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The requirement for agricultural crops continues to enhance with the continuous

growth of the human population globally. Plant pathogenic diseases outbreaks

are enhancing and threatening food security and safety for the vulnerable in

different regions worldwide. Silicon (Si) is considered a non-essential element for

plant growth. It regulates the biological functions, plant development and

productivity, and balance the defense mechanism in response to fungal,

bacterial and pest attacks. The optimum crop yield can be achieved by

applying Si in agricultural systems through different methods to replace or

minimize the use of synthetic fertilizers. This approach can be effective on

crop production during limited resources, extreme climates, pests and

diseases, and environmental pollution. Silicon can be applied as foliar spray,

priming of seeds, soil water irrigation, soil amendment and soilless medium

(hydroponic) to enhance plant performance and stress tolerance capacity during

stress conditions. This article summarized the effective roles of Si and the ability

to perform in agroecosystems for better crop production, food security and

safety for sustainable agriculture in the future.
KEYWORDS

pathogenic diseases, disease tolerance efficiency and management, crop productivity,
plant nutrition, silicon
Introduction

Silicon (Si) has a brittle crystalline structure with enormous application in biological

sciences. Si finds a second position in the abundance of the earth’s crust (Verma et al.,

2023a, b). Due to its affinity towards oxygen (Verma et al., 2019), Si forms two oxides, silica

(SiO2) and silicon monoxide (SiO), as the SiO bond is unusually strong. The average Si
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content in normal soil is very high, i.e., 28% (weight basis). Soil

carries silicon dioxide, silicate minerals, and alumino-silicates are

not available to plants through their uptake process. The uptake and

accumulation of Si depends on the variety of crop plants, soil

properties, sources and concentration of Si in planta. Si content can

vary from 0.1 to 10% (dry weight basis) near the detection limit

(Coskun et al., 2019; Verma et al., 2020a, b; 2023a). Monosilicic acid

is soluble in water and adsorbed by plant roots (Matichenkov and

Calvert, 2002; Verma et al., 2020c; Paton, 2023).

Interestingly, the concentration of plant-accessible Si exceeds

the phosphorus in the soil solution. Different factors, including pH,

water status, temperature, and accompanying ions, influence Si

availability in the rhizospheric soil (Bityutskii et al., 2019; Verma

et al., 2020d, e). Specific soil types, such as extensively weathered

acidic soil and calcareous paddy soil, may experience Si deficiency.

Si can be detected in nearly all land-dwelling plant species but in

different concentrations range. Some plant species have optimum Si

accumulation capacity, while most have relatively low levels (Verma

et al., 2020f; Hernandez-Apaolaza, 2022).

Plant diseases negatively impact plants’ growth, development

and food grain quality. It is a severe problem for sustainable

agriculture and food security. Unsuitable agricultural approaches

are degrading the atmospheric environmental variables and facing

population pressure due to less crop productivity as required

(Verma et al., 2021a, b). Si was reported to enhance the defense

system against biotic stresses occurring in the form of plant

pathogens, such as fungi, insects, weeds, bacteria and viruses or

animals, i.e., vertebrates and arthropod herbivores. The deposition

of Si upregulated the abrasiveness of plant tissues and thus reduced

palatability and digestibility for herbivores (Massey and Hartley,

2009; Luyckx et al., 2017). The physical strength of the leaf

resulting from the accumulation of Si can afford mechanical

protection and control the frequency and severity of the

infection (Zhang et al., 2013; Ning et al., 2014; Song et al., 2021).

The postulation of potential physical obstruction formation is

based on the type of Si deposition in foliage, especially in the cell

wall. Si in the plant cell wall and apoplast protects pathogen

penetration (Luyckx et al., 2017; Gulzar et al., 2021). Recent

demonstrations have shown that the biochemical mechanisms of

Si compared to physical mechanisms play a significant role in

enhancing plant tolerance efficiency during pathogenic diseases

(Song et al., 2016, 2021).

The current global scenario presents humanity with an alarming

level of hunger, primarily driven by rapid population pressure.

Unfortunately, the limited availability of inadequate resources is

incapable to fulfilling the demand of food (Verma et al., 2021c, d).

The era of climate change is a significant obstacle to achieving

sustainable agricultural productivity (Verma et al., 2024). However,

biotic stress adds to the challenges faced by plant production systems

worldwide, and a transition towards environmentally friendly

approaches is necessary (Kumari et al., 2022; 2023; Verma et al.,

2022a, b, c). Si offers a natural defense system against various insects

and pathogens by strengthening plant tissues, inducing the

production of defense compounds, and activating systemic defense
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responses. Si significantly reduce the reliance on synthetic pesticides,

i.e., nematicides (Santos et al., 2022).

This review thoroughly discussed how Si mitigates biotic stress

in plants. It provides technical and theoretical knowledge, and

action of defense mechanisms on Si-based strategies to enhance

plant resilience and productivity in adverse climatic conditions. It

aims to understand how plants acquire and allocate Si in plant parts

during biotic stress.
Impact of biotic stress on
plant development

Pathogenic diseases have significant implications for plant

growth, development and crop protection. Fungal pathogens

invade plant tissues, causing diseases, such as rust and powdery

mildew, which cause wilting and reduce crop productivity and

quality. Similarly, bacterial and viral pathogens release toxins that

induce symptoms like wilting and rotting, disrupting plant cell

processes, impeding nutrient absorption, and stunting plant growth

(Muthu et al., 2022). Insects and pests damage plant tissues and

downregulate plant growth and photosynthetic CO2 assimilation

rate. These biotic stresses compromise photosynthesis, nutrient

absorption, and plant defense mechanisms, making plants more

vulnerable to secondary infections. Different plant species possess

some specific action mechanisms for the uptake and accumulation

of Si in other plant parts during stress conditions.
Role of Si on insects, pests, and
weeds infection

In natural ecosystems, plant communities coexist with plant-

feeding insects. However, agricultural productivity is directly

damaged in agricultural systems by attacks from pathogens, pests,

and weeds (Al-Gaashani et al., 2023). The impact of pest attacks on

plants is observed by their effect on yield, which refers to the

amount of economically viable product per unit area. Insect pests

pose a significant threat to crops for human and animal

consumption, directly damaging plants. In agri-systems, direct

losses caused by pathogens and weeds account for a significant

portion of the reduction in global crop production (Sharma et al.,

2017; El-Ramady et al., 2022). Wheat and cotton were particularly

susceptible, with potential losses exceeding 80%. Rice is affected by

more than 800 insect species, resulting in actual losses of nearly 40%

worldwide. In India, yield loss (21-50%) was observed in the rice by

insect pests attack (Fahad et al., 2019). In wheat, actual losses of

more than 30% worldwide (Jasrotia et al., 2021). Substantial yield

loss was also observed in sorghum by pest challenges, such as

Atherigona soccata Rondani and stem borer (Table 1).

Rapeseed-mustard crops damage from pests, like mustard

aphids, leading to yield losses (35-73%) in India (Tyczewska

et al., 2018). Leguminous crops, like chickpeas and pigeon peas

are affected by various pests, which result in considerable yield
frontiersin.org
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TABLE 1 Potential of Si against biotic stress mitigation strategies.

Crop Pathogen Response Source

Pumpkin (Cucurbita pepo L. Howden) Podosphaera xanthii Reduce powdery mildew disease and
increase crop productivity, soil
nutritional efficiency and uptake and
accumulation of silicon

Lepolu Torlon et al., 2016

Bitter gourd (Momordica charantia L.) Erysiphe sp. Suppress disease severity and upregulate
enzymatic activities, i.e., POD, PPO and
pathogenesis-related genes, chitinase
and b-1,3-glucanase.

Ratnayake et al., 2016

Chili pepper (Capsicum annuum
‘Muria F1)

Colletotrichum gloeosporioides No significant impacts on plant
development and fruit/flowering
quality. Cell wall-bound phenolic
compounds and thickness of cuticle
were increased by the application of Si.

Jayawardana et al., 2015

Melon (Cucumis melo L.) Acidovorax citrulli Improved plant nutritional status, and
minimize the bacterial fruit
blotch disease

Conceiaco et al., 2014; Ferreira
et al., 2015

Tomato (Solanum lycopersicum) Ralstonia solanacearum, Tuba absoluta
and Colletotrichum dematium

Control disease index, and enhanced Si
accumulation in roots, soil bacterial
content and actinomycetes and
downregulate fungi/soil bacterial ratio
(ca. 54%). Changes the soil
microorganisms and enzymatic
activities. Upregulate gene expressions
in salicylic acid pathway but
downregulate jasmonic acid and
ethylene expression genes. Suppress
disease resistance capacity. Controls leaf
miner due to toxic effect of Tuta
absoluta during larval stage.

Wang et al., 2013; dos Santos et al.,
2015; Chen et al., 2015; Somapala
et al., 2015

Cucumber (Cucumis sativus L.) Meloidogyne incognita Significantly minimize root-knot
nematode activity

Dugui-Es et al., 2010

Soybean (Glycine max L.) Downregulate the silver leaf white
fly population

Ferreira and Moraes, 2011

Arabidopsis (Arabidopsis thaliana L.) Erysiphe cichoracearum Suppress disease and balance
mechanical resistance capacity

Ghanmi et al., 2004

Banana (Musa spp. cv. Maca) Fusarium oxysporum f. sp. cubense Si level enhanced in the roots and
reduced disease symptoms upto 27%.
Lignin deposited in the roots cortex.
Resist phenylpropanoid pathway during
disease infection with Si application.

Fortunato et al., 2014

Banana (Musa acuminate L.) Cyllindrocladium spathiphylli and
Pseudocercospora fijiensis

Reduced root necrosis disease and
enhanced plant growth after Si-
application during disease infection.
The disease severity index (DSI)
reduced during 21 and 35-days of
pathogen inoculation.

Vermeire et al., 2011; Gbongue
et al., 2019

Barley (Hordeum vulgare L.) Blumeria graminis f. sp. Hordei race A6 Enhanced pathogen inoculation
resistance efficiency.

Wiese et al., 2005

Bell Pepper, Sakata Hybrid Xpp 6115
(Capsicum annuum L.)

Phytiophthora capsici Enhanced Si concentration uptake in
roots but not in stems during Si
application on disease infected plants.
Disease and relative lesion extension
were downregulated and plant drymass
enhanced. Si reduced the disease
severity and upgrade plant growth
and development.

French-Monar et al., 2010

(Continued)
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losses. Forage leguminous plants such as berseem, alfalfa, and

Persian clover encounter challenges from the pod borer, H.

armigera, leading to substantial losses in seed yield. Cotton plants

require the optimum amounts of insecticides compared to other

crop plants. Insecticides account for a significant portion of the

total expenditure in cotton production (15-42%). Cotton

accounts for nearly 23% of the worldwide insecticide use

(Shahrajabian et al., 2020). Various insect pests, including

whiteflies, bollworms, aphids, and various sucking pests, cause

yield losses (up to 82%). Bollworms have triggered yield losses

before 20 years (Lashari et al., 2022).

Pest insects pose a significant damage to global food production.

Much more research is available to support the idea that Si

application on plants can boost resistance to insects, pests, and

diseases, leading to increased crop yield (Song et al., 2021). Si

deposits in monocots can act as a “mechanical barrier against
Frontiers in Plant Science 04
insects,” and their active role in biological resistance is now

acknowledged. Si is a promoter in triggering biological resistance

by generating compounds like tannic and phenolic chemicals

(Tayade et al., 2022). Application of Si exhibits resistance to stalk

borer damage. It was demonstrated that applying Si to maize plants

reduces larval survival of the borer. Increasing the silica content and

lowered larva survival efficiency (Rajput et al., 2021). An association

of notable significance was discovered between the resistance of

maize to the subsequent generation of Ostrinia nubilalis Hübnera

and the Si concentration present within the sheath and collar tissues.

Si in the epidermis of plant leaves can dislodge young borer larvae,

hindering their establishment in the stem. It is well known that Si

increases plant tissue toughness, interfering with insect larval boring

and feeding. High Si content in rice plants damages the mandibles of

rice stem borer larvae (Juma et al., 2015; Cabrera-Ponce et al., 2019).

The physical arrangement of Si along the sheath of leaves could cause
TABLE 1 Continued

Crop Pathogen Response Source

Carrot (Daucus carota L.) Pectobacterium carotovorum
pv. carotovorum

Enhanced plant development,
photosynthetic pigments, dry weight
during pathogenic inoculated plants
with Si application.

Siddiqui et al., 2020

Coffee (Coffea Arabica L.) Hemileia vastatrix The more Si deposition on the plant
leaves Disease severity reduced the
application of Si on inoculation plants.

Carre-Missio et al., 2014

Melon (Cucumis melo L.) Podosphaera xanthii The disease curve was minimize
(65% and 73%), infection efficiency,
expansion rate of colony, colony area,
conidial production during foliar and
root irrigation of Si application.

Dallagnol et al., 2012

Cotton (Gossypium hirsutum iL.) Fusarium oxysporum f.sp. vasinfectum Significant phenolic compounds were
present in root during Si application
followed by pathogenic inoculation. The
lignin content in roots found higher
than inoculated plants without Si. Si
may affect cellular defense systems in
cotton roots.

Whan et al., 2016

Asian Ginseng (Panax ginseng L.) Ilyonectria morspanacis Minimize disease severity, no direct
effects against the pathogen. Decreased
expression of PgSWEET leading to
regulated sugar efflux into apoplast and
increased resistance efficiency against
applied pathogen.

Abbai et al., 2019

Oat (Avena sativa L.) Rhizoctonia solani Kuhn Physio-biochemical responses decreased
during fungal inoculation with Si
application. Si assists to protect the
harmful effects caused by fungal
inoculation. Disease index reduced
when the fungus was applied with
Si application.

Ahmad et al., 2023

Finger millet (Eleusine
coracana Gaertn.)

Sesamia inferens Walker. Si application induces the interactive
action defense mechanism by
upregulating the transcript level of
silicon transporter genes (EcLsi1, EcLsi2
and EcLsi6) and defense hormone
regulating genes (EcSAM, EcPAL and
EcLOX) during 72 hr of post infestation
in stem and roots

Jadhao et al., 2020
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varietal resistance to the insects. When plants attack, signaling

cascades are triggered, regulating target genes by entering proteins

into the nucleus. The soluble Si protects cucumbers against fungal

diseases (Song et al., 2021; El-Ramady et al., 2022).

By developing physical barrier, Si deposition under leaf cuticles

enhances plants’ resistance to insect pests. It makes the tissue rigid

and abrasive, reducing palatability and digestibility for herbivores

(Nikpay et al., 2023). Differences in epidermal Si deposition among

cultivars contribute to variations in resistance. Leaf abrasiveness

and digestibility are influenced by spine and phytolith morphology.

Si upregulates the gene expression associated with defense systems

and promotes the accumulation of defensive compounds. It

improves pest resistance in wheat and cucumber, and upregulates

the activities of defensive enzymes. In response to pathogen

infection, Si-mediated defense includes forming papilla,

developing callose, and accumulating phenolic compounds. Si

hinders fungal ET production, preventing suppression of the

innate immune system and enhancing resistance against brown
Frontiers in Plant Science 05
spot disease in rice plants (Akhtar et al., 2018) (Table 2). The cell

wall of fungi consists of the carbohydrates chitin and b-1,3-glucan,
Si-induced chitinases, and b-1,3-glucanases enzymes can hydrolyze

these compounds to oligosaccharides and, as a result, the plant’s

defense responses are elicited (Cruz et al., 2013). Si-enhanced

tolerance to fungal diseases, there is limited information is

available on the Si and bacterial disease interaction in plants

(Song et al., 2016).

Silicon nanoparticles (SiNPs) have shown efficacy as pesticides

with the interactive application of commercial pesticides. SiNPs are

assimilated into the cuticular lipids, resulting in the physical

mortality of insects (Mittal et al., 2020). Applied SiNPs with garlic

essential oil has successfully managed agricultural insect pests.

SiNPs can act as nano-pesticides or nanocarriers, enhancing the

effectiveness of commercial pesticides. SiNPs can lead to insect

mortality through desiccation and damage to the digestive system.

The effects of SiNPs on pests have primarily been studied in

laboratory conditions, focusing on specific pests and applied
TABLE 2 Plant pathogens and insects reported to be suppressed by Si application.

Type of
pathogen
and insect

Host Pathogen Source

Fungal Arabidopsis (Arabidopsis thaliana L.) Erysiphe cichoracearum Fauteux et al., 2006; Vivancos et al., 2015

Banana (Musa spp. Cv. Maca) Mycosphaerella fijiensis, Fusarium oxysporum f.
spp. Cubense and Cylindrocladium spathiphylli

Kablan et al., 2012; Fortunato et al., 2015

Barley (Hordeum vulgare L.) Blumeria graminis Wiese et al., 2005

Bean (Phaseolus vulgaris L.) Pseudocercospora griseola Rodrigues et al., 2010

Pepper (Capsicum annuum L.) Phytophthora capsici French-Monar et al., 2010

Bentgrass (Agrostis stolonifera L.) Sclerotinia homoeocarpa Zhang et al., 2006

Bitter gourd (Momordica charantia L.) Erysiphe spp. Ratnayake et al., 2016

Capsicum (Capsicum annuum L.) Colletotrichum gloeosporioides Jayawardana et al., 2016

Wheat (Triticum aestivum L.) Pyrenophora tritici-repentis Dorneles et al., 2017; Pazdiora et al., 2018

Soybean (Glycine max L.) P. sojae Guerin et al., 2014; Rasoolizadeh et al., 2018

Virus Mango (Mangifera indica L.) P. syringae pv. syringae Gutierrez-Barranquero et al., 2012

Tobacco (Nicotiana tabacum L.) Tobacco ringspot virus Zellner et al., 2011

Bacterial Banana (Musa spp.) Xanthomonas campestris Mburu et al., 2016

Cotton (Gossypium spp.) X. citri subsp. Malvacearum Oliveira et al., 2012

Melon (Cucumis melo L.) Acidovorax citrulli Conceiaço et al., 2014

Rice (Oryza sativa L.) X. oryzae pv. oryza Song et al., 2016

Sweet pepper (Capsicum annuum L.) Ralstonia solanacearum Alves et al., 2015

Tomato (Solanum lycopersicum L.) Pseudomonas syringae and
Ralstonia solanacearum

Andrade et al., 2013; Chen et al., 2014;
Ghareeb et al., 2011; Jiang et al., 2019

Wheat (Triticum aestivum L.) X. translucens Silva et al., 2010a

Nematode Coffee (Coffea arabica L.) Meloidogyne exigua Silva et al., 2010b

Rice (Oryza sativa L.) M. graminicola Zhan et al., 2018

(Continued)
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concentration. Weeds exert a harmful influence on the crop yield

loss. A nano-herbicide formulation has been developed to combat

weeds. It enhances the accumulation of Si in plant tissues.

Nanoparticles assist for better customization, facilitating

improved penetration through the plant’s protective cuticle and

targeted release of active ingredients. The loss in herbivore

populations is notably noted in Si-accumulating and non-

accumulating plants (Mathur and Srivastava, 2022; Sarraf et al.,

2022; Verma et al., 2023a).
Biochemical and molecular
mechanisms of Si on plants to
biotic stress

Si effectively mitigates biotic stresses in plants, serving as a

key player in their adaptation and survival under unfavorable
Frontiers in Plant Science 06
plant growth conditions. Si exerts its protective effects through

various biochemical mechanisms, enabling plants to combat

stresses effectively (Khan et al., 2024). It enhances the

biochemical activities, i.e., peroxidase (POD), catalase (CAT),

and superoxide dismutase (SOD). The generation of reactive

oxygen species (ROS) and antioxidant metabolism have been

linked with bacterial and fungal infection, and in response

to damage from chewing and sucking insects (Debona et al.,

2014; Yang et al., 2017; Frew et al., 2018). ROS played significant

roles in different signaling pathways with plant hormones

(Glazebrook, 2005; Torres, 2010). However, ROS can activate

plant defense genes and the associated accumulation of defense

metabolites, such as phytoalexins and allelochemicals (Thoma

et al., 2003).

Si plays a significant role during the uptake and translocation of

nutritional elements. It enhances the absorption of essential

nutrients from the rhizospheric soil, i.e., nitrogen, phosphorus,
TABLE 2 Continued

Type of
pathogen
and insect

Host Pathogen Source

Chewing Sugarcane (Saccharum officinarum L.) Diatraea saccharalis, Eldana saccharina and
E. saccharina

Meyer and Keeping, 2001; Keeping and Meyer,
2002, 2006

Alfalfa (Medicago truncatula L.) Beet armyworm Korth et al., 2006

Rice (Oryza sativa L.) Chilo suppressalis (Walker)
(Lepidoptera: Crambidae)

Hou and Han, 2010

Maize (Zea mays L.) Busseola fusca Juma et al., 2015

Rice (Oryza sativa L. Susceptible) C. medinalis Guenee Han et al., 2015

Cabbage (Brassica oleracea L.) Plutella xylostella Shoaib et al., 2018

Rice (Oryza sativa L.) Scirpophaga incertulas and
S. incertulas (Walker)

Jeer et al., 2017; Han et al., 2018

Soybean (Glycine max L.) Helicoverpa armigera Alves et al., 2018

Sucking Wheat (Triticum aestivum L.) S. graminum Rond. Basagli et al., 2003; Goussain et al., 2005

Maize (Zea mays L.) Rhopalosiphum maidis Moraes et al., 2005

Cucumber (Cucumis sativus L.) (Gennadius spp.) (Hemiptera: Aleyrodidae) Correa et al., 2005

Eggplant (Solanum melongena L.) Thysanoptera: Thripidae De Almeida et al., 2008

Tomato (Solanum lycopersicum L.) Whitefly (Homoptera: Aleyrodidae) Inbar and Gerling, 2008

Zinnia (Zinnia elegans Jacq.) Myzus persicae Sulzer Ranger et al., 2009

Bean (Phaseolus vulgaris L.) Tetranychus urticae Koh Gatarayiha et al., 2010

Rice (Oryza sativa L.) Cnaphalocrocis medinalis Guenee Ye et al., 2013

Wheat (Triticum aestivum L.) Sitobion avenae (F.) (Hemiptera: Aphididae) Dias et al., 2014

Maize (Zea mays L.) R. maidis Boer et al., 2019

Rice (Oryza sativa L.) C. medinalis Liu et al., 2017

Lime (Citrus latifolia L.) Diaphorina citri Ramirez-Godoy et al., 2018

Phloem Feeding Grass species Sitobion avenae. Massey et al., 2006

Rice (Oryza sativa L.) N. lugens Yang et al., 2018
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potassium, and calcium. It affects the action of nutrient transporters

and balances the nutritional efficiency. It influences hormonal

signaling pathways in plants, contributing to their ability to

respond to stress. It involves the synthesis, transport, and

signaling of phytohormones. Si induces the production of ABA,

stress hormone implied in regulating stomatal closure and stress

responses (Mukarram et al., 2022; Chen et al., 2024). Si also

activates JA signaling pathways for plant defense mechanisms in

response to biotic stresses (Figure 1).

Biochemical and molecular functions are also induced or

reinforced by Si, allowing the plant to enhance stress tolerance

efficiency and include defensive compounds, i.e., phenolics,

phytoalexins and momilactons, but also activate the enzymatic

defensive system, like polyphenol oxidase (PPO), lipoxygenase

(LPO) and phenylalanine ammonia-lyase (PAL) (Remus-Borel

et al., 2005; Rahman et al., 2015; Verma et al., 2021d). Applied

Si can upregulate transcript levels corresponding to defensive-

related genes during stressed conditions. Si also attracts predators

or parasitoids to plants in response to herbivore attacks. However,

soluble Si enhances herbivore-induced plant volatiles to

upregulate or maintain predator attraction by pest-infected

plants. The insect’s life cycle phenology is also downregulated in

Si-applied plants, making it more prone to predation (Cai et al.,

2008; Reynolds et al., 2016).

Si can control the stress-responsive gene expression, activating

pathways that enhance plant tolerance efficiency. It upregulates

stress-responsive transcription factors (SRTFs), heat shock proteins

(HSPs), and pathogenesis-related proteins (Song et al., 2021; Mir

et al., 2022). The modulation of gene expression, Si plays a
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significant role in triggering stress signaling pathways, facilitating

the establishment of stress tolerance in plants (Figure 1). It

promotes the accumulation of osmoprotectants, which are

organic compounds that help to maintain cellular osmotic

balance and protect against osmotic stress (Shomali et al., 2022,

2024). Subsequent solutes, such as sugars, proline, betaine, and

glycine, accumulate in higher concentrations in Si-treated plants.

These osmolytes act as osmoprotectants, maintaining cell turgor

and stabilizing macromolecules, ultimately contributing to stress

resilience (Song et al., 2021).

The application of transcriptomic strategies, i.e., microarrays

alongside more targeted assays such as real-time quantitative PCR

(qPCR) are critical in developing an understanding of how Si

impacts the expression of plant genes. The pathogenic infection

enhanced defense genes and reduced primary metabolism genes,

but following the use of Si reduced genes were not as severely

impacted, while they found limited information to suggest an

impact of Si without pathogen stress (Fauteux et al., 2006). The

application of Si nearly eradicated the effects of pathogen stress on

the plant transcriptome. Some transcriptomic research work has

been reported, limited research has assessed the impact of Si on

enhanced plant resistance efficiency to insect herbivores.

However, further studies on the interactions of Si with the

transcriptome of a variety of crop plants varying in their Si

uptake and accumulation ability, like accumulators, non-

accumulators under different forms of insect herbivory, such as

chewers, suckers should provide valuable insight into how Si

changes plant gene expression in response to insect stressors

(Chain et al., 2009; Bockhaven et al., 2015) (Figure 1).
FIGURE 1

The outline of the major mitigation effects of Si on biotic stresses and some of the progressively more fundamental proximate and underlying
phenomena associated with the mitigation of stress. The stress responsive genes associated with metabolic processes with variation in the response
of transcription factors in response to Si. The essential Si transporter genes for the uptake of Si in plants are as Lsi1, Lsi2, Lsi6 (Frew et al., 2018).
Arrows shows linkages for which there is significant support and potential interactions.
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Mitigation of pathogenic bacteria,
fungi, and viral diseases by
Si application

Applying Si formulation open a new window in plant-pathogen

interaction and management strategies. Si enhances resistance

against diverse fungal pathogens in different plant-pathogen

interactions. It effectively reduces plant diseases, such as black

point in barley (Alternaria spp (Al-Sadi, 2021), leaf and glume

blotch in wheat (Septoria nodorum), root rot in cucumber (Pythium

ultimum and Pythium aphanidermatum) (Sun et al., 2022),

damping off and stem rots in maize (Pythium aphanidermatum)

(Haq et al., 2021), ascochyta blight in pea (Mycosphaerella pinodes),

cercospora leaf spot in coffee (Cercospora coffeicola), blue mold

decay and brown rot decay in cherry (Penicillium expansum and

Monilinia fructicola), root rot in melon (Pythium aphanidermatum)

(Sakr, 2018), wilt in potato (Fusarium sulphureum), black sigatoka

in banana (Mycosphaerella fijiensis), and gray mold in strawberry

(Botrytis cinerea). Foliar application of Si significantly reduces

Fusarium crown and root rot in tomato plants. Si also reduces

the intensity of hemibiotrophic fungal pathogens in different

pathosystems, such as black spot in rose (Diplocarpon rosae),

phytophthora blight in bell pepper (Phytophthora capsici),

anthracnose in sorghum (Colletotrichum sublineolum),

anthracnose in bean, and blast in wheat (Pyricularia oryzae). Si

application reduces powdery mildew disease in wheat, cucumber,

muskmelon, grape, arabidopsis, pearl millet, sugarcane, bean,

strawberry, soybean, coffee, and rose, as well as powdery mildew

in melon caused by Podosphaera xanthii (Farhat et al., 2018).

Si application upregulates plants’ efficiency for epiphytic and

endophytic bacterial pathogens in mango plants where bacterial

apical necrosis was reduced (Etesami et al., 2020; Verma et al.,

2023b). Si treatments have also controlled bacterial wilt on tomato

(Jiang et al., 2019), bacterial spot-on Passiflora edulis, bacterial

streak on wheat, angular leaf spot on cotton, bacterial wilt on sweet

pepper, and bacterial blight on rice. Applied calcium silicate in soil

(1.41 g Si kg−1) defense against Acidovorax citrulli in melon plants

(Bakhat et al., 2018). Different research groups’ demonstrations

have confirmed the suppressive effects of Si application on viral

pathogens. For instance, Si treatments have effectively reduced the

incidence of Cucumber mosaic virus and Papaya ring spot virus on

cucumbers. Applied Si in tobacco plants (0.1 mM) showed no

systemic symptoms caused by the Tobacco ring spot virus than

control plants, and higher Si rates slowed reduce the development of

virus systemic symptoms. Si-mediated biotic stress tolerance by

promoting various functions as shown in Figure 1 and summarized

in Tables 1, 2.
Conclusion and future prospects

Si can influence the ecophysiology and cellular metabolism of

plants. It stimulates antioxidant mechanisms and photosynthetic

apparatus, maintain nutritional balance, regulates nutrients’ uptake
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and accumulation, promotes the production of secondary

metabolites, ROS, and toxic metal chelation, changes plant cell

walls, and regulates stress resistance proteins. However, the most

significant effect of Si is the reduction in the intensities and

frequencies of different plant diseases caused by biotrophic,

hemibiotrophic, and necrotrophic plant pathogens causing seed-

borne, soilborne, and foliar diseases in a variety of crops of great

economic importance. The plant responses during pathogen

infection and pest attack at the physio-biochemical and molecular

levels are remarkably similar when Si is taken up by the plant roots

and translocated to shoots, indicating an active role played by this

element in one or more plant defense signaling pathways. The

regulatory functions of Si during stressed conditions discussed how

Si tolerates stress efficiency. While Si is associated with various plant

proteins, it is unclear which other transcription factors and

signaling proteins interact with Si to enhance plant stress. It will

be very interesting to discover the functional role of signaling

pathways and interactions with phytohormones at the cellular

level to understand better how plants react during biotic stress

with Si application. However, upcoming research demonstrations

should focus on deciphering the role of Si in crop plants at field

trials rather than laboratory conditions. The CRISPR/Cas system

should be explored to Si-encoding proteins to enhance the stress

resistance capacity in response to pathogenic diseases in major

crop plants.
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