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Alfalfa biomass can be fractionated into leaf and stem components. Leaves

comprise a protein-rich and highly digestible portion of biomass for ruminant

animals, while stems constitute a high fiber and less digestible fraction,

representing 50 to 70% of the biomass. However, little attention has focused

on stem-related traits, which are a key aspect in improving the nutritional value

and intake potential of alfalfa. This study aimed to identify molecular markers

associated with four morphological traits in a panel of five populations of alfalfa

generated over two cycles of divergent selection based on 16-h and 96-h in vitro

neutral detergent fiber digestibility in stems. Phenotypic traits of stem color,

presence of stem pith cells, winter standability, and winter injury were modeled

using univariate and multivariate spatial mixed linear models (MLM), and the

predicted values were used as response variables in genome-wide association

studies (GWAS). The alfalfa panel was genotyped using a 3K DArTag SNP markers

for the evaluation of the genetic structure and GWAS. Principal component and

population structure analyses revealed differentiations between populations

selected for high- and low-digestibility. Thirteen molecular markers were

significantly associated with stem traits using either univariate or multivariate

MLM. Additionally, support vector machine (SVM) and random forest (RF)

algorithms were implemented to determine marker importance scores for

stem traits and validate the GWAS results. The top-ranked markers from SVM

and RF aligned with GWAS findings for solid stem pith, winter standability, and

winter injury. Additionally, SVM identified additional markers with high variable

importance for solid stem pith and winter injury. Most molecular markers were

located in coding regions. These markers can facilitate marker-assisted selection

to expedite breeding programs to increase winter hardiness or stem palatability.
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1 Introduction

Alfalfa (Medicago sativa L.) is third most valuable field crop in

the United States after corn and soybean, with an estimated of 47

million acres harvested in 2022 (USDA National Agricultural

Statistics Service, 2022). It is grown for hay, silage, and pasture

due to its high nutritive value for milk and muscle mass production

in livestock (Higginbotham and Stull, 2009). During harvest, all

aerial parts of the plant are collected. Alfalfa biomass yield can be

fractionated into leaf and stem components. The leaves comprise a

protein-rich, highly digestible portion for ruminant animals, while

the stem component represents 50 to 70% of the biomass and

comprises a high-fiber, less digestible fraction (Wilman and

Altimimi, 1984). Therefore, improving stem digestibility will

increase palatability, dry matter, and available energy of the plant

especially at later maturity stages.

There are different approaches to increase forage digestibility,

including gene knockdowns in the lignin biosynthetic pathway

(Guo et al., 2001; Reddy et al., 2005), increasing the proportion of

non-lignified tissues (Jung and Lamb, 2006), increasing the leaf/

stem ratio (Luckett and Klopfenstein, 1970), or reducing lignin

concentration to increase fiber digestibility using traditional

breeding (Jung et al., 1997). Previously, a panel of five

populations was developed to enhance stem digestibility using

recurrent selection for in vitro neutral detergent fiber digestibility

(IVNDFD) in alfalfa stems (Jung and Lamb, 2006; Xu et al., 2023).

Jung and Lamb (2006) generated a cycle zero population

(UMN3097) by mixing seeds from six commercial alfalfa

varieties. Genotypes of UMN3097 were categorize into four

groups: low rapid (16-h) IVNDFD, high rapid (16-h) IVNDFD,

low potential (96- h) IVNDFD, and high potential (96-h) IVNDFD.

Two cycle 1 divergent stem IVNDFD populations were developed

through intercrossing plants with high 16-h and 96-h digestibility

(H×H) (UMN3355) and low 16-h and low 96-h digestibility (L×L)

(UMN3358). Two cycle 2 divergent stem IVNDFD populations

were generated by intermating H×H genotypes of UMN3355 and

L×L genotypes of UMN3358 (UMN4016 and UMN4019,

respectively). This approach aimed to increase biomass yields

while maintaining forage quality and enhancing seasonal stability

in stem digestibility.

The stem structure of alfalfa changes during development from

young to mature tissues. The young stem has a square shape in

cross-section, with major vascular bundles located in the angles,

while the mature stem tissues are rounded due to cambial growth

(Engels and Jung, 1998). The center of the stem is occupied by the

pith, composed of large, compactly arranged parenchyma cells. The

parenchyma cells in the pith are unlignified and as stems mature

these cells may die, leading to the formation of air-filled cavities in

the stem (Teuber and Brick, 1988). The generation of a hollow stem

is related to an increased stem lodging and stalk-rot in maize

(Colbert I et al., 1987). In alfalfa, stem pith parenchyma is an

important trait related to stem maturity, stem water and nutrient

content, and palatability (Teuber and Brick, 1988).

Modifications of tissue composition can affect other traits like

plant size or susceptibility to diseases (Gallego-Giraldo et al., 2011).

Therefore, it is necessary to evaluate different traits that could affect
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the performance of the selected populations. In the Northern Great

Plains of the United States, the ability to develop and maintain an

adequate level of freezing resistance is imperative to withstand

stressful mid-winter temperatures. During the fall, alfalfa

increases tolerance to low temperatures and prepares to enable

roots and crowns to survive temperatures as low as -20°C. Winter

injury occurs due to cold temperatures in winter that cause freezing

of root cells or crown buds, resulting in subsequent damage due to

freezing. Sublethal winter injury can decrease vigor during the

subsequent growing season (McKenzie et al., 1988).

The availability of the Diversity Arrays Technology (DArT)

genotyping panel for alfalfa enables the acquisition of highly

consistent 3,000 SNPs to implement genome-wide association

studies (GWAS) or genomic selection (Zhao et al., 2023). GWAS

can identify marker-trait associations using mixed linear models

(MLM) that includes population structure and a kinship matrix to

correct false associations (Kang et al., 2008). However, GWAS only

analyzes the linear relations for each SNP individually and cannot

detect SNP-SNP interactions or small-effect variants. On the other

hand, machine learning (ML) models have fewer assumptions about

the normality of data and can capture non-linear interactions

between the predictor variables (i.e. SNPs) and the response

variable. Additionally, ML can capture the combined minor

effects of multiple genetic markers, allowing for the development

of multi-locus methodologies that consider all SNPs in the model to

estimate the importance scores of SNPs. Support vector machines

(SVM) and random forest (RF) are two of the most effective

machine learning models for predictive analytics capable of

improving GWAS results (Roshan et al., 2011; Mieth et al., 2016).

The objective of this study was to identify molecular markers

associated with four morphological traits (stem color, presence of

stem pith parenchyma [hereafter referred to as stem fill], winter

standability, and winter injury) in a panel of five populations of

alfalfa generated over two cycles of divergent selection for 16-h and

96-h IVNDFD. In this work, we compared the genotypic response

of univariate and multivariate spatial MLM and the markers

associated with GWAS and ML models.
2 Materials and methods

2.1 Plant materials and field experiment

Plant materials were previously detailed by Xu et al. (2023).

In summary, a parental population (UMN3097) was created by

mixing seeds from six commercial alfalfa varieties (5312,

Rushmore, Magnagraze, Wintergreen, Windstar, and WL

325HQ). In the selection cycle zero (C0), approximately 2,400

seeds were hand-sown to establish a plant nursery, and the

biomass yield from genotypes was harvested at approximately

25% bloom stage. Fresh biomass yield was subsequently dried at

60°C, and stems and leaves were separated. Each ground stem

sample underwent scanning via near-infrared spectroscopy

to evaluate 16-h and 96-h in vitro neutral detergent fiber

digestibility (IVNDFD). The mean values of 16-h and 96-h

IVNDFD were utilized to categorize the UMN3097 population
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429976
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Medina et al. 10.3389/fpls.2024.1429976
into four groups: 117 plants with high 16-h and 96-h

digestibility (H16×H96); 33 plants with low 16-h and low 96-

h digestibility (L16×L96); 28 plants with high 16-h and low 96-h

digestibility (H16×L96); and 26 plants with low 16-h and high

96-h digestibility (L16×H96).

Plants from C0 were intercrossed by hand tripping flowers

without emasculation to generate two populations in selection cycle

1 (C1). Populations UMN3355 and UMN3358 were developed

through random intercrossing of the plants H16×H96 and

L16×L96, respectively. Seeds from C1 populations were

established in a spaced plant nursery, following the procedure

outlined for the parental population. Biomass yield was harvested,

dried, and separated into leaf and stem fractions, and the stem

fraction underwent analysis via near-infrared spectroscopy for 16-h

and 96-h IVNDFD. Each of the two C1 populations were

categorized into four groups using similar criteria applied in the

C0 population.

Values of 16-h and 96-h IVNDFD calculated for the C1

populations were used to develop cycle 2 (C2) populations.

UMN4016 was generated by intermating approximately 30 plants

of UMN3355 with high 16-h and high 96-h IVNDFD, while

UMN4019 was generated by intermating approximately 30 plants

of UMN3358 with low 16-h and low 96-h IVNDFD

(Supplementary Table 1). One hundred genotypes from each

population were established in 2021 at the University of

Minnesota Experimental Research Station in Saint Paul, MN.

From the original plant, 12 vegetative cuttings were made with

three cuttings planted in each replication. The experimental design

used was a randomized complete block design with 1,500 plots

arranged in three replicates, with 50 rows and 30 columns. To

prevent border effects, a border of the alfalfa cultivar Agate was

planted around each side of the plots. The plots were managed

following best practices, and pesticides were applied as needed (Xu

et al., 2023).
2.2 Phenotype collection

A set of four stem traits were collected during 2022 and 2023.

Stem color and winter standability were collected on 04/04/22, stem

fill was collected on 07/01/22, and winter injury was collected on 04/

24/23. All phenotypic values were collected as categorical traits.

Stem color and stem fill had two levels: yellow (0) or brown (1) for

stem color, and hollow (0) or solid (1) for stem fill. Winter

standability was assessed using a modified standability scale

ranging from 1 to 5, where 1 represented 0 to 10% erect stems, 2

represented 11 to 30% erect stems, 3 represented 31 to 50% erect

stems, 4 represented 51 to 70% erect stems, and 5 represented over

70% erect stems (Johnson et al., 1991). Winter injury was evaluated

on a scale from 1 to 5, where:1 indicated dead plants, 2 indicated less

than 15% winter injury, and short plants, 3 indicated less than 10%

winter injury, short plants with more branches, 4 indicated less than

5% winter injury, tall plants with many branches, 5 indicated no

winter injury, tallest plants with many branches. The injury rate was

estimated visually without counting the plants.
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2.3 Univariate and multivariate
spatial modeling

The phenotypic response of four stem traits were modeled

separately by single trait (ST, i.e. univariate) modeling and

conjointly by multi trait (MT, i.e. multivariate) modeling. Each

phenotypic response consisted of 1,500 observations corresponding

to the plots indexed by 50 rows and 30 columns in a contiguous field

array, with three complete blocks and 500 genotypes. Four traits

were modeled separately by a univariate mixed model y = Xb +

Zu + e, where y is the response variable, X and Z were incidence

matrices for fixed and random effects respectively, b was the vector

of fixed effects associated to genotypes, u was the vector of random

effects associated to blocks, rows and columns, and e was the vector
of residuals. The two random components of this model (u, e), are
assumed to be independent and identically distributed and follow a

Normal distribution such that u eN(0,s 2
g I) and e eN(0,s 2

eR),
where I is an identity matrix and R is a variance matrix of vectors

of residual variance (s 2
e ) for the plot errors by a separable first-

order autoregressive model using the field row and column

positions (Gilmour et al., 1997). The nugget effect was included to

measure the variance to-error variance ratio.

Multivariate spatial modeling uses the same parameters

described in the univariate modeling, but data were ordered by

traits (t) within units in a variance matrix In ⊗S, where S(t�t) was a

factor analytic variance matrix. The error structure was specified

with independent units and an unstructured variance matrix.

The ASReml-R software was utilized to estimate the variance

components and the best linear unbiased estimates (BLUEs) of the

genotypes. BLUEs were used as response variables in genome-wide

association studies (GWAS) (Butler et al., 2023). The genetic term

was changed as random effect in the same ASReml-R spatial model

to obtain the broad sense heritability calculated using the Cullis

method (Cullis et al., 2006).

H2
Cullis = 1 −

v−BLUPD
2s 2

g
  (1)

where s 2
g is the genetic variance and v−BLUPD is the average

standard error of the genotypic best l inear unbiased

prediction (BLUP).
2.4 DArTag genotyping

Genomic representations of 1,502 genotypes were generated by

collecting two to three leaflets (~100 mg) per genotype for DNA

extraction and genotyping. Leaf tissues were sent to Intertek

(Intertek; Alnarp, Sweden) for DNA extraction. The DNA

samples were then sent to Diversity Arrays Technology Ltd.

(DArT; Canberra, Australia) for genotyping using the 3K DArTag

genotyping panel developed by Breeding Insight (Breeding Insight;

Ithaca, NY, USA), Cornell University (Zhao et al., 2023).

The alfalfa DArTag panel consists of DNA oligo primers

targeting genomic regions containing 3,000 SNP loci distributed

across the alfalfa genome (Zhao et al., 2023). DArTag probes
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hybridize to genomic DNA to capture the target SNP into the

DArTag molecule. These DArTag molecules, along with unique

barcodes for downstream demultiplexing, are then amplified.

Subsequently, DArTag molecules with barcodes are purified and

quantified before being sequenced on an Illumina platform (~ 100×

per marker per sample). DArT processed the sequencing reads and

provided the Allele Match Count Collapsed (AMCC) file containing

the read depths of targeted SNPs in the alfalfa SNP array. The

AMCC file was then converted into a RADdata object using the

`readDArTag` function to export discrete genotypes in a molecular

matrix containing the allele dosage with the polyRAD R package

v.2.0.0 (Clark et al., 2019). Markers were filtered based on minor

allele frequency (MAF) > 0.05, and the number of redundant

markers with identical genotype calls were reduced using the

`snp.pruning` function of the ASRgenomics v1.1.4 R package

(Gezan, 2022). This process resulted in a genotypic matrix with

2,434 SNPs×1,502 genotypes.
2.5 Population structure

Principal Component Analysis (PCA) was conducted using the

built-in R function `prcomp` with the setting `scale = TRUE`. For

population structure analysis, Structure v.2.3.4 software was utilized

(Pritchard et al., 2000). PCA and population structure analysis used

the genotypic matrix with 2,434 SNPs×1,502 genotypes. To

determine the appropriate number of inferred clusters to model the

data, ten independent runs were conducted for each number of

subpopulations (K) ranging from 2 to 10. The burn-in length was set

to 10,000, and the Markov Chain Monte Carlo (MCMC) length was

set to 10,000 as well. To identify the optimal number of clusters (K),

the Evanno method was employed, where the result with the largest

LnP(D) and the smallest K values is considered optimal (Evanno

et al., 2005). The optimal K value and the population structure bar

plot at K = 2 were generated using the pophelper R package v.2.3.1

(Francis, 2017). The continuous membership values to the two

clusters obtained from Structure were included as covariates in the

genome-wide association study (GWAS) and can be downloaded

from figshare (https://doi.org/10.6084/m9.figshare.25686405.v1).

To evaluate genetic diversity, observed heterozygosity (HO),

expected heterozygosity within a population (HS), and

interpopulation differentiation measured with the Rho parameter

were calculated using the software GenoDive v.3.0 (Meirmans, 2020).
2.6 Linkage disequilibrium

Linkage disequilibrium (LD) between each pair of SNPs was

estimated using squared allele-frequency correlations (r2)

calculated with the ldsep R package v.2.1.5 (Gerard, 2021). The

rate of LD decay was estimated using r2 and the distances in base

pairs (bp) based on the M. sativa cultivar XinJiangDaYe reference

genome (Chen et al., 2020) using a nonlinear model (Remington

et al., 2001). The expected r2 value was E(r2) = 1=(1 + C), where

C = 4ad, where a is an estimated regression coefficient and d is the

physical distance in bp. Assuming a low level of mutation and finite
Frontiers in Plant Science 04
sample size n, the expectation becomes (Hill and Weir, 1988):

E(r2) =
10 + C

(2 + C)(11 + C)

� �
1 +

(3 + C)(12 + 4C + C2)
n(2 + C(11 + C))

� �
  (2)

To evaluate the consistency of LD, global LD decay and

estimated LD values for each population were defined as the

distance at r2   = 0.1.
2.7 Genome-wide association study and
functional annotation

GWAS was conducted using GWASpoly v2.13 (Rosyara et al.,

2016) using the Q+K mixed linear model, which conducts single

locus analysis incorporating structure information (Q) and a

kinship matrix (K) in the model to reduce false positives resulting

from population structure and family relatedness. The cluster values

obtained from Structure were used as Q, while K was calculated by

GWASpoly. K matrix was calculated with the GWASpoly function

`set.K` using the leave-one-chromosome-out method, in which a

different covariance matrix is calculated for each chromosome

based on the markers from all other chromosomes (Yang et al.,

2014). The -log10(p-values) were corrected by Bonferroni method at

a cutoff value of 5% to identify SNPs significantly associated with

the traits. Subsequently, significantly associated markers were

annotated against the UniProt100 database (Bateman, 2019) using

the reference transcriptome dataset for M. sativa (Medina et al.,

2021) in a window of 84 kb according to LD results.
2.8 Machine learning models

Support vector machine (SVM) and random forest (RF) models

were implemented to identify linear and non-linear marker-trait

associations by fitting all markers simultaneously. SVM find the

best hyperplane with the maximal margin in an p−dimensional

space with respect to a given response variable (Cortes and Vapnik,

1995). A hyperplane refers to a straight line in a high-dimensional

or p-dimensional space, such as the genotypic matrix with p SNPs,

where the response variables are the n BLUEs. In SVM, each n-

dimensional input vector (xi) of p SNP markers is associated with a

yi phenotypic response where xi ∈ Rp and yi ∈ R. The following

linear regression is performed f(x) = (w,x) + b , where w,x is the

inner product between vectors w, x   ∈ Rp, w is the slope and b is

the intercept of the hyperplane to be estimated (Liu et al., 2006).

RF is a method to solve both regression and classification

problems based on decision trees (Breiman, 2001). A decision tree

is a non-parametric algorithm with a hierarchical, tree structure,

which consists of a root node, branches, decision nodes, and

terminal nodes. The generation of a decision tree involves

recursively partitioning the data from the root node based on the

available features. The algorithm selects the best features to split the

data at each decision node based on certain criteria, such as

information gain or the sum of squares (Ishwaran, 2015). The

splitting process continues until there is a minimum number of
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features in a terminal node. RF combines the predictions of multiple

decision trees to reduce overfitting and improve the accuracy of

the model.

Mean squared error (MSE) of permutation feature importance

was used to estimate the variable importance (VI). VI describes how

much a prediction model’s accuracy depends on the information in

each variable. Therefore, VI is measured by the decrease in

prediction accuracy when a covariate is permuted (Breiman,

2001). The purpose of determining the feature or variable

importance is to eliminate irrelevant variables to enhance the

generalization performance of a model. However, in genetic

association studies, machine learning models allow ranking the

variables (SNPs) according to how they affect the model predictions.

VI of SNPs was calculated to understand how each SNP contributes

to the prediction model in the testing model. SVM and RF models

were performed using a ten-fold cross-validation with the caret R

package v6.0.94 (Kuhn et al., 2019). The VI was ranked from 0 to

100 according to the ranks of each SNP’s impact on the trait and

compared with -log10(p-values) from GWAS. Larger VI values

indicate a greater increase in the prediction error (MSE) when the

SNP is randomly permuted, compared to the MSE value prior

to permutation.
3 Results

3.1 Genotype information

In this study, we genotyped 1,502 individuals from five

divergent stem digestibility populations using a mid-density

DArTag panel. The five populations used were the cycle zero

population (C0); the cycle 1 population with high16-h and 96-h

IVNDFD (C1 H×H); the cycle 1 population with low 16-h and 96-

h IVNDFD (C1 L×L); the cycle 2 population with high 16-h and

96-h IVNDFD (C2 H×H); and the cycle 2 population with low 16-

h and 96-h IVNDFD (C2 L×L) (see plant materials and field

experiment in materials and methods section).

Initially, the Allele Match Count Collapsed (AMCC) file

contained 3,000 target SNP markers; however, after minor allele

frequency (MAF) and collinearity filtering, the genotypic matrix

kept 2,434 SNPmarkers (81%). Markers were not evenly distributed

along or among chromosomes (Figure 1A). Chromosome 6 had the

lowest number of markers (153), with a density of 1.91 SNP/Mb,

and a maximum gap between two markers of 4,339 kb around the

centromeric region. Chromosome 4 had the highest number of

markers (362), with a density of 4.01 SNP/Mb, and a maximum gap

between two markers of 1,212 kb. Allele dosage in the five alfalfa

populations showed an increase in the heterozygous markers in the

C1 and C2 L×L populations (Figure 1B). This was corroborated by

heterozygosity-based statistics. Observed heterozygosity (HO) was

greater than the expected heterozygosity within the population (HS)

in all populations, which is often observed in highly diverse

populations. HO was the lowest in the UMN3097 (C0) population

(0.391) and highest in the UMN3358 (C1 L×L) population (HO =

0.441). Additionally, the UMN3358 population had the highest

value of genetic diversity (HS = 0.387) (Figure 1C).
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3.2 Population structure

A Principal Component Analysis (PCA) was conducted with

1,502 genotypes to define the population structure. The first and

second components contributed 6.29% of the total genetic variance.

The individuals of the five populations clustered according to cycle

and selection criteria (Figure 2A). C0 genotypes were grouped in the

middle of the scatter plot (coordinates 0, 0), individuals of cycles 1

and 2 with high digestibility were grouped in the right section of the

scatter plot, and individuals of cycles 1 and 2 with low digestibility

were grouped in the left section of the scatter plot. C2 populations

were more divergent from the base population because of selection.

According to Evanno’s DK method, the most likely value of K was

two, indicating that the 1,502 genotypes could be grouped into two

clusters based on differences in their markers (Supplementary

Figure 1). All genotypes were grouped by populations and

ordered according to the membership to the two clusters. Mean

values of cluster 1 (dark blue) were significantly different among

populations (p-value < 0.01). Mean values of C0 and C1 and C2

high digestibility populations were 0.24, 0.13, and 0.07, respectively,

while mean values of low digestibility populations in C1 and C2

were 0.73 and 0.82 (Figure 2B).

Linkage disequilibrium (LD) was determined by fitting a non-

linear model between the square of the correlation coefficient

among pairs of SNPs and physical distances on the M. sativa

genome. LD decay was measured in all genotypes and in each of

the five individual populations. LD decay at r2 = 0.1 among all

genotypes was the lowest (84 kb), and the values increased with

selection cycle. LD decay in the C0 population was the second

lowest (86 kb), while C1 and C2 L×L populations had the highest

LD decay (168 and 273 kb, respectively) (Figure 2C). LD decay was

notably higher in L×L populations, doubling and tripling the LD

block size in C1 and C2, respectively. Similarly, genetic

differentiation values (Rho) were highest between L×L and H×H

in C2 (0.11) and lowest between C1 and C2 in H×H populations

(0.009). Rho values were doubled when comparing L×L and H×H

populations in C1 vs C2, and Rho values were greater in the

generation of L×L populations (Figure 2D).
3.3 Genotypic modeling

The best linear unbiased estimates (BLUEs) values were

obtained using a single trait (ST) or univariate spatial mixed

linear model (MLM). The genotypes and replicates were defined

as fixed components, while the nugget effect, columns, and rows

were considered random components, and a spatial autoregressive

correlation matrix was included as a residual component. Pairwise

comparisons among populations showed a significant difference

between high and low-digestibility C2 populations in stem color.

High and low digestibility C2 populations were significantly

different (p-value <0.05) in stem color; and in winter standability

(Supplementary Figure 2). The Wald test for fixed effects identified

that genotypic variation was highly significant (p-value <0.001) for

stem color, stem fill, and winter injury, but not for winter
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standability (Supplementary Table 2). The nugget effect was

included in the spatial MLM and corresponded to the measure of

error variance in the spatial modeling at an infinitesimal separation

distance between plots. A log likelihood ratio test showed a

significant improvement (p-value <0.001) to the model fit

including the nugget effect. Genetic variance was the highest for

winter injury (Vg = 0.54) and the lowest for winter standability

(Vg = 7.37 ×10-8) (Figure 3A). The broad sense heritability (H2) was

high for winter injury (0.78) indicating most of the phenotypic

variation of this trait was genetically controlled. H2 was medium for

stem color (0.22) and stem fill (0.47), and the lowest for winter

standability (0.04) (Figure 3B).

Multivariate or multi-trait (MT) spatial MLM provided

different estimates of genetic variance of the traits by fitting them

simultaneously in a model. Winter injury kept the highest genetic

variance (Vg = 0.42) while stem color has the lowest genetic

variance (Vg = 2.88 ×10-3), and winter standability increase this

value up to 0.04 (Figure 3C). MT-MLM increase the absolute

Pearson’s correlation of predicted values between traits. Mean

absolute value of Pearson’s correlation in ST-MLM was 0.15

while in MT-MLM was 0.71. BLUEs of winter injury did not

change by MT modeling (Pearson’s = 0.99 between ST and MT),
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but winter standability BLUEs were affected (Pearson’s = 0.45

between ST and MT). The highest Pearson’s correlation in ST

modeling was between winter standability and stem color (0.27),

and the lowest value was between stem fill and winter injury (-0.25).

The highest Pearson’s correlation in MT modeling was between

stem fill and stem color (0.92), and the lowest value was between

winter standability and stem color (-0.90) (Figure 3D).
3.4 Genome wide association studies

BLUE values from ST and MT spatial modeling were utilized to

identify SNPs associated with stem traits. GWAS with ST-BLUEs

identified nine significant associated markers (Table 1;

Supplementary Figure 3). Stem color, stem fill, and winter

standability each were associated with two markers, while winter

injury was associated with three markers (Figure 4). Marker

4_85794609 was associated with two traits: stem color and winter

standability. The phenotypic variance explained (R2) for each

marker shewed minor phenotypic effects. The highest R2 was

identified in marker 7_65295546, explaining 6% of winter

standability (Table 1). GWAS with MT-BLUEs identified seven
FIGURE 1

Genotypic information of SNP markers in divergent stem digestibility populations. (A) SNP-density plot of 2,434 biallelic SNPs the eight
chromosomes of Medicago sativa; colors represent number of SNPs within a 1 megabase (Mb) window size. Loci with high-density SNPs are shown
in red, and loci with low-density SNPs are shown in green. (B) Boxplot of allele dosage in five alfalfa populations. (A, B) Represents the reference and
alternative allele, respectively. (C) Observed (HO) and expected heterozygosity (HS) by selection cycle. C0, cycle zero population (UMN3097); C1
H×H, cycle 1 population with high 16-h and 96-h vitro neutral detergent fiber digestibility (IVNDFD) (UMN3355); C2 H×H, cycle 2 population with
high 16-h and 96-h IVNDFD (UMN4016); C1 L×L, cycle 1 population with low 16-h and 96-h IVNDFD (UMN3358); and C2 L×L, cycle 2 population
with low 16-h and 96-h IVNDFD (UMN4019).
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significant associated markers. Stem fill and winter standability each

were identified with two markers, winter injury with three markers,

and no markers were identified for stem color. The mean -log10(p-

values) of significant markers was higher in MT-BLUEs (5.25)

compared with ST-BLUEs (5.16) (Table 1; Supplementary

Figure 3). Twelve out of thirteen markers were in gene coding

regions; however, the distribution of the DArTag markers were

sparse across the genome and additional candidate genes were

annotated in a window of 84 kb according to LD results

(Supplementary Table 2).

Linkage disequilibrium among markers of interest was tested to

identify LD blocks in a window of 2 Mb. Six out of nine significant

markers had LD blocks with an average size of 393 kb. Four markers

(2_2963182, 4_85794609, 4_88675558, and 8_20956594) were in

LD blocks of ~450 kb with other three markers. One marker

(4_27397835) was in a block with other two SNPs, and one

marker (7_65295546) was in a block with another SNP

(Supplementary Figure 4). Finally, a list of candidate genes in a

window of 84 kb from the marker associated was retrieved

identifying interesting genes related with stem traits

(Supplementary Table 3).
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3.5 Machine learning predictions

To corroborate the GWAS results, importance scores of

markers were calculated using SVM and RF models and

compared with GWAS findings. The two markers associated with

stem color with ST-BLUEs (4_85794609, 8_20956594) were not

associated with MT-BLUEs and had low importance scores (mean

of 3.4 and 4.1). Three markers were jointly associated by GWAS

using ST and MT-BLUEs in stem fill. Marker 4_88675558 was

significantly associated by both ST-BLUEs (5.50) and MT-BLUEs

(5.77) and had high importance scores (mean = 81). Marker

3_78077889 was only significantly associated with MT-BLUEs

(4.56); however, the mean importance score of SVM and RF was

75.4. Marker 5_32560792 was only significantly associated with ST-

BLUEs (5.63), and the mean importance score of SVM and RF was

75.5. Two markers (4_85794609 and 7_65295546) associated with

stem fill with MT-BLUEs had the highest importance scores

with RF (100 and 99.5). Four markers were significantly

associated with winter injury. Markers 2_2963182 and

4_27397835 were significantly associated using both ST-BLUEs

(5.49 and 4.86) and MT-BLUEs (5.77 and 6.14) and had high
FIGURE 2

Population structure analysis of divergent stem digestibility populations. (A) Principal component analysis for the panel composed of 1,502
genotypes. Colors correspond to the five alfalfa populations. (B) Population structure bar plot at K = 2 inferred by the STRUCTURE program for 1,502
genotypes. Each bar represents one genotype, and the bar colors represent the likelihood of membership in each subpopulation. (C) Linkage
disequilibrium decay of combined (All) populations for five alfalfa populations. The values of half-decay and distances in bp at r2 = 0.1 are shown in
the inner table. The half values were estimated based on the maximum values of LD decay. Gen = Number of genotypes. Sel = selection criteria. (D)
Graph of Rho interpopulation distance.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429976
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Medina et al. 10.3389/fpls.2024.1429976
importance scores (mean = 58.9 and 78.9). Two markers

(3_74150027, 6_11528532) were significantly associated only with

ST-BLUEs or MT-BLUEs, and the mean importance score of SVM

and RF was low (mean of 31.1 and 27.2) (Table 2).

Pearson’s correlation of all -log10(p-values) from GWAS and all

variable importance scores from SVM or RF identified correlated

results frommultivariate analysis. There are high correlations (>0.8)

among importance scores using MT-BLUEs of stem color, stem fill,

and winter standability by SVM and GWAS. Winter injury had a

high correlation (>0.9) between ST-BLUEs and MT-BLUEs by each

model (GWAS, SVM, and RF) but a low correlation among models.

For example, the correlation between winter injury SVM and winter

injury RF using MT-BLUEs was 0.4 (Supplementary Figure 5A).

Plotting variable importance of SVM in the genomic position
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allowed identification of genomic regions with high importance in

stem fill and winter injury. In stem fill, four markers with

importance scores >90 were located in a region of 6.4 Mb on

chromosome 3 (Supplementary Figure 5B). For winter injury, seven

markers with importance scores >50 were located in a region of 12.4

Mb on chromosome 4 (Supplementary Figure 5C).
4 Discussion

The alfalfa stem serves as a structural organ supporting all aerial

parts and maintaining vascular connections between the roots and

leaves. Also, it is an important component of forage yield,

representing 50 to 70% of the biomass yield, and influences
FIGURE 3

Variance components for random effects in four stem traits. (A) Proportion of variance components in four traits modeled using a single trait spatial
model. Col and Row are spatial variance effect of columns and rows in the field experiment, Gen is genetic variance, Nugget corresponds to the
nugget effect, a measure of error variance in spatial models (Butler et al., 2023). (B) Broad sense heritability calculated using the Cullis method (Cullis
et al., 2006). (C) Proportion of variance components in four traits modeled using multi-trait spatial model. (D) Pearson correlation of predicted
values of traits associated with stem digestibility by univariate (single trait, ST) and multivariate (multi trait, MT) mixed linear modeling. ***, significant
level p-value < 0.0001; ns, non-significative. Winter stand, winter standability.
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TABLE 1 List of significant markers and candidate genes for stem traits.

Marker SNP ST-BLUEs MT-BLUEs Uniprot Gene Protein Ref

Log R2 Log R2

Stem color

4_85794609 A/G 4.62 1.8E-15 2.05 − UPI000DEDC8CC Clu Clu domain-containing protein (Cox and Spradling, 2009)

8_20956594 T/G 4.43 0.005 2.57 − UPI00078903CC RFC2 Replication factor C subunit 2 (Furukawa et al., 2003)

Stem fill

3_78077889 G/A 3.77 − 4.56 0.034 − − −

4_88675558 T/C 5.77 0.001 5.50 0.014 A0A2I4GYU2 FDM1 Factor of DNA methylation 1-like (Zheng et al., 2023)

5_32560792 A/G 5.63 3.2E-05 3.26 − UPI000DEC92ED MinE1 Cell division topological specificity factor (Maple et al., 2002)

Winter stand.

3_62442788 T/C 1.16 − 4.7 0.048 A0A445ABY6 Rix1 Pre-rRNA-processing protein RIX1 (Castle et al., 2012)

4_85794609 A/G 5.68 0.038 1.4 − UPI000DEDC8CC Clu Clu domain-containing protein (Cox and Spradling, 2009)

7_65295546 C/T 4.97 0.060 1.0 − UPI00057A69DD SEOB Sieve element occlusion B (Ernst et al., 2012)

8_74961533 A/G 0.91 − 5.3 0.025 UPI0010166183 Rav1 RAVE complex protein Rav1 (Smardon et al., 2002)

Winter injury

2_2963182 T/C 5.49 4.2E-04 5.77 0.010 A0A0B2QM34 PDR1 Pleiotropic drug resistance protein 1 (Stukkens et al., 2005)

3_74150027 C/T 4.19 − 4.79 0.005 A0A4D6NRG5 PGL 6-phosphogluconolactonase (Xiong et al., 2009)

4_27397835 A/G 4.86 0.002 6.14 0.001 UPI0010168B9C WSD1 O-acyltransferase WSD1-like isoform X2 (Li et al., 2008)

6_11528532 A/G 4.97 0.001 3.44 − UPI00051B12D6 KCS 3-ketoacyl-CoA synthase 20-like (Kim et al., 2013)
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Significant markers were identified using univariate (single trait, ST) and multivariate (multi trait, MT) best linear unbiased estimators (BLUEs). The log is the -log10(p-value); R
2 is the

proportion of explained variance. Candidate genes (Gene) were annotated using pan transcriptome information and a monoploid version ofM. sativa genome (Chen et al., 2020). Winter stand.
correspond to winter standability. Gray cells indicate markers below the Bonferroni threshold.
FIGURE 4

Manhattan plots of significant markers associated with alfalfa stem traits. Significant markers were identified for stem color (A), stem fill (B), winter
standability (C), and winter injury (D). The X-axis shows the chromosome numbers, and the Y-axis shows the -log10(p-value). The gray line
corresponds to the significance threshold (Bonferroni = 0.05).
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various traits such as plant height, standability, and digestibility

(Wilman and Altimimi, 1984). In this study, we identified 13

molecular markers associated with stem color, stem fill, winter

standability, and winter injury in a panel of five divergent stem

digestibility populations using a mid-density DArTag panel (Zhao

et al., 2023).
4.1 Population structure

Previous studies on alfalfa populations and diversity have

primarily focused on natural and highly diverse populations from

various geographical origins (Qiang et al., 2015; Annicchiarico et al.,

2017). In this study, principal component analysis, structure

analysis, and interpopulation Rho values revealed clear

differentiation between populations with high and low stem

digestibility especially during the second selection cycle. Linkage

disequilibrium (LD) values ranged from 84 kb to 272 kb, consistent

with previous reports in alfalfa (Li et al., 2014). Additionally, LD

and Rho values agreed, indicating a greater difference in low

digestibility populations (UMN3358 and UMN4019) compared to

the C0 population, suggesting a stronger association between alleles

in those populations. Low digestibility populations present high

heterozygosity compared with cycle zero population. This can be

explained because the selected plants used for intermating

contained high genetic diversity, altering the genetic diversity of

the subsequent populations.
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4.2 Univariate and multivariate modeling

We modeled the morphological traits using spatial mixed linear

models employing both univariate (single trait) and multivariate

(multi-trait) models. Univariate modeling serves as the initial step

due to its simplicity and reduced computational demand in

assessing genetic variance and trait heritability. However,

univariate models lack the ability to account for potential

relationships between traits since they model each trait

independently (Veturi et al., 2012). Therefore, when traits are

correlated, multivariate models can provide more accurate

predicted values. Multivariate genetic analysis has been applied in

genomic selection obtaining higher predicted abilities compared

from univariate modeling.

Multivariate models, designed to capture complex trait

relationships, often produce more accurate parameter estimates

and predictions than univariate models (Isik et al., 2017). In our

study, we observed low Pearson correlations among traits using

univariate models (-0.25 to 0.27) and higher correlations in

multivariate models (-0.9 to 0.92). Predicted values of winter

injury and stem fill remained consistent across univariate and

multivariate modeling. However, predicted values of traits with

low heritability like stem color and winter standability differed

between the multivariate and univariate models (Pearson

correlation of 0.67 and 0.45, respectively), as they were influenced

by observations in other traits. These discrepancies affected the

molecular markers associated with GWAS. In this work, nine,
TABLE 2 Importance scores of significant markers associated with stem traits.

Marker Trait ST-BLUEs MT-BLUES

GWAS SVM RF GWAS SVM RF

4_85794609 Stem color 4.62 1.5 5.0 2.05 4.0 3.2

8_20956594 Stem color 4.43 1.4 8.0 2.57 5.9 1.1

3_78077889 Stem fill 3.77 100.0 56.8 4.56 100.0 45.0

4_88675558 Stem fill 5.77 59.9 99.8 5.50 64.4 100.0

5_32560792 Stem fill 5.63 78.0 100.0 3.26 80.4 43.6

3_62442788 Winter stand. 1.16 0.8 6.7 4.7 3.0 50.1

4_85794609 Winter stand. 5.68 1.5 100.0 1.4 2.4 13.4

7_65295546 Winter stand. 4.97 82.0 99.5 1.0 0.0 18.5

8_74961533 Winter stand. 0.91 3.2 4.1 5.3 2.8 93.4

2_2963182 Winter injury 5.49 34.9 75.6 5.77 39.9 85.2

3_74150027 Winter injury 4.19 1.9 64.2 4.79 1.8 56.6

4_27397835 Winter injury 4.86 53.6 100.0 6.14 62.0 100.0

6_11528532 Winter injury 4.97 13.1 39.7 3.44 13.2 42.7
Significant markers were identified through genome-wide association studies (GWAS) using univariate (single trait, ST) and multivariate (multi trait, MT) best linear unbiased estimators
(BLUEs). GWAS values correspond to -log10(p-values). The importance scores for markers identified by GWAS were calculated using support vector machine (SVM) and random forest (RF)
models. Importance scores were scaled from 0 to 100. Winter stand. correspond to winter standability. Gray cells indicate markers below the Bonferroni threshold in GWAS or with a variable
importance score <10 in SVM or RF models.
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seven, and three markers were associated with univariate,

multivariate, or both modeling approaches, respectively.

Multivariate data analysis identified four new markers that were

under the Bonferroni threshold in univariate data analysis.

However, six markers identified by univariate data analysis were

under the Bonferroni threshold in multivariate analysis. It has been

recommended that both multivariate and univariate models could

be useful for identifying candidate loci with potential effects for later

biological experiments (Fernandes et al., 2021).
4.3 Stem fill

Stem fill can be considered a measure of plant maturity and is

related to a reduction in winter standability and resistance to stem

lodging in maize (Colbert I et al., 1987). In this study, we identified

an inverse correlation between winter standability and solid stems

(-0.86). One possible explanation is the maturity stage of alfalfa

genotypes. In young stems, highly digestible pith parenchyma cells

are intact, but there are also lower lignified tissues, decreasing the

percentage of erect stems. The unlignified pith parenchyma cells die

in mature stems, leading to the formation of a hollow stem, and

increasing the lignified tissues and the winter standability.

Three markers were associated with stem fill, two of them

located in coding regions. The gene containing the marker

4_88675558 encodes a factor of DNA methylation 1-like (FDM1).

FDM1 has been reported to control plant and organ size in

woodland strawberry by controlling the expression of multiple

genes related to the cell cycle and cytoskeleton organization

(Zheng et al., 2023). Marker 5_32560792 was located in a region

annotated as a cell division topological specificity factor (MinE1).

MinE1 has been reported to control plastid division in Arabidopsis

(Maple et al., 2002). Finally, marker 3_78077889 was not located in

a coding region. However, this is one of the four markers with

variable importance > 90 with support vector machine located in a

region of 6.4 Mb on chromosome three (Supplementary Figure 5B).
4.4 Stem color and winter standability

In this study, we identified a negative correlation between

winter standability and stem color (-0.9), i.e., brown stem color

was associated with low winter standability. This result could be

explained by a loss of water pressure in brown stems, resulting in

low standability. Freezing injury in alfalfa results from the pressure

exerted by intracellular ice crystals, which disrupt the membrane

structure during the thawing process. The damage occurs in older

parenchyma cells of the phloem and xylem, as well as in the central

pith-like structure of the upper part of the taproot (McKenzie et al.,

1988). Multivariate analysis showed significant differences (p-value

< 0.05) in C2 populations for stem color and winter standability

(Supplementary Figure 2). C2 L×L (UMN4019) had yellow and

erect stems while C2 H×H (UMN4016) were brown and prostrate
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stems, which suggest that low digestible stems can be more tolerant

to effect of cold winter temperatures.

Marker 4_85794609 was associated with stem color and winter

standability. This marker explains 4% of variation in winter

standability and it was located in a locus coding for a Clu-

domain-containing protein. In plant cells, Clu was postulated to

control mitochondrial binding and localization by regulating the

interaction with microtubules known to assist with cellular

structure with water tension (Logan, 2010). Marker 8_20956594,

associated with stem color, was located in a gene annotated as

replication factor C subunit 2 (RFC2). RFC2 is involved in DNA

replication and repair mechanisms, with high expression in

proliferating tissues such as the shoot apical meristem and very

weakly in non-proliferating tissues (Furukawa et al., 2003). Marker

7_65295546, which explained 6% of the phenotypic variation in

winter standability, was located in a gene annotated as sieve element

occlusion B (SEOB). SEO genes encode P-proteins to facilitate rapid

wound sealing after injury, preventing the loss of turgor and

photosynthate (Ernst et al., 2012). In Medicago truncatula,

MtSEO-F1-F3 are specifically expressed in immature sieve

elements (Noll et al., 2009). Additionally, marker 3_62442788

associated with winter standability was located at 37 kb upstream

of other SEOB gene (Supplementary Table 3). We can hypothesize

that RFC2 or SEOB genes have roles in responding to plant injury

and keeping cell turgor for stem standability after cold

winter temperatures.
4.5 Winter injury

Winter injury was the trait with highest genetic variance and

broad sense heritability (H²) after genetic data analysis. Although

stem color and winter standability were measured during a similar

season one year before, their genetic variance and the H² were

lowest compared with winter injury. The high H² (0.78) of winter

injury indicate that most of the phenotypic variations of this trait

were genetically controlled and offers more confidence in the results

obtained in this work. Stem traits evaluated in this work are not

commonly evaluated in breeding programs and the information

reported here is an important guideline for forage selection.

Four markers were associated with winter injury, and all of

them were in coding regions. Marker 2_2963182 was located in a

locus annotated as plasma membrane pleiotropic drug resistance

protein 1 (PDR1). PDR1 is an ATP-binding cassette transporter

related to plant defense against different fungal and oomycete

pathogens (Stukkens et al., 2005; Bultreys et al., 2009). Similarly,

marker 3_74150027 was located in the pathogenesis-related gene, 6-

phosphogluconolactonase (PGL). Mutants pgl3 plants exhibit

enhanced resistance to Pseudomonas syringae pv. maculicola and

Hyaloperonospora arabidopsidis, and PGL3 gene is an essential gene

for plant size and development (Xiong et al., 2009). Markers

4_27397835 and 6_11528532 were located in loci annotated as O-

acyltransferase WSD1-like isoform X2 (WSD1) and 3-ketoacyl-CoA
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synthase 20-like (KCS), respectively. Both genes are involved in the

wax biosynthesis pathway (Lewandowska et al., 2020). WSD1

functions as wax ester biosynthesis in stems (Li et al., 2008), and

KCS participates in the synthesis of fatty acid elongation and

cuticular wax biosynthetic pathways (Kim et al., 2013). Our

findings highlight the possible importance of the stem wax

biosynthesis pathway in cold tolerance in alfalfa and agree with

previous reports. For example, in Arabidopsis, the dewax mutant

showed a greater ability to accumulate waxes under cold

acclimation and displayed freezing tolerance at colder

temperatures compared with the wild type (Rahman et al., 2021).
4.6 Validation of candidate markers by
machine learning models

Breeders need stable targeted markers to track the transmission

of traits through different breeding cycles. In this work we identified

13 markers associated with stem traits using GWASpoly (Rosyara

et al., 2016). Although GWAS is a comprehensive approach to

systematically search the genome for causal genetic variation, new

tools like machine learning (ML) models can enhance the detection

of markers associated with traits of interest.

In ML models, all SNPs are ranked based on their variable

importance (VI) on a scale from 0 to 100. Larger values indicate a

greater increase in the prediction error (mean squared error, MSE)

when the SNP is randomly permuted, compared to the MSE value

prior to permutation. ML models can corroborate GWAS results

and enhance the detection of markers associated with traits of

interest (Roshan et al., 2011). In this study, support vector machine

(SVM) and random forest (RF) confirmed the significance of 11 out

of 13 markers identified by GWAS. Additionally, SVM identified

two regions of 6.4 Mb and 12.4 Mb with four and seven markers

with high variable importance for stem fill and winter injury,

respectively. Therefore, ML enhanced the ability to detect new

genetic associations with various traits, addressing the challenges

posed by the complex genetic architecture of quantitative traits.

SVM exhibited lower shrinkage of VI compared with RF. However,

both methods are valid and commentary to classical GWAS.

In conclusion, this work demonstrates how the use of

multivariate mixed linear models and machine learning can

broaden the molecular markers associated with four important

traits in alfalfa. The DArTag genotyping panel used in this study

has three advantages: 1. It demonstrated that assortative mating

during two selection cycles changed the population structure and

genetic diversity between low and high digestibility populations. 2.

Genotypic information was utilized to identify associated markers

with four morphological traits using GWAS and ML models. 3.

The markers identified in this work highlight important

mechanisms controlling stem traits such as stem fill or winter

survival. DArTag markers identified in this study are highly

reproducible in other populations and can facilitate marker-

assisted selection to increase winter hardiness or palatability in

alfalfa. A next bidirectional selection cycle is in progress and data

of IVNDFD such as other forage quality traits will be included in

the next part of this project.
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