edible part of the sample chopped, mixed (frozen

products must be thawed beforehand), weighing 250g, accurate to

0.1g, into the high-speed tissue masher mashing machine, with two

layers of microscope paper or gauze extruded homogenized juice

determination. These refractometer readings are the SSC.

2.3.4 Starch content
Glucose standard series were prepared at the concentrations of

0, 0.2, 0.4, 0.6, 0.8, and 1.0 mg, using DNS reagent to develop the

color, and the absorbance was measured at a specific wavelength;

the standard curve was plotted, and the linear equation was derived.

The absorbance was measured after the sample was treated

similarly, and the sugar content was calculated by standard curve.

Starch content was calculated according to Equation 4.

Starch( % ) = c� vt=v � d=m� 0:9 (4)

where c denotes the sugar content of the sample, vt denotes the

total volume of the extract, v denotes the assay volume, d denotes

the number of dilutions, m denotes the weight of the sample, and

0.9 denotes the starch hydrolysis correction factor.
2.4 Spectral data processing

Hyperspectral data are susceptible to disturbances such as

spectral intensity differences, stray light, noise, and baseline drift

(Xu et al., 2023). Therefore, several preprocessing methods were

used in this study. Namely, Savitzky-Golay (SG) smoothing,

moving average (MA) smoothing, normalization (NM),

multiplicative scatter correction (MSC), baseline correction,

standard normal variant transform (SNV), detrend (DT), first-

order derivative (1st Der) and second-order derivative (2nd Der)

(Mo et al., 2017; Tian et al., 2022). SG removes noise by fitting a

polynomial within a given window to estimate the smoothed values

of the data points. MA reduces noise and attenuates the volatility of

the data by calculating the average of the neighboring data points in

the spectral data series. NM scales the data into a specific range,

usually [0, 1] or [-1, 1]. MSC aims to correct for spectral intensity

variations due to light scattering effects, making the spectra more

comparable and stable. The baseline aims to remove background
TABLE 1 Presentation of physical and chemical data of samples.

Parameters Maximum Minimum Average Standard
deviation

Starch(%) 10.88 4.25 7.43 2.69

VC(‰) 2.30 1.02 1.90 0.43

SSC(%) 16.00 11.40 13.27 1.60

TA(‰) 5.14 2.45 3.41 0.99
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noise and baseline drift from the spectral curves. SNV focuses on

normalizing the spectral data at each wavelength point, i.e.,

centering and normalizing the data at each wavelength point,

which helps to identify the differences between samples better.

DT reduces the effect of external noise on the spectral curve by

subtracting the trend line adapted to the noise component. 1st Der is

usually used to highlight the edges, peaks, and wavelength

variations of the spectrum, while 2nd Der is often used to locate

the peaks and valleys in the spectra; in addition, they can help to

eliminate baseline drift in the data and enhance the smaller-scale

features in the spectral data.
2.5 Feature selection algorithms

Since the preprocessed data have many covariant wavelengths

to the extent of information redundancy, it increases the

computational volume and reduces the modeling efficiency. In

this experiment, the Genetic Algorithm (GA), Sequential

Projection Algorithm (SPA), and Competitive Adaptive

Reweighted Sampling (CARS) algorithm are used to extract

spectral data features in addition.

GA is a heuristic optimization method inspired by Darwin’s

idea of evolution. GA evolves by modeling evolutionary processes

such as natural selection, crossover, and mutation to generate

feasible solutions. In GA, by genetically coding individuals in a

population (representing candidate solutions in the solution space),

operations such as selection, crossover, and mutation are used to

generate the next generation of the population, and these

individuals are gradually optimized to find the optimal solution.

The core idea of GA lies in searching for optimal solutions from

many solution spaces by modeling natural selection and genetic

mechanisms (Lee et al., 2022). The specific parameters of the

Genetic Algorithm are set as follows: the population size is set to

50, that is, 50 individuals are optimized in each generation; the

maximum number of iterations is set to 100, and if the fitness of the

best individual in the population has not been obviously improved

for 20 consecutive iterations, the algorithm will be terminated ahead

of schedule; the selection strategy adopts the roulette selection

method; the probability of the crossover operation is 0.8 to ensure

that 80% of the individuals in the population exchange genes to

generate the next generation to keep the diversity of the population;

the probability of the mutation operation is 0.01, which is used to

introduce a small amount of random changes in each generation to

prevent the algorithm from falling into a local optimum.

SPA is a forward iterative search method for solving covariance

problems. The iterative process commences with the selection of a

single wavelength, incrementally integrating a novel variable at each

subsequent iteration. This continues until the cumulative variables

reach the predetermined threshold, N. SPA aims to choose the

wavelength with the least redundant spectral information. By

iterating step by step, SPA can effectively select the wavelength with

the best mutual information, thus improving the accuracy and stability

of feature selection. By reducing the redundant information, the SPA

algorithm can provide better spectral resolution performance and

improve the feature selection (He et al., 2023).
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The CARS approach integrates Monte Carlo sampling with PLS

model regression coefficients, drawing inspiration from the concept

of ‘survival of the fittest’ as postulated by Darwin. The algorithm

employs an Adaptive Random Sampling (ARS) strategy to form a

new subset, iteratively retaining points with higher weights based on

the absolute values of PLS regression coefficients and discarding

those with lower weights. Following this selection, a new PLS model

is constructed and refined multiple times. The final feature

wavelengths are chosen from the subset that minimizes the Root

Mean Square Error of Cross-Validation (RMSECV). The CARS

algorithm can efficiently select feature wavelengths with predictive

solid ability through this iterative process, thus improving the

accuracy and robustness of feature selection (Shao et al., 2021).
2.6 Regression models

Support Vector Regression (SVR) is a supervised learning

technique derived from Support Vector Machines (SVM). It

leverages kernel functions to transform vectors from a lower-

dimensional space to a higher-dimensional space, where it

constructs linear decision functions. This enables SVR to

effectuate nonlinear decision-making in the original space

(Balabin and Lomakina, 2011).

PCR involves transforming the original set of correlated

variables into a new set of uncorrelated variables known as

principal components (Sun, 1995). Subsequently, a regression

model is constructed utilizing these principal components as

predictors. PCR has become a valuable and powerful multivariate

correction method for chemometric analysis, integrating

independent and dependent variables (Araújo et al., 2001).

PLSR is a commonly used statistical modeling method for

solving the problem of high correlation between independent

variables in multiple linear regression. It reduces the effects of

covariance among independent variables. It improves the stability

and predictive power of the model by transforming the original

independent variables into a new set of composite variables

(principal components or latent variables) and then performing

regression analysis on these principal components (Badaró

et al., 2020).

MLR is a kind of relationship model that can build multiple

independent variables and dependent variables, and MLR is

applicable when the number of samples is more than the number

of variables, so this study only builds this model for the wavelengths

extracted by GA, SPA and CARS algorithms (Rajkumar et al., 2012).
2.7 Evaluation of model performance

The model performance was assessed by the following metrics:

the coefficient of determination of the correction (R2
C) and

prediction (R2
p) and the root mean square error of the correction

(RMSEC) and prediction (RMSEP). In general, the higher

the coefficient of determination and the smaller the root-mean-

square difference, the better the performance of the model (Xiang

et al., 2022). The derivation of the above parameters is shown in
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Equation 5 and Equation 6. The processing of the whole experiment

is shown in Figure 2.

R2 = 1 − on
i−1

(yi−ŷ i)
2

on
i−1

(yi−�yi)
2 ∈ ½0, 1� (5)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i−1(yi − ŷ i)
2

q
(6)
3 Results and analyses

3.1 Spectral profile

Spectral characterization of 320 bands within 380-1018nm was

carried out to obtain all spectral curves of apple samples. Figure 3A

illustrates that the average spectral curves for various apple cultivars

exhibit similar trends. However, a pronounced discrepancy is

observed in the spectral curves between 530 and 630 nm,

suggesting notable variations in the constituent contents among

apple varieties. Specifically, the observed spectral absorption peaks

at approximately 500 nm and 680 nm can be primarily attributed to

the characteristic absorption spectra of carotenoids and

chlorophylls, respectively (Siedliska et al., 2014; Yu et al., 2014).

As ripe apples contain more chlorophylls and the color information

is reflected in the surface of apples, the spectral curves have more

prominent absorption peaks at 680 nm (Song et al., 2024). The

absorption peaks around 840 nm and 975 nm are related to the

water and sugar inside the apple, which are O-H tertiary and

secondary octave characteristic absorption peaks, respectively

(Huang et al., 2013; Shao et al., 2020; Xue et al., 2013).
3.2 Selection of optimal preprocessing

Multiple preprocessing methods (Figures 3B–J) were compared

to obtain the best one ultimately, and raw HSI data was
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preprocessed in section 2.4, based on which the starch content of

apple samples was predicted using PLSR. As can be seen from

Table 2, 2nd Der is the optimal preprocessing method. Therefore,

the 2nd Der preprocessing method was used for further feature

extraction to predict VC, TA, SSC, and starch. However, it is worth

noting that since the direct derivation of HSI data may lead to the

amplification of spectral noise, which may produce unpredictable

results, the data were smoothed to minimize the effect of spectral

noise before the derivation of the data for preprocessing.
3.3 Extraction of spectral
feature wavelength

Figure 4 shows the wavelength selection process of apple starch

by the GA. Figure 4A indicates the number of times the feature

wavelengths were selected after the code was run 100 times, and

Figure 4B demonstrates the number of explained variances of the

latent variables, where the green dots indicate the global maximum

and the red dots indicate the best latent variables within the

hypothesis testing limits. Finally, 20 feature wavelength variables

were preferred, accounting for 6.25% of the total spectral number.

Figure 5 shows the wavelength process of apple starch preferred

by the SPA, specifying the number of variables N = 1 ~ 20.

Figure 5A shows the distribution of selected wavelengths, and

Figure 5B shows that the RMSE value decreases as the number of

variables increases. The RMSE is the most minor overall when the

number of variables is 8, which is 2.5% of the total spectra.

Figure 6 shows the process of optimizing the characteristic

wavelength of apple starch using the CARS algorithm, in which the

Monte Carlo sampling number was set to 50, and the characteristic

wavelength was extracted using the 10-fold cross-validation

method. Figure 6A shows two different stages of fast screening

and fine screening in the process of wavelength preference by the

CARS algorithm. The curve (number of selected wavelengths)

decreases sharply in the initial fast screening stage. Subsequently,

it enters the delicate screening stage, and the curve trend begins to
FIGURE 2

Experimental procedure.
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smooth out. Figure 6B shows that the RMSECV values of the PLS

model are gradually eliminated as the number of samples increases,

leading to unimportant wavelengths. However, inevitably, some

effective wavelengths are also removed, thus leading to larger

RMSECV values (after the 19th sampling). The curve in

Figure 6C shows the regression coefficients at different sampling

times. Finally, 45 characteristic wavelength variables were preferred
Frontiers in Plant Science 07
for apple starch analysis, which accounted for 14.06% of the total

spectrum number.

In addition, the number of feature wavelengths and wavelength

points obtained by the GA algorithm is inconsistent from run to

run, and this instability adversely affects the model. In contrast, the

wavelength points selected by the SPA algorithm are usually located

near the peaks or troughs of the spectrum and are fewer in number.
FIGURE 3

Apple spectral reflectance curves. (A) Origin spectral curve; (B) SG preprocess spectral curve; (C) MA preprocess spectral curve; (D) NM preprocess
spectral curve; (E) MSC preprocess spectral curve; (F) Baseline preprocess spectral curve; (G) SNV preprocess spectral curve; (H) DT preprocess
spectral curve; (I) 1st Der preprocess spectral curve; (J) 2nd Der preprocess spectral curve.
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In addition, the SPA and CARS algorithms produced the same

results for each run. From the above number of wavelengths after

feature extraction for starch content, it can be seen that SPA

facilitates the simplification and stabilization of the model for

further modeling compared to the GA and CARS algorithms.

The remaining physicochemical characteristics (VC, SSC, and

TA) were also subjected to feature variable extraction using the

exact parameters of GA, SPA, and CARS, and the feature

wavelength distributions are shown in Figure 7.
3.4 Effect of feature selection on models

3.4.1 Prediction of starch content
The prediction results of starch content are shown in Figure 8.

The results from Figures 8B, D indicate the effect of using a feature

extraction algorithm to extract feature wavelengths as input

parameters for SVR, PCR, PLSR, and MLR models :

CARS>GA>FS>SPA. In detail, the R2-value in the prediction set

becomes more significant while the RMSE becomes concurrently
Frontiers in Plant Science 08
smaller. Similarly, the same is true for Figures 8A, C. It is mentioned

in Section 3.4 that SPA facilitates model simplification, stabilization,

and further modeling relative to GA and CARS algorithms. It is

worth noting that the SPA algorithm fails to improve the prediction

performance and even reduces the prediction performance in some

cases, although it reduces the information redundancy. This suggests

that SPA may exclude information critical for accurate model

prediction, thus affecting the performance of image validity

prediction models. This shows that not all feature extraction

algorithms positively impact the effectiveness of image prediction

models. In addition, from Figure 8D, the optimal prediction model

for apple starch content was 2nd Der-CARS-MLR, with a prediction

ensemble R2 of 0.9386 and an RMSE of 0.6530. Therefore, HSI of

rotated samples in combination with 2nd Der-CARS-MLR can be

used as a non-destructive and efficient method for detecting the

starch content of apple fruit.
3.4.2 Prediction of VC, SSC, and TA
The results of the prediction of VC, SSC, and TA of apple fruit are

shown in Table 3. As can be seen fromTable 3, the optimal model used

to predict VC: R2
V = 0.9088, RMSEV = 0.1245; the optimal model used

to predict SSC, R2
V = 0.9248, RMSEV = 0.4213; and the optimal model

used to predict TA: R2
V = 0.9683, RMSEV = 0.1678. It is worth noting

that the optimal models used to predict VC, SSC, and TA were all one

model and the same as those used to predict starch content, i.e., 2nd

Der-CARS-MLR. Therefore, the HSI of rotated samples combined

with 2nd Der-CARS-MLR can be used as a non-destructive and

efficient way to detect VC, SSC, and TA in apple fruit.
3.4.3 Model explanation
The t-values and p-values are two key statistics used to assess

the significance of regression coefficients. Usually, when the

absolute value of t is more significant than two, or the absolute

value of p is less than 0.05, it indicates that the effect of the variable

on the target variable is substantial. As seen from Figure 9, there are

11, 12, 20, and 11 characteristic bands that significantly influence

the starch, vitamin C, soluble solids, and titratable acid content in

apple fruit, respectively. In addition, as shown in Figure 9, the

characteristic bands with significant effects on starch and VC were

all concentrated between 470 and 700 nm, and the absorption
TABLE 2 The prediction results of starch content are based on the
original spectrum and different preprocessing methods in the
PLSR model.

Methods
Calibration Prediction

R2
C RMSEC R2

p RMSEP

Origin data 0.8265 1.0972 0.8025 1.1768

SG 0.8661 0.9639 0.8460 1.0377

MA 0.8652 0.9672 0.8500 1.0236

NM 0.8839 0.8973 0.8590 0.9941

MSC 0.8742 0.9342 0.8476 1.0336

Baseline 0.8752 0.9306 0.8509 1.0201

SNV 0.8368 1.0641 0.8127 1.1438

DT 0.8766 0.9251 0.8577 0.9974

1st Der 0.9030 0.8200 0.8743 0.9373

2nd Der 0.9378 0.6566 0.9034 0.8232
Values in bold indicate the optimal model as well as his prediction results.
FIGURE 4

Feature wavelength selection graph based on GA algorithm. (A) Distribution of the feature variable, (B) Trend of the feature variable CV.
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spectra of carotenoids and chlorophylls in apple fruit mainly caused

the absorption peaks in this spectral interval. This finding further

informed the potential relationship between starch content and

physicochemical values of other nutrients.
4 Conclusions

In the wavelength range of 380-1018 nm, the internal nutrients,

including VC, TA, SSC, and starch of apple fruit of different varieties,

were detected non-destructively in this study using HSI. After

comparing nine pretreatment methods, 2nd Der was selected as the

optimal pretreatment method in this study. To mitigate the effects of
Frontiers in Plant Science 09
overlap and noise in the spectral curves on the changes in the feature

information of the samples, three efficient data dimensionality

reduction techniques, such as GA, SPA, and CARS, were used to

screen out the wavelength combinations that could accurately

characterize the changes in the feature information. This study

constructed various prediction models such as SVR, PCR, PLSR, and

MLR by using the full spectrum and the set of feature wavelengths as

the input variables, respectively. The experimental results showed that

the 2nd Der-CARS-MLR model significantly outperformed the other

models in predicting apples’ internal nutrient physicochemical indexes,

which provided a generalized method for predicting different

nutritional qualities. Meanwhile, the statistical analysis of t-values

and p-values revealed that the characteristic bands affecting starch
FIGURE 5

Feature wavelength selection graph based on SPA algorithm. (A) Distribution of feature variables, (B) Trends in RMSE of feature variables.
FIGURE 6

Feature wavelength selection graph based on CARS algorithm. (A) Trends in the number of feature variables, (B) Trends in the RMSEV values of
feature variables, and (C) Trends in the path of regression coefficients.
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FIGURE 7

Distribution of feature wavelengths. (A) starch, (B) VC, (C) SSC, (D) TA.
FIGURE 8

Prediction results of starch content for the calibration set (A, C) and prediction set (B, D) obtained by different calibration models using full spectral
bands and spectral bands after feature extraction. Blanks represent MLR without the full spectral bands.
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TABLE 3 The prediction results of VC, SSC, and TA were obtained by different calibration models using full spectral bands and bands after
feature extraction.

Parameters Models
Extraction
methods

No.
of wavelength

Calibration Prediction

R2
C RMSEC R2

p RMSEP

VC

SVMR FS 320 0.9331 0.1078 0.8772 0.1330

GA 7 0.7768 0.2091 0.7619 0.2186

SPA 6 0.6940 0.2399 0.6667 0.2496

CARS 50 0.9185 0.1177 0.8962 0.1250

PCR FS 320 0.4561 0.3036 0.4308 0.3116

GA 7 0.7758 0.1949 0.7627 0.2013

SPA 6 0.7645 0.1997 0.7509 0.2062

CARS 50 0.7437 0.2084 0.7311 0.2142

PLSR FS 320 0.8560 0.1562 0.8063 0.1822

GA 7 0.7705 0.1972 0.7559 0.2046

SPA 6 0.7645 0.1997 0.7549 0.2053

CARS 50 0.9293 0.1094 0.8843 0.1210

MLR FS / / / / /

GA 7 0.7759 0.1982 0.7600 0.2021

SPA 6 0.7645 0.2027 0.7504 0.2061

CARS 50 0.9406 0.1130 0.9088 0.1245

SSC

SVMR FS 320 0.9893 0.1909 0.9041 0.4203

GA 14 0.8521 0.5971 0.8302 0.6359

SPA 10 0.8549 0.5942 0.8336 0.6333

CARS 44 0.9602 0.3133 0.9161 0.4212

PCR FS 320 0.6461 0.9126 0.6163 0.9540

GA 14 0.7451 0.7744 0.7275 0.8026

SPA 10 0.8148 0.6601 0.7937 0.6987

CARS 44 0.8818 0.5212 0.8489 0.5988

PLSR FS 320 0.9233 0.4246 0.8658 0.5638

GA 14 0.7912 0.7009 0.7695 0.7398

SPA 10 0.8148 0.6601 0.7902 0.7064

CARS 44 0.9279 0.4118 0.9079 0.4686

MLR FS / / / / /

GA 14 0.8010 0.7068 0.7660 0.7436

SPA 10 0.8148 0.6758 0.7921 0.7008

CARS 44 0.9511 0.3760 0.9248 0.4213

TA

SVMR FS 320 0.9823 0.1312 0.9313 0.1948

GA 29 0.9638 0.1801 0.9258 0.1989

SPA 9 0.8938 0.3109 0.8820 0.3271

CARS 55 0.9781 0.1400 0.9433 0.1736

(Continued)
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and VC content were in the same interval. The findings of this study

suggest that the HSI of rotating samples is a non-destructive and

efficientmethod suitable for detecting VC, TA, SSC, and starch in apple

fruit, and the experimental results validate the feasibility of this method.
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However, this study analyzed only five apple varieties and one sample

batch. For future scale-ups in complex commercial environments,

more varieties, batches, and locations are planned to be utilized to

build more robust predictive models.
TABLE 3 Continued

Parameters Models
Extraction
methods

No.
of wavelength

Calibration Prediction

R2
C RMSEC R2

p RMSEP

PCR FS 320 0.8505 0.3638 0.8417 0.3758

GA 29 0.9317 0.2458 0.9281 0.2533

SPA 9 0.8705 0.3386 0.8585 0.3547

CARS 55 0.9454 0.2198 0.9401 0.2317

PLSR FS 320 0.9604 0.1871 0.9412 0.2290

GA 29 0.9111 0.2805 0.9027 0.2945

SPA 9 0.8141 0.4057 0.8008 0.4217

CARS 55 0.9489 0.2127 0.9422 0.2274

MLR FS / / / / /

GA 29 0.9573 0.2077 0.9437 0.2236

SPA 9 0.8705 0.3459 0.8518 0.3552

CARS 55 0.9808 0.1486 0.9683 0.1678
‘/’ indicates that MLR is not performed in the full-spectrum band. Values in bold indicate the optimal model as well as his prediction results.
FIGURE 9

Significance tests for t-values and p-values of characteristic bands in the CARS-MLR model. (A) starch, (B) VC, (C) SSC, (D) TA.
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