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Diethyl aminoethyl hexanoate (DA-6) serving as a non-toxic and low-cost plant

growth regulator is used for improving plant growth and stress tolerance, but the

DA-6-mediated organic metabolites remodeling in relation to drought tolerance

is not well documented in crops. The aims of the present study were to evaluate

impacts of DA-6 on physiological functions including osmotic adjustment,

photochemical efficiency, oxidative damage, and cell membrane stability as

well as organic metabolites remodeling in white clover (Trifolium repens)

leaves based on the analysis of metabolomics. Plants were foliarly treated with

or without DA-6 and subsequently exposed to drought stress for 8 days. Results

demonstrated that foliar application of DA-6 (1.5 mM) could significantly

ameliorate drought tolerance, which was linked with better leaf water status,

photosynthetic performance, and cell membrane stability as well as lower

oxidative injury in leaves. Metabolic profiling of organic metabolites identified a

total of 59 metabolites including 17 organic acids, 20 sugars, 12 alcohols, and 10

other metabolites. In response to drought stress, the DA-6 induced

accumulations of many sugars and sugar alcohols (erythrulose, arabinose,

xylose, inosose, galactose, talopyranose, fucose, erythritol, and ribitol), organic

acids (propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid, linolenic acid,

and galacturonic acid), and other metabolites (2-oxazoline, silane, and glycine) in

white clover. These altered metabolites induced by the DA-6 could perform

critical functions in maintenances of osmo-protection, osmotic adjustment,

redox homeostasis, cell wall structure and membrane stability when white

clover suffered from water deficit. In addition, the campesterol and

stigmasterol significantly accumulated in all plants in spite of the DA-6

pretreatment under drought stress, which could be an important adaptive
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response to water deficit due to beneficial roles of those two metabolites in

regulating cell membrane stability and antioxidant defense. Present findings

provide new evidence of DA-6-regulated metabolic homeostasis contributing

to drought tolerance in leguminous plants.
KEYWORDS

water deficit, metabolomics, organic acids, sugars, physiological function,
photosynthetic performance
1 Introduction

Due to global warming, the world is experiencing serious

environmental problems including increased CO2 level and

drought (Gosling and Arnell, 2016; Jackson et al., 2017). Among

these, drought is deliberated as the chief environmental issue with

severe agricultural penalties (Fahad et al., 2017), because water

scarcity significantly disrupts plant water status and also induces

stomatal closure resulting in decreased CO2 assimilation, carbon

fixation, and photosynthesis for ATP production (França et al.,

2000; Flexas and Medrano, 2002; Wu et al., 2008; Liang et al., 2019).

In addition, drought stress disturbs the redox homeostasis leading

to excessive reactive oxygen species (ROS), which induces severe

oxidative injury to functional biomolecules such as nucleic acids,

chlorophylls, proteins, and membrane lipids, thereby promoting

programmed cell death (Gill and Tuteja, 2010; Sharma et al., 2019).

However, undesirable consequences induced by drought stress

depend on various factors such as the duration or intensity of the

stress, plant growth stage, and species or genotype (Okçu et al.,

2005; Hassan et al., 2022). Plants tend to acclimatize hazardous

conditions by regulating morphological, biochemical, and

physiological responses at genetic and metabolic levels (Gong

et al., 2020; Li et al., 2021; Zhang et al., 2021).

By metabolomics analysis, biologically important and

significantly different metabolites are identified and separated

from specific cells or tissues, and different metabolic processes as

well as response mechanisms occurring in organisms are studied

(Sumner et al., 2003). Plant metabolomics has become one of the

main research hot spots in plant-based studies and serves as an

indispensable bridge linking plant phenotypes and genotypes (Hall,

2006). Many studies have shown that the accumulation and

reprogramming of comprehensive metabolites are not only

related to quality and quantity of crops, but also contributed to

alteration of stress tolerance (Khan et al., 2019; Patel et al., 2022;

Zhou et al., 2023). Some of them are advantageous for increased

stress tolerance such as soluble sugars and multiple amino acids

including proline, glycine, and g-aminobutyric acid etc., while other

metabolites such as aldehydes and quinones in massive quantity are

harmful for plants under unfavorable environmental conditions

(Srivastava et al., 2017; Martıńez-Noël and Tognetti, 2018; Batista-

Silva et al., 2019). Global metabolites reprogramming has been
02
reported to be associated with drought tolerance in different plant

species based on comparative metabolomics (Sanchez et al., 2012).

Moreover, spermine-regulated accumulation of organic metabolites

such as galactose, sucrose-6-phosphate, mannose, and maltose

enhanced heat or drought tolerance of creeping bentgrass

(Agrostis stolonifera) by using non-targeted metabolomics (Li

et al., 2022). Thus, study on relationship between alterations in

metabolites profile and stress tolerance is crucial for broad-

spectrum insight about stress responsive mechanisms in different

plant species.

Over the last decade, the use of plant growth regulators (PGRs)

for ameliorating crop yield and stress tolerance in the agricultural

sector has become a common practice worldwide (Khan et al.,

2020). Diethyl aminoethyl hexanoate (DA-6) is an important

synthetic tertiary amine with multiple beneficial effects in plants

under normal and stressed conditions (Hassan et al., 2021a). For

example, DA-6 has been reported to enhance germination and

seedling establishment of aged soybean (Glycine max) seeds via

regulation of fatty acid metabolism and glycometabolism (Zhou

et al., 2019). Foliar application of DA-6 after anthesis significantly

mediated wheat (Triticum aestivum) grain filling, hence

contributing to improved crop production (Wen et al., 2019).

DA-6 also improved grain yield of summer maize (Zea mays) by

increasing leaf photosynthetic functions and defense-related

enzymes activities under field conditions (Nie et al., 2010).

Moreover, the DA-6-regulated mechanisms of the tolerance to

abiotic stress have been shown in many plant species. For

example, the study of (Hassan et al., 2022) found that DA-6

ameliorated white clover (Trifolium repens) seedlings growth by

regulating oxidative injury, photosynthetic performance, and lipids

reprogramming under water deficient condition. DA-6 significantly

strengthened antioxidant defense system in plants under different

abiotic stresses such as low temperature and heavy metal toxicity

(Fu et al., 2011; He et al., 2013; Li et al., 2018). Exogenous

application of DA-6 effectively alleviated salt-induced oxidative

damage in Cassia obtusifolia (Zhang et al., 2016). Foliar

supplementation of DA-6 performed a positive function in

increasing cadmium-extraction efficiency, thereby alleviating

cadmium stress (He et al., 2014). The study of (Hassan et al.,

2021a) also reported that DA-6 enhanced germination of white

clover seeds by enhancing osmotic adjustment (OA), hormonal
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homeostasis, and accumulation of dehydrins under drought stress.

Regardless of these previous studies, the mediatory function of DA-

6 in drought tolerance in relation to organic metabolites remodeling

still requires to be further investigated in plants.

White clover occupies a core position among global cool-season

forage crops because of highly palatable, easily digestible, and

nutritionally rich traits as well as tremendous ability to fix

nitrogen in soils, hence contributing significantly to soil fertility

and livestock industry (Cranston et al., 2015; Caradus et al., 2023;

Sawicka et al., 2023). It’s also used as an important ornamental grass

and ground cover plant for urban landscape (Sincik and Acikgoz,

2007). However, ineffective transpirational regulation and shallow

root system make white clover highly vulnerable to water stress

(Annicchiarico and Piano, 2004). Thus, the improvement of

drought tolerance of legume crops like white clover is crucial to

increase the production and quality of forage and ruminant’s

performance. Aims of the study were to elucidate the impact of

foliar DA-6 spray on oxidative damage, water status, and

photochemical efficiency and to further reveal metabolic balance

associated with organic metabolites reprogramming based on

metabolomics in white clover plants exposed to drought stress.

Current findings will supply vital information about regulatory

roles and mechanisms of the DA-6 in legume species in response to

drought stress.
2 Materials and methods

2.1 Planting materials & treatments

White clover seeds cv. ‘Haifa’ were sterilized with mercuric

chloride solution (0.1%) for 4 min and washed twice with deionized

water. Sterile 0.05 g of seeds were uniformly sown in each plastic

box (18 cm breadth, 24 cm length, or 9 cm deep) containing

sterilized quartz sands in a controlled environment (700 mmol

photon m−2 s–1 PAR, 23/19°C day/night temperature, 12 h

photoperiod cycle, and a relative humidity of 65%). Seeds were

irrigated initially with distilled water for 7 days of germination, and

then the distilled water was replaced by half-strength Hoagland

solution (Hoagland and Arnon, 1950) until the second leaf

expanded completely. Before being exposed to drought stress,

one-month-old seedlings were pretreated by foliar application of

DA-6 (1.5 mM) or deionized water once a day for 3 consecutive

days to ensure that plants could absorb adequate quantity of DA-6

or deionized water through leaves. DA-6-treated and untreated

plants were then exposed to Hoagland’s solution (control) or

drought stress (-0.3 Mpa) induced by 17% polyethylene glycol

(PEG) 6000 which was dissolved in Hoagland’s solution for the

next 8 days. All solutions were refreshed daily to prevent any change

in concentration. Four different treatments were used for this

experiment: 1) C, plants grown in Hoagland’s solution as well-

watered control; 2) C+DA-6, DA-6-pretreated plants grown in

Hoagland’s solution; 3) PEG, plants were cultivated in -0.3 Mpa

PEG solution as drought stress; 4) PEG+DA-6, DA-6-pretreated
Frontiers in Plant Science 03
plants were cultivated in -0.3 Mpa PEG solution. All treatments

comprised of four biological replicates and were arranged in a

completely randomized design (CRD) in growth chamber. Leaf

samples were taken on the 8th day of drought stress for analyses of

physiological parameters and metabolomics. The optimum dose of

DA-6 (1.5mM) was chosen based on the result of our previous study

(Hassan et al., 2022).
2.2 Measurements of leaf water status &
osmotic adjustment

To determine leaf relative water content (RWC), fresh leaves

(0.1g) were cut and promptly weighed to note the fresh weight

(FW). Afterwards, leaves were submerged in deionized water for 1

day to attain the turgid weight (TW). Samples were then dried by

placing them in an oven at 80°C for three consecutive days, and dry

weight (DW) was measured. The formula (RWC (%) = 100×[(FW-

DW)/(TW-DW)]) devised by (Barrs and Weatherley, 1962) was

utilized to calculate leaf RWC. To evaluate osmotic potential (OP),

leaf tissues were detached and dipped in deionized water for 8 h to

ensure sufficient hydration. The hydrated leaves were taken out,

blotted dry, and kept in liquid nitrogen for further analysis. After

being thawed in an ice bath, leaf sap was extricated. A 10 ml leaf sap
was taken and injected into an osmometer (Wescor, Inc., Logan,

UT) to estimate osmolality (mmol kg−1). OP was calculated by

using the following formula: MPa = −osmolality × 0.001 × 2.58

(Blum, 1989).
2.3 Measurements of chlorophyll content
and photochemical efficiency

For chlorophyll (Chl) content, fresh leaf samples (0.1 g) were

dipped in 15 ml of dimethyl sulphoxide and placed in dark

environment for two days. Afterwards, leaf extract was collected,

and the absorbance value was noticed spectrophometrically at 663

or 645 nm. The formula defined by (Arnon, 1949) was used for

computing contents of Chl a, chl b, and total Chl. For determination

of photochemical efficiency (Fv/Fm) and performance index on an

absorption basis (PIBAS), fresh leaves were subjected to dark

conditions with leaf clips for half an hour. Later, the Fv/Fm ratio

and PIABS was noticed by using a fluorescence meter (Pocket PEA,

Hansatech, United Kingdom).
2.4 Measurements of electrolyte leakage &
oxidative damage

Electrolyte leakage (EL) was determined by using the protocols

of (Blum and Ebercon, 1981) with slight changes. Fresh leaves (0.1

g) were detached and dipped in centrifuge tubes filled with

deionized water (35 ml). The tubes were then placed on a rotary

shaker for 1 day, and initial conductance (Ci) of solutions was
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recorded. Afterwards, the tubes were kept in an autoclave (140°C)

for half an hour, and the maximum conductance (Cm) of the

solutions was noted. EL was computed as the percentage (%) of

Ci to Cm. For assays of superoxide anion (O2
.-) content,

malondialdehyde (MDA) content, and hydrogen peroxide (H2O2)

content, 0.1 g of leaf tissue was ground in 4 ml cold phosphate buffer

(50 µM, pH 7.8) containing polyvinylpyrrolidone (1%, w/v). After

following centrifugation at 12000 g for 30 min, the supernatant was

collected. The O2
.- was examined with sulfanilamide method

(Elstner and Heupel, 1976), and the absorbance of reaction

solution was spectrophotometrically noted at 530 nm. The H2O2

content was estimated according to the potassium iodide (KI)

protocol. The absorbance of oxidation product was noticed at 390

nm (Velikova et al., 2000). MDA content was estimated by using the

procedure illustrated by (Dhindsa et al., 1981). The supernatant (0.5

ml) and reaction solution (1 ml) comprising of trichloroacetic acid

(20%, w/v) and thiobarbituric acid (0.5%, w/v) were mixed and

shaken thoroughly. The homogenate was placed in a high

temperature water bath (95°C) for 15 min and cooled instantly by

using an ice water bath. After centrifugation at 8000 g for 10 min,

the supernatant was taken, and the absorbance was read at 600 and

532 nm spectrophotometrically.
2.5 Analysis of metabolomics

The content of different metabolites was detected by using gas

chromatography-time of flight mass spectrography (GC-TOFMS).

The procedure described by (Li et al., 2019a) was followed for the

extraction, separation, and quantification of metabolites. A total of 20

mg of the fine dry leaf powders were mixed with 100 mL of double

distilled water, and subsequently the 500 mL of aqueous methanol was

added. The mixture in the tube was subjected to sonication for 20 min.

Later, the centrifugation was performed at 12000 g for 10 min. Then,

300 mL of the supernatant was mixed with 10 mL of 0.3 mg/mL

chlorophenylalanine (an internal standard) before desiccation in a

CentriVap benchtop centrifugal concentrator (Labconco, Kansas City,
Frontiers in Plant Science 04
MO). After being fully desiccated, the samples were reconstituted in 80

mL of methoxyamine hydrochloride and incubated at 30°C for 90 min.

The 80 mL of N-methyl-N-(trimethylsilyl) trifluoroacetamide

containing 1% trimethylchlorosilane was added into the mixture

which was then incubated at 70°C for 60 min. The treated samples

were analyzed by utilizing GC-TOFMS. The initial GC temperature

was held at 80°C for 0.2 min and then increased to 180°C at a rate of

10°C min-1. The metabolite identification was accomplished with

ChromaTOF software (v. 4.50.8.0, LECO, St. Joseph, MI, USA) and

commercially available compound libraries: NIST 2005 (PerkinElmer

Inc., Waltham, MS, USA), Wiley 7.0 (John Wiley and Sons Ltd.,

Hoboken, NJ, USA).
2.6 Statistical analysis

Data was arranged by using Microsoft Excel 2016 software

(Microsoft Corp., Redmond, WA, United States) and figures were

made by using GraphPad Prism 8.3.0 (538). Significant differences

were examined with two-way ANOVA in combination with

Tukey’s test at p ≤ 0.05.
3 Results

3.1 Effects of foliar spray of DA-6 on water
status & photosynthetic functions

Under normal condition, foliar application of DA-6 exhibited

no significant changes in RWC and OP in leaves, but white clover

plants pretreated with DA-6 showed 28.48% higher RWC and

17.43% lower OP when compared with untreated plants under

drought stress (Figures 1A, B). Exogenous DA-6 pretreatment

significantly increased contents of total Chl and Chl a under non-

stress condition, however, Chl b, Chl a/b, Fv/Fm, and PIABS

remained unaffected by the DA-6 under normal condition

(Figures 2C–F). Drought stress substantially reduced the total Chl
FIGURE 1

Impacts of foliar application of DA-6 on (A) relative water content (RWC), and (B) osmotic potential (OP) in leaves of white clover under normal and
drought conditions. Different letters above or below the vertical columns demonstrate significant differences among different treatments based on
the two-way ANOVA in combination with Tukey’s test at p ≤ 0.05. Vertical bars represent the ± standard error (SE) of mean (n = 4). C, well-watered
control; C+DA-6, well-watered plants supplemented with DA-6; PEG, 17% PEG-induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced
drought stress plus exogenous application of DA-6.
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content, Chl a content, Chl b content, Fv/Fm, and PIABS in both

DA-6-treated and untreated plants, but did not affect the ratio of

Chl a to Chl b (Figures 2A–F). DA-6-pretreated plants

demonstrated a 16%, 16%, 7%, or 32% significantly higher total

Chl content, Chl a content, Fv/Fm, or PIABS than non-treated

plants exposed to drought stress (Figures 2A, B, E, F). The DA-6

had no significant effect on Chl b content and Chl a/b ratio under

water deficient condition as shown in Figures 2C, D.
3.2 Effects of foliar spray of DA-6 on cell
membrane stability & oxidative damage

Leaf EL, ROS (O2
.- and H2O2) contents, and MDA content were

not significantly influenced by the DA-6 pretreatment under non-

stressed condition as shown in Figures 3A–D. Drought stress

significantly increased the above-mentioned four parameters in

DA-6-treated and untreated white clover plants. However, foliar

DA-6 application markedly reduced the drought-stimulated an

increase in EL, O2
.- content, H2O2 content, or MDA content by

15%, 15.55%, 21%, or 7.60% when compared with untreated plants,

respectively (Figures 3A–D).
3.3 Metabolites profiling in white clover
plants influenced by foliar application of
DA-6

A total of 59 metabolites comprising of 17 organic acids, 20

sugars, 12 alcohols, and 10 other metabolites were detected and

quantified in leaves of white clover (Figure 4A). Heat map of
Frontiers in Plant Science 05
metabolites demonstrated that these metabolites were differentially

regulated by foliar application of DA-6 and water stress. Majority of

these metabolites remained unaffected by the DA-6 pretreatment

under well-watered condition as shown by C+DA-6 Vs. C

(Figure 4B). Under drought stress, 29% or 15% metabolites were

significantly up-regulated or down-regulated by the DA-6, as

depicted by PEG+DA-6 vs. PEG (Figure 4B). Only 24% or 19%

metabolites were significantly decreased in PEG vs. C or PEG+DA-6

vs. C, respectively. In addition, a 56% upsurge in metabolites was

noticed in PEG vs. C or PEG+DA-6 vs. C, respectively (Figure 4B). In

contrast to control, drought stress significantly enhanced the

accumulation of sugars and alcohols, but did not significantly affect

the accumulation of organic acids in both DA-6-treated and

untreated plants (Figure 4C). Drought stress did not induce

significant effects on contents of organic acids, alcohols, and other

metabolites between DA-6-pretreated and untreated plants

(Figure 4C). However, drought stress significantly increased the

accumulation of sugar in DA-6-pretreated plants when compared

with non-treated plants (Figure 4C).
3.4 Differentially accumulated metabolites
influenced by foliar application of DA-6

Exogenous application of DA-6 significantly enhanced

accumulations of multiple sugars including erythrulose, arabinose,

mannofuranose, levoglucosan, psicofuranose, glucose, and

galactopyranose under normal condition (Figures 5A, B). Under

drought stress, the application of DA-6 significantly ameliorated

drought-induced decreases in erythrulose, arabinose, xylose,

inosose, and galactose, and also further increased contents of
FIGURE 2

Impacts of foliar application of DA-6 on (A) total chlorophyll (Chl) content, (B) Chl a content, (C) Chl b content, (D) Chl a/b ratio, (E)
photochemical efficiency (Fv/Fm), and (F) performance index on an absorption basis (PIABS) in leaves of white clover under normal and drought
conditions. Different letters above the vertical columns demonstrate significant differences among different treatments based on the two-way
ANOVA in combination with Tukey’s test at p ≤ 0.05. Vertical bars represent the ± standard error (SE) of mean (n = 4). C+DA-6, well-watered
plants supplemented with DA-6; PEG, 17% PEG-induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced drought stress plus exogenous
application of DA-6.
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talopyranose and fucose (Figures 5A, B). In term of changes in

different alcohols, drought stress significantly enhanced

accumulations of 2,3-butanediol, diethylene glycol, 1,2,3-butanetriol,

meso-erythritol, arabitol, ribitol, fucitol, adonitol, and xylitol in both

DA-6-pretreated and non-pretreated plants (Figure 6). The DA-6

induced significant increases in meso-erythritol and ribitol contents

under drought stress (Figure 6). For changes in organic acids, the PEG

+ DA-6 treatment exhibited significantly higher propanoic acid, 2,3-

dihydroxybutanoic acid, palmitic acid, linolenic acid, and

galacturonic acid contents than the PEG treatment (Figures 7A, B).

In addition, drought stress significantly induced accumulations of

campesterol and stigmasterol, and the foliar pretreatment of DA-6

significantly increased contents of 2-oxazoline, silane, and glycine

under drought stress (Figure 8). Figure 9 demonstrated that

metabolites reprogramming related to energy metabolism, osmotic

adjustment, ROS homeostasis, and cell wall and membrane stability

was mediated by foliar application of DA-6 in white clover under

drought stress.
4 Discussion

Growth retardation, leaf wilting, and senescence are the most

obvious phenotypic symptoms when plants undergo water

deficiency (Farooq et al., 2009). However, plants have naturally

developed different adaptive strategies including hormonal

regulation, OA, and antioxidant defense system to acclimatize

drought stress (Seki et al., 2007; Jiao et al., 2012). Beneficial effects
Frontiers in Plant Science 06
of the DA-6 have been reported widely in plants associated with

delayed seed aging, improved photosynthesis, and enhanced

antioxidant defense system and OA under normal or stressful

conditions (Zhou et al., 2019; Hassan et al., 2021a). Our current

study found that the foliar pretreatment of appropriate dose of DA-

6 significantly ameliorated water status and photosynthetic

functions of white clover leaves, as demonstrated by improved

Chl content, Fv/Fm, PIABS, RWC, and OA under PEG-induced

drought stress (17% PEG and -0.3 Mpa) (Figures 1, 2). Moreover,

DA-6-treated white clover plants also demonstrated reduced

oxidative damage which was characterized by declines in contents

of O2
.-, H2O2, and MDA and improved membrane stability than

non-treated plants exposed to drought stress (Figure 3). Early study

of (Fu et al., 2011) found that the DA-6 application could increase

tolerance of strawberry (Fragaria ananassa) seedlings to chilling-

induced oxidative injury by enhancing antioxidant capacity

and photosynthesis. Recent study of (Huang et al., 2023) also

demonstrated that the DA-6 treatment effectively alleviated

drought-induced oxidative damage through enhancing enzymatic

antioxidant defense system in Ananas comosus plants. Current

findings suggested a promising regulatory role of the DA-6

in drought tolerance of white clover contributing to ameliorated

water balance, photosynthetic function, and cellular membrane

stability. The DA-6 could be used as a potential PGR for

regulating crop senescence and stress tolerance due to low cost

and nontoxic character.

Stress-triggered metabolites reprograming played key roles in

mediating tolerance to various abiotic stresses in plants (Patel et al.,
FIGURE 3

Impacts of foliar application of DA-6 on (A) electrolyte leakage (EL), (B) superoxide anion (O2
.-) content, (C) hydrogen peroxide (H2O2) content, and

(D) malondialdehyde (MDA) content in leaves of white clover under normal and drought conditions. Different letters above the vertical columns
demonstrate significant differences among different treatments based on the two-way ANOVA in combination with Tukey’s test at p ≤ 0.05. Vertical
bars represent the ± standard error (SE) of mean (n = 4). C+DA-6, well-watered plants supplemented with DA-6; PEG, 17% PEG-induced drought
stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced drought stress plus exogenous application of DA-6.
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2022). As important primary metabolites, sugars and sugar alcohols

with fundamental functions of energy supply, OA, and signaling

transduction are responsible for plant growth and stress defense

(Bhattacharya and Kundu, 2020). Previous studies related to

metabolic profiling proved advantageous effects of massive

accumulations of sugars and sugar alcohols on mitigating abiotic

stresses in different plant species (Shi et al., 2015; Martıńez-Noël

and Tognetti, 2018). Our results showed that foliar application of

the DA-6 significantly induced accumulations of sugars

(erythrulose, xylose, galactose, arabinose, fucose, inosose, and

talopyranose) and sugar alcohols (erythritol and ribitol) in white

clover after being subjected to PEG-induced drought stress

(Figures 5, 6). Erythrulose, xylose, and galactose are reductive

monosaccharides and perform critical roles in mediating cellular

metabolic homeostasis under drought stress (Li et al., 2017; Lu et al.,

2023). Combined heat and drought stress resulted in higher

galactose content contributing to better OA in poplar (Populus)

leaves (Jia et al., 2016). In plants, arabinose is an essential
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constituent of various cell wall polysaccharides, glycoproteins,

flavonoids, and signaling peptides (Rautengarten et al., 2017).

Fucose has been found to be an integral component in the

biosynthesis of cell wall polymers as well as sugar-regulated

proteins (Reiter et al., 1997; Zentella et al., 2017). Significant

increases in arabinose biosynthesis and fucose accumulation have

been reported to be associated with salt tolerance in Arabidopsis

thaliana and white clover (Zhao et al., 2019; Cheng et al., 2022). In

addition, myo-inositol acting as a derivative of inosose positively

regulated drought tolerance due to its roles in OA and antioxidant

(Li et al., 2019b). Exogenous pretreatment of myo-inositol

effectively decreased drought damage to creeping bentgrass via

improvement in OA and elimination of oxidative damage (Li

et al., 2020). Moreover, the positive role of erythritol and ribitol

as essential osmolytes has been well documented in plants under

adverse environmental conditions (Fàbregas and Fernie, 2019;

Zhou et al., 2023). Our findings suggested that the DA-6-

regulated drought tolerance of white clover could be associated
FIGURE 4

Impacts of foliar application of DA-6 on changes in (A) heat map of 59 identified metabolites, (B) percentage of unchanged, down-regulated, and
up-regulated metabolites, and (C) relative contents of organic acids, sugars, alcohols, and other metabolites in leaves of white clover under normal
and drought conditions. Different letters above the vertical columns demonstrate significant differences among different treatments based on the
two-way ANOVA in combination with Tukey’s test at p ≤ 0.05. Vertical bars represent the ± standard error (SE) of mean (n = 4). C, well-watered
control; C+DA-6, well-watered plants supplemented with DA-6; PEG, 17% PEG-induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced
drought stress plus exogenous application of DA-6.
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with higher accumulation of these sugars and sugar alcohols leading

to better cell wall and plasma membrane stability, OA and

osmoprotection, signaling transduction, and antioxidant defense

for redox homeostasis.

Various organic acids were generally or differentially regulated by

DA-6 in white clover. Main functions of organic acids including pH

regulation, elimination of ionic toxicity, OA, and energy metabolism

have been elucidated in different plant species under unfavorable

environmental conditions (Lecoeur et al., 1992; Jones, 1998; Ma

et al., 2001). As crucial fatty acids, palmitic acid and linolenic acid

are involved in various cellular functions such as constituents of cellular
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membranes, carbon and energy source in triacylglycerol, precursors of

bioactive molecules, and stress signaling in plants (Zhukov, 2015; He

and Ding, 2020; Hassan et al., 2022). Galacturonic acid that is an

essential component of pectins in cell wall performs imperative roles in

plant growth and defense system (Pourcelot et al., 2011; Kuivanen et al.,

2015). Significant increases in contents of palmitic acid, linolenic acid,

or galacturonic acid by the DA-6 and b-sitosterol pretreatment were

also linked with ameliorated drought tolerance of white clover (Li et al.,

2019a; Hassan et al., 2022), which is in accordance with our present

findings. The DA-6-mediated increases in palmitic acid, linolenic acid,

and galacturonic acid could be associated with improved lipids
FIGURE 5

Impacts of foliar application of DA-6 on (A, B) sugars in leaves of white clover under normal and drought conditions. Different letters above the
vertical columns demonstrate significant differences among different treatments based on the two-way ANOVA in combination with Tukey’s test at p
≤ 0.05. Vertical bars represent the ± standard error (SE) of mean (n = 4). C+DA-6, well-watered plants supplemented with DA-6; PEG, 17% PEG-
induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced drought stress plus exogenous application of DA-6.
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reprograming, therefore resulting in superior cell membrane and wall

stability under water-limited condition. In addition, the DA-6

application also induced accumulations of propanoic acid and 2,3-

dihydroxybutanoic acid in white clover leaves in response to PEG-

induced drought stress. However, regulatory roles and mechanisms of

short chain fatty acids propanoic acid and 2,3-dihydroxybutanoic acid

in stress tolerance have rarely been reported in plants so far and still

demand an in-depth investigation in our future studies.

Apart from sugars, alcohols and organic acids, other metabolites

such as 2-oxazoline, silane, and glycine also responded to the DA-6

differentially in white clover under PEG-stimulated drought stress

(Figure 8). The 2-oxazoline is a heterocyclic organic compound for

the biosynthesis of complex oxazolines which have potential roles in

protecting carboxylic acids (Wenker, 1938). Various 2-oxazolines such

as 2-ethyl-2-oxazoline perform living cationic ring-opening

polymerization to produce poly(2-oxazoline)s (Kobayashi and

Uyama, 2002; Hoogenboom, 2009). A recent study reported the

synergistic role of biochar and poly (2-ethyl-2-oxazoline) hydrogels

in improving carrot (Daucus carota) production under saline condition

(Abdeen et al., 2023). Silane serves as a precursor in the synthesis of

elemental silicon. The beneficial role of silicon in morphological,

physiological and biochemical functions of plants has been well

documented under different abiotic stresses including drought

(Luyckx et al., 2017; Zargar et al., 2019). In addition, silanes

possessing inorganic or organic attachments are coupling agents and

adhesion promoters (London et al., 2013). Glycine performs vital roles

in amino acids metabolism, signaling as well as plant stress responses

(Depeint et al., 2006). The study of (Li et al., 2019b) reported that

exogenous application of g-aminobutyric acid significantly enhanced
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the glycine accumulation in favor of amino acids homeostasis in white

clover seedlings under drought stress. Significant upsurge in the

accumulation of glycine was also associated with improved thermo-

tolerance of creeping bentgrass (Li et al., 2016). These findings

indicated that the DA-6-regulated adaptability to PEG-stimulated

drought stress could be connected with increased accumulations of

2-oxazoline, silane, and glycine in leaves of white clover plants.

However, functions of 2-oxazoline associated with drought tolerance

could not be fully explained in our current study and deserves to be

further studied, since little information is available so far.

Interestingly, PEG-induced drought stress significantly induced

accumulation of campesterol and stigmasterol in both of DA-6-

pretreated and untreated white clover plants, and the DA-6

application also increased their accumulations in leaves under

normal condition. Campesterol and stigmasterol are key regulators of

plasma membrane fluidity and integrity as components of the

phospholipid bilayer membrane in plants (Saffan, 2008). OsFes1A-

transgenic A. thaliana with a significant increase in endogenous

campesterol content exhibited significantly higher drought tolerance

than wild type (Xu et al., 2024). Both of drought-sensitive and drought-

tolerant rice (Oryza sativa) cultivars could significantly accumulate

compesterol and stigmasterol for better maintenances of membrane

lipids homeostasis and the integrity of cell membranes in response to

drought stress (Kumar et al., 2018). Higher accumulation of

phytosterols such as campesterol and stigmasterol as well as better

membrane stability during drought stress were observed in drought-

tolerant rice genotype as compared to drought-sensitive one (Kumar

et al., 2015). On the contrary, barley (Hordeum vulgare) genotype with

the lowest level of campesterol was susceptible to drought stress
FIGURE 6

Impacts of foliar application of DA-6 on alcohols in leaves of white clover under normal and drought conditions. Different letters above the vertical
columns demonstrate significant differences among different treatments based on the two-way ANOVA in combination with Tukey’s test at p ≤ 0.05.
Vertical bars represent the ± standard error (SE) of mean (n = 4). C, well-watered control; C+DA-6, well-watered plants supplemented with DA-6;
PEG, 17% PEG-induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced drought stress plus exogenous application of DA-6.
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(Kuczyńska et al., 2019). In addition, a previous study reported that

heat-tolerant hard fescue (Festuca trachyphylla) genotype Reliant IV

demonstrated higher stigmasterol content when compared with the

heat-sensitive Predator (Wang et al., 2017). Exogenous stigmasterol

mitigated negative impact of drought stress on flax (Linum

usitatissimum) plants through activating antioxidant defense to

relieve oxidative damage (Hassan et al., 2021b; Nemat Alla et al.,

2022). Recent study of Hanafy and Sadak also found that foliar

application of stigmasterol could significantly improve growth and

productivity of sunflower (Helianthus annuus) related to enhanced

antioxidant metabolism (Hanafy and Sadak, 2023). Based on these

previous reports and our current study, the accumulations of
Frontiers in Plant Science 10
campesterol and stigmasterol could be important adaptive responses

to drought stress in white clover due to beneficial roles of campesterol

and stigmasterol in regulating cell membrane stability and

antioxidant defense.
5 Conclusion

Exogenous application of DA-6 significantly alleviated drought-

induced oxidative damage and also improved water balance,

photosynthetic function and cell membrane stability when white

clover suffered from drought stress. Metabolic profiling demonstrated
FIGURE 7

Impacts of foliar application of DA-6 on (A, B) organic acids in leaves of white clover under normal and drought conditions. Different letters above
the vertical columns demonstrate significant differences among different treatments based on the two-way ANOVA in combination with Tukey’s test
at p ≤ 0.05. Vertical bars represent the ± standard error (SE) of mean (n = 4). C, well-watered control; C+DA-6, well-watered plants supplemented
with DA-6; PEG, 17% PEG-induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced drought stress plus exogenous application of DA-6.
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FIGURE 9

A schematic diagram illustrating DA-6-regulated metabolites reprogramming associated with adaptive response to drought stress in white clover.
FIGURE 8

Impacts of foliar application of DA-6 on other metabolites in leaves of white clover under normal and drought conditions. Different letters above the
vertical columns demonstrate significant differences among different treatments based on the two-way ANOVA in combination with Tukey’s test at p
≤ 0.05. Vertical bars represent the ± standard error (SE) of mean (n = 4). C, well-watered control; C+DA-6, well-watered plants supplemented with
DA-6; PEG, 17% PEG-induced drought stress (-0.3 Mpa); PEG+DA-6, 17% PEG-induced drought stress plus exogenous application of DA-6.
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that a total of 59 metabolites were generally or differentially regulated

by the DA-6 under water-limited condition. The DA-6 induced the

accumulation of sugars and sugar alcohols including erythrulose,

arabinose, xylose, inosose, galactose, talopyranose, fucose, erythritol

and ribitol. In addition, foliar pretreatment of DA-6 also significantly

enhanced the accumulation of various organic acids and amino acids

such as propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid,

linolenic acid, D-glucuronic acid, lactone, and glycine. The DA-6-

induced increases in these organic metabolites could be contributed

to improved drought tolerance of white clover due to their potential

roles in OA, osmo-protection, ROS homeostasis, cell wall structure

and membrane stability. The present findings provide new evidence

of DA-6-regulated metabolic homeostasis related to drought

tolerance in leguminous plants.
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