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Introduction: Accurate reference genomes are fundamental to understanding

biological evolution, biodiversity, hereditary phenomena and diseases. However,

many assembled nuclear chromosomes are often contaminated by organelle

genomes, which will mislead bioinformatic analysis, and genomic and

transcriptomic data interpretation.

Methods: To address this issue, we developed a tool named Chlomito, aiming at

precise identification and elimination of organelle genome contamination from

nuclear genome assembly. Compared to conventional approaches, Chlomito

utilized new metrics, alignment length coverage ratio (ALCR) and sequencing

depth ratio (SDR), thereby effectively distinguishing true organelle genome

sequences from those transferred into nuclear genomes via horizontal gene

transfer (HGT).

Results: The accuracy of Chlomito was tested using sequencing data from Plum,

Mango and Arabidopsis. The results confirmed that Chlomito can accurately

detect contigs originating from the organelle genomes, and the identified

contigs covered most regions of the organelle reference genomes,

demonstrating efficiency and precision of Chlomito. Considering user

convenience, we further packaged this method into a Docker image, simplified

the data processing workflow.

Discussion: Overall, Chlomito provides an efficient, accurate and convenient

method for identifying and removing contigs derived from organelle genomes in

genomic assembly data, contributing to the improvement of genome

assembly quality.
KEYWORDS

mitochondrial genome, chloroplast genome, chromosome-level assembly, organelle
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1 Introduction

With the widespread application of high-throughput sequencing

technology, researchers can rapidly obtain genomes of various species

(Rhoads and Au, 2015; Goodwin et al., 2016; Jain et al., 2018). For

chromosome-level de-novo genome assembly, long reads from third-

generation sequencing (TGS) or short reads from second/next-

generation sequencing (SGS/NGS) are first assembled into contigs.

Then, these contigs are anchored into chromosomes based on Hi-C

sequencing, thereby compleling nuclear chromosome assembly (Du

et al., 2022). However, during genome assembly, the issue of organelle

genome contamination often arises, where the sequences from

mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) are

mistakenly assembled into nuclear genome. This phenomenon occurs

because organelle DNA is co-extracted with nuclear DNA during

genomic DNA purification, producing a mixed sequencing data set.

Since hundreds copies of organelle genomes exist within a single cell

with extremely smaller sizes compared to the nuclear genomes (Pyke,

1999), they are overrepresented in the sequencing data and high-

frequently mis-assembled into nuclear genomes. Furthermore,

organelle genome sequences exhibit significant similarity to certain

nuclear genome sequences, particularly those organelle genes had

transferred into nuclear genomes through horizontal gene transfer

(HGT) (Martin, 2003; Timmis et al., 2004; Wei et al., 2022; Wang et al.,

2024). Thus, it is challenging to accurately distinguish contigs derived

from organelle genomes among all assembled contigs, especially those

containing sequences transferred from the organelle genomes through

HGT. Accurate identification and elimination of organelle genome

sequences are essential for minimizing the contamination issue and will

enhance the quality of genome assembly.

To identify and remove organelle genome contamination from

nuclear genome assembly data, current methods primarily employ

two approaches: the experimental removal prior to sequencing and

the bioinformatic identification after assembly. For experimental

removal, the density gradient centrifugation technique can be

utilized to deplete organelle DNA during nuclear genomic DNA

extraction, hence the contamination is reduced in downstream

sequencing data (Lutz et al., 2011; Sikorskaite et al., 2013;

Sandhya et al . , 2020). However, the density gradient

centrifugation is not easy to carry out, and requires a large

amount of material for DNA extraction but generates low DNA

yield. Thus, most reported de-novo genome assembly did not

include this step. Also, experimental separation is often

incomplete. Alternatively, for bioinformatic identification, the

most widely adopted approach is to align assembled contigs to

organelle reference genomes, followed by filtering based on

alignment lengths (Howe et al., 2021; Mishra et al., 2021; Rhie

et al., 2021; Zhang et al., 2024) or sequence similarity (Shirasawa

et al., 2021; Bae et al., 2023; Yu et al., 2024). Though effective in

reducing contamination, these computational approaches have

limitations. It ignored potential HGT of organelle sequences into

the nuclear genome (Cecchin et al., 2019; Allio et al., 2020; Kenny

et al., 2020; Martin et al., 2023). Due to such transfer, the fragments

of organelle genomes were inserted in the nuclear genomes,

therefore, traditional sequence similarity-based methods hardly

distinguish organelle genomes from the nuclear HGT regions.
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Additionally, current methods often require pre-assembled

reference organelle genomes, limiting their applicability in the

species without well-established organelle references. Moreover,

the implementation of current methods generally lacks support

from integrated and user-friendly software, requires users to

manually perform all steps. The data processing is still time-

consuming and prone to errors, particularly when dealing with

large numbers of data sets.

To address the issue identifying organelle genome sequences

from genomic assembly accurately, we established a novel method,

which employed two key filtering criteria: the alignment length

coverage ratio (ALCR) and sequencing depth ratio (SDR). The

ALCR refers to the proportion of a contig’s total length that is

aligned with the organelle reference genome relative to the total

length of the contig. This criterion can differentiate contigs that

contain only small pieces of organelle DNA, which more likely arise

from HGT, as these fragments usually constitute only a small

portion of the contig. Therefore, a low ALCR may indicate that

the contig belongs to nuclear genome rather than organelle genome

(Zhu et al., 2021; Nath et al., 2022; Hao et al., 2023; Zhou et al.,

2023b). Meanwhile, the SDR refers to the ratio of each coting’s

sequencing depth to the average sequencing depth of the organelle

genome. Given that organelle genomes exist in many copies within

a cell, they typically exhibit higher sequencing depths than nuclear

genomes (Sanita Lima et al., 2016; Wang et al., 2018; Li et al., 2021;

Giorgashvili et al., 2022; Zhou et al., 2023a). Therefore, a contig with

a high sequencing depth ratio, similar to the average of the organelle

genome, is more likely to be a part of the organelle genome. By

combining these two metrics, we can significantly improve the

accuracy of identifying and removing organelle genome sequences

from genome assembly data.

Furthermore, to facilitate usage by researchers with limited

bioinformatics experience, we have implemented this new

approach as easy-to-use software and packaged it as a Docker

image, enabling easy distribution and execution across diverse

computing platforms with a single command. We validated the

accuracy and reliability of our tool using sequencing data from

Plum (Prunus salicina) (Liu et al., 2020), Mango (Mangifera indica)

(Wang et al., 2020) and Arabidopsis (Arabidopsis thaliana) (Wang

et al., 2022). Our software can not only accurately identify organelle

genome contigs from genome assembly, but also accurately

distinguish native organelle sequences from those inserted into

the nuclear genome via HGT. Our tool will offer an accurate and

effective solution for eliminating organelle DNA fragments from

genome assembly contigs, hold significant merit in improving

chromosome assembly, and deepen our understanding of the

complex interactions between organelle and nuclear genomes.
2 Materials and methods

2.1 Availability of data and materials

To validate the accuracy of the Chlomito software in detecting

organelle genome sequences, we utilized sequencing data of Mango

and Plum from the NCBI Bioproject database, with accession
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numbers PRJNA487154 and PRJNA574159, respectively. The raw

sequencing data for the PacBio HiFi reads and Illumina short reads

of Arabidopsis were obtained from the National Genomics Data

Center, Beijing Institute of Genomics, Chinese Academy of

Sciences/China National Center for Bioinformation (GSA:

CRA004538). These datasets include high-quality second and

third-generation sequencing data, which were utilized for

organelle genome identification and chromosome-level

genome assembly.
2.2 Installation and implementation
of Chlomito

Chlomito is Python (v3.8.5)-based software provided in the

form of a Docker image. The image is accessible at https://

hub.docker.com/repository/docker/songweidocker/chlomito. All

analyses were conducted on an Ubuntu Linux 18.04.3 server,

equipped with two Intel Xeon processors (32 cores each, totaling

64 threads) and 512 GB of RAM. The user manual for Chlomito is

available on GitHub (https://github.com/songwei-hxb/chlomito).

Chlomito can be installed using the Docker v19.03.5 command:

docker pull songweidocker/chlomito:v1

The command for running Chlomito organelle genome

identification and removing is as follow:

docker run –rm -v/var/run/docker.sock:/var/run/docker.sock -v

`pwd`:/data -w/data songweidocker/chlomito:v1 chlomito -species

plant -raw_genome genome_contigs.fasta -NGS_1 ngs_1.fastq

-NGS_2 ngs_2.fastq -output identify_result -mito_ALCR_cutoff

0 . 5 -m i t o_SDR_cu to ff 0 . 1 - ch l o_ALCR_cu t o ff 0 . 5

-chlo_SDR_cutoff 0.1 -threads 60
2.3 Contig-level genome assembly

Flye v2.9 (Kolmogorov et al., 2019) is genome assembler

software designed for long-read sequencing data from third-

generation platforms such as PacBio and Oxford Nanopore. It is

capable of assembling raw error-prone long reads into contiguous

genomic sequences known as contigs. The goal of Flye is to generate

high-quality genome assembly, especially for large or complex

genomes. In this study, we utilized Flye to assemble PacBio

sequencing data of Mango and Plum into genome assembly

contigs. Due to the high error rate of TGS data in PacBio CLR

reads and Nanopore reads, the assembled contigs were then

corrected using Racon v1.3.1 (Vaser et al., 2017) and Pilon v1.22

(Walker et al., 2014).
2.4 Construction of organelle
genome database

The mitochondria and chloroplast organelle genomes were

firstly assembled from SGS data using GetOrganelle v1.7.1 (Jin

et al., 2020). GetOrganelle is a powerful genomics software tool

specifically designed for efficient assembly of mitochondrial and
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chloroplast genomes. It is capable of simultaneously assembling

organelle genomes from both mitochondria and chloroplast.

Compared to other similar software tools, GetOrganelle

demonstrates superior performance in terms of both accuracy

and speed for organelle genome assembly. After that, we merged

the mitochondrial and chloroplast genomes published in the NCBI

organelle database with organelle genomes assembled using

GetOrganelle, and created a comprehensive local organelle

genome database. Since the local database integrated existing

public data resources with high-precision assembly outcomes, it

could offer more comprehensive and accurate reference for

organelle genomes.
2.5 The annotation of chloroplast and
mitochondrial genomes

The chloroplast and mitochondria genome sequences were

annotated with GeSeq (Tillich et al., 2017) and OGDRAW (Lohse

et al., 2013). GeSeq pipeline analysis was performed using the

annotation packages ARAGORN (Laslett and Canback, 2004),

blatN (Kent, 2002), Chloe (Zhong, 2020) and HMMER (Eddy,

2011). GeSeq is a user-friendly online service specifically designed

for the annotation of mitochondrial and chloroplast genomes. This

platform enables researchers to upload unannotated DNA

sequences and utilizes its database of existing high-quality

annotations to identify and label genes, coding sequences, and

other significant genomic features.
2.6 Calculation of alignment length
coverage ratio

Following the construction of local organelle genome database,

all contigs assembled by the Flye v2.9 software were aligned against

this database using Minimap2 v2.17 (Li, 2018). Subsequent to the

alignment process, Alignment Length Coverage Ratio (ALCR) was

calculated for each contig. The core filtering criterion ALCR is

defined as the ratio of the aligned length sum from a contig to its

total length, which can be formulated as:

ALCR(contig)

=  on
i=1aligned _ length(contig, ref )i   =   total _ length(contig)

In the formula, ALCR(contig) is the ALCR value for a given

contig, Saligned_length(contig, ref) is the sum of lengths of all

aligned regions (1 to n) between the contig and the reference

organelle genome, and total_length(contig) is the total length of

the contig. A higher ALCR value indicates greater similarity

between the contig and the reference organelle genome, and thus

a higher chance that the contig is from the organelle genome.

Unlike previously reported methods, the calculation of ALCR does

not solely rely on the single longest alignment region. Instead, it

aggregates the lengths of all contig regions that align with the

organelle genome reference. This approach offers a more

comprehensive reflection of the alignment coverage between the
frontiersin.org
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contig and the organelle genomes. Finally, by comparing the

aggregated alignment length of each contig against its total

length, the alignment length coverage ratio for each contig

is computed.
2.7 Calculation of sequencing depth ratio

The sequencing depth ratio (SDR) refers to the ratio between

the sequencing depth of each contig and the average sequencing

depth of the organelle genome, which can be formulated as:

SDR(contig) = depth(contig)   =   avg _ depth(organelle _ genome)

In the formula, SDR(contig) is the SDR value for a given contig,

depth(contig) is the average SGS depth of the contig, and avg_depth

(organelle_genome) is the average SGS depth of the organelle

genome assembled by GetOrganelle. The average sequencing

depth of the organelle genome is determined by aligning the SGS

reads to the organelle genome assembled by GetOrganelle v1.7.1

using Bowtie2 v2.4.2 (Langmead and Salzberg, 2012), which

generates a SAM file. This SAM file is then processed by

Samtools v1.6 (Li et al., 2009) to produce a sorted BAM file with

depth information. Finally, Bedtools v2.30.0 (Quinlan and Hall,

2010) is utilized to analyze this depth data and calculate the average

sequencing depth across the organelle genome. The method for

calculating the sequencing depth of each contig is identical to that

used for the organelle genome. Upon completion of these

calculations, the sequencing depth for each contig is divided by

the average sequencing depth of the organelle genome to obtain

SDR for each contig.
2.8 Identification of organelle sequences

After calculating the ALCR and SDR values for each contig

using the locally constructed organelle genome database and SGS

data, contigs belonging to the organelle genome are identified from

genome assembly contigs based on ALCR and SDR filtering

thresholds inputted by the user. Here, we used thresholds

ALCR>0.5 and SDR>0.1 at the first round of filtering. The

filtering thresholds can be further optimized according to the

ALCR and SDR visualization scatter plot generated after running

Chlomito. By utilizing adjusted filtering thresholds, the genome

assembly contigs can be filtered and selected again, resulting in

more precise outcomes.
2.9 Chromosomal-level genome assembly

The genome sizes of various species were calculated using

jellyfish v2.2.10 (Marcais and Kingsford, 2011) and GenomeScope

v2.0 (Vurture et al., 2017) with SGS data and input into Flye for

contig-level genome assembly with TGS data. After contig-level

genome assembly, contig sequences were corrected with SGS reads

using racon v1.3.1 and pilon v1.22, and redundancy was reduced

using purge_dups v1.2.5 (Guan et al., 2020). Hi-C sequencing data
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were aligned to the deduplicated contigs using HiC-Pro v3.1.0

(Servant et al., 2015), and finally, Allhic v0.9.8 (Zhang et al.,

2019) was used to cluster, order, and orient the contigs based on

Hi-C alignment results, achieving the final chromosomal-level

genome assembly. Gaps or missing regions may be present in

genome assembly due to the limitations of sequencing

technologies. To obtain more complete and accurate genome

sequences, we applied two approaches - Abyss Sealer v2.0.2

(Jackman et al., 2017) and TGS-GapCloser v1.1.1 (Xu et al., 2020)

- for closing gaps in our chromosome-level genome assembly. TGS-

GapCloser v1.1.1 utilizes long reads from TGS platforms to fill gaps

between contigs and extend contig ends based on overlaps between

contigs and long reads. Abyss Sealer v2.0.2 is a computational tool

that seals gaps in genome assembly by aligning Illumina short reads

to contig ends and performing local assembly to generate consensus

sequences for gap regions. The methods applied in this study for

chromosomal-level genome assembly are based on the previous

study (Song et al., 2024).
3 Results

3.1 The development of Chlomito software

Chlomito has two main functions, assembly of organelle

genomes with NGS reads and screening contigs originated from

organelle genomes. These functions are achieved through the

workflow comprising three parts: the construction of local

organelle genome database, organelle genome contig identification

based on ALCR, and organelle genome contig identification based

on SDR (Figure 1).
3.2 The construction of local organelle
genome database

At the first step, Chlomito constructs a local organelle genome

database by combining two approaches (Figure 1, step 1). The initial

approach employs GetOrganelle to assemble mitochondrial and

chloroplast genomes with SGS data. This is particularly valuable for

the species without publicly-available organelle genome references,

although the short-read assembly is sometimes incomplete. To

further complement the database, the second approach

downloads published high-quality organelle genomes from NCBI

organelle database. With these approaches, the constructed local

database is able to avoid the limitations from relying on a single data

source, offering a broad and reliable organelle genome reference for

downstream analysis.
3.3 Organelle genome identification based
on ALCR

At the second step of Chlomito, organelle genome contigs are

identified based on alignment length coverage ratio (ALCR).

Chlomito preliminarily screens for potential organelle genomic
frontiersin.org
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sequences by aligning TGS-assembled genome contigs to the local

database and filtering based on ALCR of the alignment (Figure 1,

step 2). The core filtering criterion ALCR is defined as the ratio of

the aligned length sum from a contig to its total length. Traditional

methods typically consider only the longest length aligned between

a contig and the organelle reference genome. In contrast, the

alignment length of a contig in our approach is the sum of all

aligned region lengths. This provides a more comprehensive

assessment for the similarity between a contig and the organelle

genome, improving the accuracy and sensitivity of organelle

genome contig identification. In addition, compared to traditional

methods, ALCR can also effectively distinguish organelle genome

sequences from those inserted into the nuclear genome via HGT, as

HGT insertions tend to be smaller, holding a lower ALCR value.
3.4 Organelle genome identification based
on SDR

At the third step, Chlomito employs sequencing depth ratio

(SDR) to further validate the organelle genome contigs previously

filtered by the ALCR criteria (Figure 1, step 3). SDR refers to the

ratio of the average sequencing depth of a contig to the average

sequencing depth of the organelle genome. Given that the copy

number of organelle genome is significantly higher in each cell

compared to the nuclear genome, the sequencing depth ratio can be

utilized to further distinguish organelle genomes from nuclear

genomes. Considering the variable copy numbers of organelle
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genomes across various tissues and developmental stages (Preuten

et al., 2010), it is difficult to accurately estimate the precise ratio of

organelle to nuclear genome. Therefore, instead of using nuclear

genome sequencing depth as a reference (Wang et al., 2018), the

SDR approach adopts a method of comparing the sequencing depth

of each contig against the average sequencing depth of organelle

genomes to more accurately identify contigs derived from

organelle genomes.

In summary, by utilizing both ALCR and SDR filtering

methods, Chlomito can accurately identify organelle genome

contigs from the total contigs. Furthermore, it can effectively

reduce the misidentification of nuclear genome contigs as

organelle genomes caused by HGT of organelle genomes.
3.5 The investigation into mitochondrial
and chloroplast genomes in the
NCBI database

To gain comprehensive understanding about the characteristics

of mitochondrial and chloroplast genomes across a wide range of

organisms, we explored genome sizes, gene numbers, and other

features for mitochondrial and chloroplast genomes listed in the

NCBI organelle database (https://www.ncbi.nlm.nih.gov/genome/

browse#!/organelles/). The results revealed that the database

contains 152 mitochondrial genomes (mitogenomes) and 263

chloroplast genomes (chlorogenomes) derived from plants, with

approximately 50% to 60% of these genomes being annotated. In
FIGURE 1

Workflow of the Chlomito software package.
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comparison, the numbers of animal and fungal mitogenomes were

significantly higher, with 1,568 and 692 genomes respectively.

However, the annotation rates for animal and fungal

mitogenomes were lower, standing at only 30% (Figure 2A).

Further inspection showed that most mitogenomes in the

database were from insects in animal and ascomycetes in fungi,

while chlorogenomes were predominantly from land plants and

green algae (Figure 2B).

Plant chlorogenomes exhibited relative stability in terms of

genome lengths and gene numbers, averaging around 0.15 Mb in

size and containing ~82 genes on average (Figures 2C, D). In

contrast, plant mitogenomes displayed greater variability in both

lengths and gene numbers as previously reported (Bendich, 2010;

Oldenburg and Bendich, 2015), suggesting the potential

involvement of more complex evolutionary processes (Kubo and

Newton, 2008). In terms of animal mitogenomes, we found a high

degree of conservation, with an average size of 0.017 Mb and

typically including 13 genes. Fungal mitogenomes, on the other

hand, had an average size of 0.063 Mb and contained an average of

14 genes (Figures 2C, D). These analyses thoroughly characterized

the features of organelle genome sizes and annotated status, as well

as gene numbers, across different kingdoms such as Plantae,

Animalia, and fungi, providing crucial support for effectively

identifying and removing organelle genome segments from

genomic assembly sequences in future research.
Frontiers in Plant Science 06
3.6 The performance of Chlomito on the
detection of chloroplast genomes

To evaluate the performance of Chlomito in identifying

chlorogenomes, we tested it with sequencing data derived from

Plum (Prunus salicina) and Mango (Mangifera indica). Prior to

detecting chloroplast genomic sequences from the contigs

assembled from TGS reads, we first assembled the chlorogenomes

of Mango and Plum from their NGS reads using Getorganelle

respectively, and the assembly of each species generated a single

sequence of complete chlorogenome. Collinearity analysis revealed

high consistency between the assembled chlorogenomes and the

published reference genomes in both Mango and Plum

(Supplementary Figure S1). This demonstrated the accuracy and

reliability of the Getorganelle assembly for downstream analysis.

We then annotated the chlorogenomes of Mango and Plum using

Geseq and found that they contained similar numbers of genes with

highly similar arrangements (Figure 3). To investigate the structural

conservation of chlorogenomes across diverse plant species, we

compared the chlorogenomes of Mango and Plum with those of

other plant species including Arabidopsis thaliana and Zea mays.

The results showed that chlorogenomes were highly conserved in

gene contents and orders across diverse plant species analyzed here

(Supplementary Figure S2), implying that chlorogenomes may be

structurally conserved across diverse plants.
FIGURE 2

Overview of mitochondrial and chloroplast genome data in the NCBI organelle genome database. (A) Counts of the total and annotated
mitochondrial and chloroplast genomes across typical kingdoms. (B) The numbers of mitochondrial and chloroplast genomes assembled for various
taxonomic groups. (C) The length distribution of mitochondrial and chloroplast genomes for plants, animals and fungi. (D) The numbers of genes
contained in mitochondrial and chloroplast genomes across different species.
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After assembling the chlorogenomes of Mango and Plum using

GetOrganelle, we integrated these sequences with the NCBI

chlorogenome database to create a localized chloroplast database.

Then, the TGS-assembled genome contigs were aligned to the local

organelle genome database. We next employed two key metrics to

identify chloroplast-derived contigs among the total TGS-

assembled contigs. The first metric is Alignment Length Coverage

Ratio (ALCR), which calculates the ratio of the aligned sum length

of each contig to the total length of that contig. The second metric is

Sequencing Depth Ratio (SDR), which computes the sequencing

depth of each contig to the average sequencing depth of the

assembled chlorogenome. Based on default parameters ALCR>0.5

and SDR>0.1, we identified 3 and 5 potential chloroplast-derived

contigs from Mango and Plum samples respectively (Figures 4A,

D). These contigs showed similar alignment lengths in the

GetOrganelle-assembled and the NCBI database chlorogenomes

(Figures 4B, E), further validating the reliability of the chloroplast

genomic contigs detected by Chlomito. Collinearity analysis

displayed excellent consistency between these identified contigs

and the chloroplast reference genomes, and two inverted repeat

regions of the chlorogenomes (IRA and IRB) were also clearly

observed in the co-linearity analysis (Figures 4C, F). These results

further confirmed that these contigs were indeed derived from the

chlorogenomes and were completely detected.

In addition to the chloroplast-derived contigs, we also observed

some contigs with low ALCR (<0.5) and high SDR (>0.1) in both

Mango (11 contigs) and Plum (12 contigs) genomes. In Mango, 8

out of the 11 contigs with low ALCR and high SDR were confirmed

to be of mitochondrial origin. These mitogenome contigs were

detected during our chlorogenome contamination analysis, likely

due to the occurrence of HGT between mitochondrial and

chlorogenomes. Such gene transfer events can result in contigs

with low ALCR and high SDR. In Plum, 5 of the 12 contigs were

similarly identified as mitochondrial derivation. The remaining 7

contigs in Plum were subjected to further analysis using
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RepeatMasker, which revealed that the majority of these contigs

contained repetitive sequences that constituted more than 50% of

their lengths (Supplementary Table S1). This high proportion of

repetitive sequences likely contributed to the unusually high

sequencing depths observed in these contigs.

Based on the alignment results of all contigs from Mango and

Plum against the local chloroplast genome database, we identified

226 Mango contigs and 174 Plum contigs that aligned with the

database sequences at lengths greater than 5000 bp. However, the

ratio of each contig’s length that aligned to the database (ALCR)

was low, most of them had less than 10% coverage (Supplementary

Figure S3). The chloroplast genomic fragments present in these

ultra-long contigs may have been inserted into the nuclear

chromosomes through HGT from the chloroplast genome. These

results indicated that the traditional method of filtering out

chlorogenomes based solely on alignment lengths might

erroneously identify some ultra-long nuclear contigs that contain

only a small proportion of chloroplast genomic content. Therefore,

adopting more refined filtering criteria, such as ALCR and SDR, is

critical to accurately differentiate contigs that are truly from the

organelle genomes versus those inserted into nuclear genomes

through HGT.
3.7 The performance of Chlomito on the
detection of mitogenomes

Following the validation of Chlomito’s efficacy in chlorogenome

identification, we expanded our investigation to assess its

performance in detecting mitogenomes. Mitogenomes of Mango

and Plum were first assembled from NGS data using GetOrganelle.

Unlike a single sequence of complete chlorogenome assembled by

Chlomito above (Supplementary Figure S1), the constructed

mitogenomes of Mango and Plum were composed of multiple

fragments. The assembled Mango mitogenome consisted of 15
FIGURE 3

Chloroplast genome annotation of Mango (A) and Plum (B).
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sequences totaling 0.48 Mb, while Plummitogenome was composed

of 11 sequences totaling 0.36 Mb (Supplementary Figure S4). To

validate the accuracy of the mitogenome assembly, we performed

collinearity analysis between the assembled and the NCBI reference

mitogenomes for Mango (MZ751075.1) and Plum (OK563724.1).

The results showed that the assembled mitogenomes had high

collinearity with the reference and covered most regions of the

reference genomes (Supplementary Figure S4), indicating the high

accuracy and completeness of the GetOrganelle-assembled

mitogenomes. To evaluate the structural conservation of

mitogenomes across different plant species, we annotated and

compared the mitogenomes of Mango, Plum, Zea mays, and

Arabidopsis thaliana with the OGDRAW website. The results

showed that unlike chlorogenomes, the mitogenomes from these

species did not show conserved gene contents or gene orders

(Supplementary Figure S5). Subsequently, we integrated the

assembled mitogenomes with those downloaded from NCBI

database to establish a local database.

After constructing local mitogenome databases for Mango and

Plum, we mapped SGS data to the mitogenomes in the local

databases as well as to the TGS-assembled contigs, then calculated

ALCR and SDR for each contig. Based on the parameters ALCR and

SDR, we identified 11 and 10 contigs likely originating from the

mitogenomes in Mango and Plum respectively (Figures 5A, D).

These contigs also exhibited similar alignment lengths with the

mitogenomes assembled by GetOrganelle and the NCBI database

(Figures 5B, E). Moreover, collinearity analysis revealed that the
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identified contigs and the mitochondrial reference genomes had a

high consistency in Mango and Plum, with the majority of the

mitogenome regions being covered by these contigs (Figures 5C, F).

Similar to the results in chloroplast, we also detected 116 and 52

contigs with alignment lengths exceeding 5000 bp but exhibiting

low coverage (less than 10%) in Plum and Mango (Supplementary

Figure S6). These results indicated that HGT of large fragments to

the nuc l eu s happened in bo th mi tochondr i a l and

chloroplast genomes.
3.8 The performance of Chlomito on the
detection of HGT in Arabidopsis

To assess the accuracy of Chlomito in detecting HGT events, we

utilized a experimentally-confirmed large nuclear insertion of

mitochondrial DNA (numt) in Arabidopsis (Fields et al., 2022) as

a test case, representing a HGT event from mitochondria to nuclei.

This numt, located on chromosome 2 of Arabidopsis thaliana, spans

approximately 641 kb and is one of the largest numts reported in

plants to date. Its existence has been validated by fiber-based

fluorescent in situ hybridization.

By applying ALCR and SDR as screening criteria, we identified a

total of 22 TGS-assembled contigs that potentially belong to the

Arabidopsis mitogenome (Figure 6A). Collinearity analysis of these

fragments with the NCBI mitogenome reference revealed that these

fragments exhibited high collinearity with the reference and covered
FIGURE 4

Chlomito accurately identifies chloroplast-derived contigs and validates their collinearity with chloroplast reference genomes from Mango (A–C) and
Plum (D–F). (A, D) Identification of chloroplast-derived contigs in Mango (A) and Plum (D) based on ALCR and SDR metrics. (B, E) Alignment lengths
of Mango (B) and Plum (E) contigs with chloroplast genomes assembled using GetOrganelle and downloaded from NCBI database. (C, F) Collinearity
analysis of Mango (C) and Plum (F) contigs identified by Chlomito against published chloroplast reference genomes.
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most of the mitogenome regions (Figure 6B). These results again

confirmed that Chlomito could effectively find out mitogenome

contigs in Arabidopsis. Interestingly, we noticed one contig

ptg0002l, which didn’t pass the mtDNA screening criteria of

ALCR and SDR, meaning that it is not a mitogenome contig

(Figure 6A). The alignment of ptg00021 with the local database

showed a pretty high coverage rate but a low depth ratio, suggesting

that it might be an HGT fragment. Surprisingly, comparison of

ptg00021 with the previously validated large numt on chromosome

2 of Arabidopsis (Fields et al., 2022) revealed a perfect match

between them (Figure 6C). Furthermore, we specifically aligned

PacBio HiFi reads (Wang et al., 2022) to the junctions between the

identified numt and its flanking regions on ptg0002l. We found that

some HiFi reads span these junctions, which further substantiates

that this numt was horizontally transferred into chromosome 2,

rather than being the result of assembly errors (Figure 6D).

Similar to its performance in mitochondrial genome sequence

detection, Chlomito accurately distinguished Arabidopsis

chloroplast fragments from genomic contigs, as shown in

Supplementary Figure S7A. The chloroplast genome fragments

detected by Chlomito had similar alignment lengths with the

reference genome assembled by GetOrganelle and the NCBI

chloroplast reference genome (Supplementary Figure S7B).

Furthermore, these detected chloroplast genome fragments

showed good collinearity with the chloroplast reference genome

and covered most of its regions (Supplementary Figure S7C). This
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further demonstrates Chlomito’s utility in accurately identifying

organelle genome contigs within complex genomic datasets.

In summary, the Chlomito tool accurately identified the contigs

of Arabidopsis mitogenome and chlorogenome, and also effectively

distinguished genuine mitogenome fragments from numts, the

HGT regions existed in nuclear genome. These results validated

our method as a reliable tool for understanding complex

genomic evolution.
3.9 Organelle genome contamination in
chromosome assembly

To evaluate the impact of organelle genome contamination on

the accuracy of chromosome assembly, we aligned the Plum

chromosomes assembled from all contigs without removing

organelle sequences to the contigs identified as organelle DNA by

Chlomito. The aligned result indicated that two mitogenome

fragments (contig_2 and contig_4851) identified by Chlomito

were erroneously assembled into chromosome 1 of Plum

(Figure 7A). The full fragments of contig_2 (13,217 bp) and

contig_4851 (6,187 bp) showed perfect matches with

mitochondrial reference genomes NC_065233.1 and OK563724.1,

which are complete mitogenomes of Plum listed in the NCBI

organelle genome database. Further analysis demonstrated that

the sequencing depths of these two contigs were much higher
FIGURE 5

Chlomito accurately identifies mitochondrial-derived contigs and validates their collinearity with mitochondrial reference genomes from Mango
(A–C) and Plum (D–F). (A, D) Identification of mitochondria-derived contigs in Mango (A) and Plum (D) using ALCR and SDR metrics. (B, E)
Alignment lengths of contigs with GetOrganelle-assembled and NCBI-downloaded mitogenomes for Mango (B) and Plum (E). (C, F) Collinearity
analysis of Chlomito-identified contigs against published mitochondrial reference genomes for Mango (C) and Plum (F).
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than the average depth of the chromosomal genome, and were close

to the average depth of the mitogenome (Figures 7B, C). This is

consistent with the characteristic that organelle genomes have

higher copy numbers than nuclear genomes. In addition, we

aligned PacBio sequencing reads to these two contigs and their

flanking regions, and found that no PacBio reads could be mapped

to their junction and flanking regions, further confirming that these

two contigs were the result of chromosome assembly errors rather

than true nuclear insertion of mitochondrial DNA (numt).

Altogether, these results highlight that unfiltered organelle

sequences can truely contaminate the nuclear genome during

chromosome-level genome assembly. Therefore, the prior

identification and exclusion of organelle genome sequences using

Chlomito are curcial for ensuring the accuracy and integrity of

chromosome assembly.
4 Discussion

In this study, we have developed a novel tool called Chlomito that

provides an innovative approach for accurately identifying organelle

genome sequences from complex genomic assembly. This method

significantly improves the accuracy of recognizing organelle genomic

fragments by integrally applying two metrics. (1) The first metric is
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Alignment Length Coverage Ratio (ALCR). Different from previous

conventional methods (Nath et al., 2022; Bao et al., 2024), the

calculation of ALCR does not solely rely on the single longest

alignment region. Instead, it adds the lengths of all regions on the

contig that is aligned with the organelle genome database. This metric

offers a more accurate and comprehensive reflection of the alignment

coverage between the contig and the organelle genome. The

introduction of ALCR can significantly reduce the likelihood of

incorrectly identifying nuclear genomic sequences as organelle

genome sequences, especially for those organelle genome sequences

that have been inserted into nuclear genomes via horizontal gene

transfer (HGT). (2) The second metric is Sequencing Depth Ratio

(SDR). Considering the varying copy numbers of organelle genomes

in different tissues and developmental stages of plants (Preuten et al.,

2010), the ratio of sequencing depths between organelle genome and

nuclear genome is not constant (Wang et al., 2018). Consequently, in

this study, we compared the sequencing depths of contigs against the

average sequencing depth of organelle genome to enhance the

precision of detection outcomes. The application of SDR provides

an additional robust filtering dimension, further ensures the

identification of sequences truly belonging to organelle genomes

among all the assembled contigs.

Moreover, we have noted that recently, some new methods such

as ODNA (Martin et al., 2023) and Odintifier (Samaniego Castruita
FIGURE 6

Chlomito accurately identifies mitochondria-derived contigs and a horizontally transferred organelle fragment (numt) from Arabidopsis.
(A) Identification of mitochondria-derived contigs in Arabidopsis using ALCR and SDR as screening criteria. (B) Collinearity analysis of Chlomito-
identified contigs against published mitochondrial reference genomes for Arabidopsis. (C) Comparison of the ptg000002l fragment with the
previously reported large numt on chromosome 2 of Arabidopsis. (D) Alignment of PacBio HiFi sequences (Wang et al., 2022) with the numt and its
flanking regions.
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et al., 2015) can also be used for the identification of organelle

genomes. ODNA takes a machine learning approach, extracting

features from the sequences and training classification models to

distinguish organelle and nuclear genome sequences. Odintifier

utilizes phasing technology to separate reads containing SNVs

into organelle and nuclear genome reads, thereby enabling the

identification of organelle genome sequences. Compared to them,

Chlomito not only considers sequence alignment information but

also takes full advantage of the differences in copy numbers and

sequencing depths between organelle and nuclear genomes, thereby

enhancing the identification accuracy. The organelle genome

contigs identified by Chlomito exhibit high collinearity with its

reference and cover most of the reference genome regions

(Figures 4C, F, 5C, F, 6B; Supplementary Figure S7), as we tested

it using sequencing data from multiple species, including Mango

(Mangifera indica) (Wang et al., 2020), Plum (Prunus salicina) (Liu

et al., 2020), and Arabidopsis (Arabidopsis thaliana) (Wang et al.,

2022). Thus, Chlomito is capable of accurately detecting the

organelle genome contaminants scattered in the assembly results.

Also, it can effectively pick out the entire organelle genome

sequences (Figures 4C, F). In short, Chlomito is a reliable tool in

organelle genomic studies, and in supporting precise nuclear

genome assembly by removing organelle genome contaminants.

In addition to the contigs identified by Chlomito as belonging to

organelle genomes, there were also numerous contigs with

alignment lengths to the reference organelle genomes exceeding 5

kb but exhibiting low alignment coverage (ALCR less than 10%)

relative to the contig lengths (Supplementary Figure S6). This

phenomenon may be attributable to the intracellular insertion of
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organelle genomes into the nuclear genome via HGT events. HGT is

a significant mechanism in the evolutionary process, particularly in

the exchange of genetic information between organelle genomes

and host nuclear genomes. Similar studies have also observed the

phenomenon of large organelle genome fragments over 4 kb being

transferred into nuclear genomes via HGT in watermelon and

melon (Cui et al., 2021). These findings suggest that large-scale

HGT may be a widespread occurrence across diverse species. In this

context, it is particularly important to accurately distinguish

sequence exchanges between organelle and nuclear genomes

caused by HGT. Chlomito is designed to address this challenge

by employing two powerful metrics — ALCR and SDR. Two-

dimensional grouping and filtering in Chlomito with ALCR and

SDR can clearly separate different groups: the organellel genome

contigs and the nuclear insertions of organellel sequences

(Figures 4A, D, 5A, D, 6A). Additionally, some contigs with low

ALCR (<0.5) and high SDR (>0.5) may be the result of either

horizontal gene transfer between mitochondrial and chloroplast

genomes or a high proportion of repetitive sequences within the

contigs. To improve the accuracy of detection, users can initially

run Chlomito with lower filtering thresholds and then determine

more precise filtering thresholds using the generated ALCR and

SDR visualization scatter plot for the following run. The application

of Chlomito will deepen our understanding of the complex

interactions among mitochondrial, chloroplast, and nuclear

genomes through HGT.

The organelle genome contaminants greatly affect

chromosome-level genome assembly results. When chromosomes

were assembled using all contigs without removing organelle
FIGURE 7

Identification and verification of organelle genome contamination in the assembled chromosome 1 of Plum. (A) The alignment between two
mitochondria-derived contigs (identified by Chlomito) and the assembled chromosome 1 of Plum. (B, C) The sequencing depths are shown for
contig_2 (B) and contig_4851 (C), in parallel with the average depths of chromosome and mitochondrial genomes.
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genomes, organelle genome segments were erroneously inserted

into chromosomes by genome assembly software (Figure 7).

Therefore, identifying and eliminating organelle genome

contamination prior to chromosomal-level assembly are critical to

ensure the fidelity of the assembly outcomes. The development of

tools like Chlomito is important for improving the quality and

rel iabi l i ty of chromosomal-level genome assembly in

scientific research.

In summary, the development of Chlomito offers a precise and

efficient approach for detecting and filtering organelle DNA

sequences from genome assembly contigs, which significantly

contributes to enhancing the quality of chromosome assembly.

Furthermore, as Chlomito is capable of effectively distinguishing

genuine organelle genome sequences from what have been

integrated into the nuclear genome via HGT, it will facilitate

broad investigation into the mechanisms of genetic exchange

between chromosomal and organelle genomes across a wide range

of species in the future, offering new insights on the dynamic

changes and evolutionary processes of organelle genomes.
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SUPPLEMENTARY FIGURE 1

High collinearity between GetOrganelle-assembled chloroplast genomes
and NCBI reference genomes. The results from Mango (A) and Plum (B)
are shown.

SUPPLEMENTARY FIGURE 2

Annotation and comparison of chloroplast genomes of Mango, Plum,
Arabidopsis, and Zea mays. The chloroplast genomes of these species

exhibit high conservation in gene contents and order.

SUPPLEMENTARY FIGURE 3

Analysis of contigs with chloroplast reference genome alignments in Mango

(A) and Plum (B) samples. The alignment length coverage ratio (ALCR, blue

bars), sequencing depth ratio (SDR, orange bars), and contig alignment
lengths with chloroplast reference genomes are shown for contigs with

varying alignment lengths.

SUPPLEMENTARY FIGURE 4

Collinearity comparison of mitochondrial genomes of Mango (A) and Plum

(B) assembled by GetOrganelle with mitochondrial reference genomes

from NCBI.

SUPPLEMENTARY FIGURE 5

Annotation and comparison of mitochondrial genomes of Mango, Plum,

Arabidopsis, and Zea mays. In contrast to the conserved chloroplast
genomes (Supplementary Figure S2), the mitochondrial genomes of these

species show significant variations in gene content and gene order.
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SUPPLEMENTARY FIGURE 6

Analysis of contigs with mitochondrial reference genome alignments in
Mango (A) and Plum (B) samples. The alignment length coverage ratio

(ALCR, blue bars), sequencing depth ratio (SDR, orange bars), and contig

alignment lengths with mitochondrial reference genomes are shown for
contigs with varying alignment lengths.

SUPPLEMENTARY FIGURE 7

Chlomito accurately identifies chloroplast-derived contigs and validates
their collinearity with chloroplast reference genome from Arabidopsis. (A)
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Identification of chloroplast-derived contigs in Arabidopsis assembly
based on ALCR and SDR metrics. (B) Alignment lengths of Arabidopsis

contigs with chloroplast genomes assembled using GetOrganelle and

downloaded from NCBI database. (C) Collinearity analysis of Arabidopsis
contigs identified by Chlomito against published Arabidopsis chloroplast

reference genome.

SUPPLEMENTARY TABLE 1

Repetitive sequences identified using RepeatMasker in the Plum contigs with

low ALCR and high SDR.
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