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Genomic selection (GS) has become an indispensable tool in modern plant

breeding, particularly for complex traits. This study aimed to assess the efficacy

of GS in predicting rust (Uromyces pisi) resistance in pea (Pisum sativum), using a

panel of 320 pea accessions and a set of 26,045 Silico-Diversity Arrays Technology

(Silico-DArT) markers. We compared the prediction abilities of different GS models

and explored the impact of incorporating marker × environment (M×E) interaction

as a covariate in the GBLUP (genomic best linear unbiased prediction) model. The

analysis included phenotyping data from both field and controlled conditions. We

assessed the predictive accuracies of different cross-validation strategies and

compared the efficiency of using single traits versus a multi-trait index, based on

factor analysis and ideotype-design (FAI-BLUP), which combines traits from

controlled conditions. The GBLUP model, particularly when modified to include

M×E interactions, consistently outperformed other models, demonstrating its

suitability for traits affected by complex genotype-environment interactions

(GEI). The best predictive ability (0.635) was achieved using the FAI-BLUP

approach within the Bayesian Lasso (BL) model. The inclusion of M×E

interactions significantly enhanced prediction accuracy across diverse

environments in GBLUP models, although it did not markedly improve

predictions for non-phenotyped lines. These findings underscore the variability

of predictive abilities due to GEI and the effectiveness of multi-trait approaches in

addressing complex traits. Overall, our study illustrates the potential of GS,

especially when employing a multi-trait index like FAI-BLUP and accounting for

M×E interactions, in pea breeding programs focused on rust resistance.
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1 Introduction

Pea, Pisum sativum L. (2n = 2x = 14), is an important cool-season grain legume crop

cultivated predominantly in temperate climates. With an annual global production

exceeding 14 million tons of dry peas and 21 million tons of green peas (FAOSTAT,

2022), it holds substantial nutritional value, being a rich source of proteins, starch, fibers,
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vitamins, and minerals. Its symbiotic relationship with nitrogen-

fixing bacteria underscores its role in enhancing soil fertility,

making it a key component in sustainable cropping systems (Guo

et al., 2021). Cultivars of pea are primarily inbred lines, largely

homozygous, developed through several generations of self-

fertilization following initial hybridization (van de Wouw et al.,

2010). This breeding process is time-intensive, requiring years to

yield genetically and phenotypically stable lines suitable for field

trials and eventual commercialization. Hence, there is a high need

for more efficient breeding strategies based on high throughput

genotyping or phenotyping, to expedite the identification and

development of elite lines (Annicchiarico et al., 2023).

One of the main objectives in the development of elite pea lines

is the introduction of new resistance sources to pests and diseases,

which are major constraints to global pea production (Rubiales

et al., 2023). Therefore, disease resistance is a key focus in pea

breeding programs, and significant advances have been made using

marker-assisted selection (MAS) for diseases controlled by single

genes. For instance, polymerase chain reaction (PCR) markers

facilitate the identification of breeding lines carrying DNA

polymorphisms linked to resistance against viruses such as Pea

Seedborne Mosaic Virus (Grimm and Porter, 2021) and Pea

Enation Mosaic Virus (Jain et al., 2013), as well as a fungal

diseases like powdery mildew whose resistance is controlled by

er1, er2 and Er3 genes (Fondevilla and Rubiales, 2012). However,

challenges persist in managing diseases with polygenic resistance

nature, including root rot (Leprévost et al., 2023), fusarium wilt

(Sampaio et al., 2020), root parasitic weeds like broomrapes

(Fondevilla et al., 2010), and aerial diseases such as ascochyta

blight (Barilli et al., 2016) or rust (Osuna-Caballero et al., 2022).

Rust, caused by Uromyces spp., can reduce pea yield by up to

50%, varying with environmental conditions and the specific

pathogen involved. U. viciae-fabae predominantly affects pea in

tropical and subtropical climates, while U. pisi is prevalent in

temperate regions, both causing significant epidemic cycles during

the crop season (Singh et al., 2023). Complete resistance, defined as

the plant’s ability to fully prevent infection by the rust causal agent,

has yet to be identified in pea although some advances have been

made in other legumes (Osuna-Caballero et al., 2024a). Measuring

partial resistance in pea remains challenging due to the influence of

environmental factors such as rainfall, temperature, and inoculum

levels on disease prevalence in the field (Das et al., 2019). Partial

resistance to U. pisi-induced rust is multigenic, with some

quantitative trait loci (QTL) identified in biparental populations

using wild relatives as resistance donors (Barilli et al., 2010; Barilli et

al., 2018). In addition, genome-wide association studies (GWAS)

have identified 95 DArT-seq polymorphic markers linked to rust

resistance, pointing to 62 candidate genes putatively involved in

resistance to U. pisi (Osuna-Caballero et al., 2024b). Genomic

selection (GS), utilizing a wide array of genetic markers across the

genome, offers a promising approach to select elite breeding lines

for a complex, multigenic trait such as rust resistance.

GS, originally pioneered in livestock breeding, has expanded its

utility across a diverse range of plant species, encompassing fruit

and timber trees (Resende et al., 2012; Wang et al., 2023), as well as

major crops such as maize and wheat (Crossa et al., 2017). GS
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accelerates the breeding cycle in annual inbred crops, enabling

earlier selection of breeding parents based on Genomic Estimated

Breeding Values (GEBV) in successive progeny generations (Lin

et al., 2017). Therefore, GS approach is considered a pivotal

methodology in the advancement of new crop varieties that hold

significant value for farmers. The focus of GS studies has often been

on GEI, to improve the GS prediction by integrating GEI effects as

covariates (Tolhurst et al., 2022). This approach may include the

prediction of GEBVs in different environments for lines lacking

phenotypic data or only partially phenotyped. The application of

GS in plant breeding varies significantly among crops and traits,

depending on the trait genetic architecture and specific breeding

and cultivation systems (Akdemir and Isidro-Sánchez, 2019). In pea

breeding, GS has been employed to assess important agronomic

traits such as thousand-seed weight, seed number per plant, and

flowering date (Tayeh et al., 2015). Remarkably, prediction

accuracies for traits like thousand-seed weight were as high as

0.83, underscoring the potential of GS in pea breeding, particularly

when traits are relatively easy to measure and highly heritable. In

addition, the size and composition of the training population,

carefully selected, significantly affect prediction accuracy

(Akdemir and Isidro-Sánchez, 2019). In recent research, GS has

also been applied to predict pea grain yield, protein content, and

morphological traits using Genotyping-by-Sequencing (GBS) data

(Annicchiarico et al., 2019, Annicchiarico et al., 2020; Crosta et al.,

2022, Crosta et al., 2023). These approaches yielded fairly accurate

intrapopulation and interpopulation predictions for grain yield,

proving to be cost-effective when considering that phenotyping

costs are notably higher than genotyping costs (Annicchiarico et al.,

2019). These findings support the use of GS in pea breeding

programs. However, the efficacy of GS for disease resistance traits

in pea is largely unknown, with information available so far only for

ascochyta blight resistance (Carpenter et al., 2018). This

information is particularly valuable because it could enhance the

economic efficiency of GS by enabling the simultaneous selection

for various key traits without additional costs - since the genotyping

costs remain the same regardless of the number of selected traits,

unlike the phenotyping costs.

GS requires comprehensive genotypic data, typically acquired

through methods like high-density arrays, genotyping by

sequencing (GBS) or reduced representation genome sequencing

(RRGS). Among genome complexity reduction technology

approaches, DArTSeq genotyping has emerged as a suitable

genomic method for GS, genetic mapping, and population genetic

studies in many plant species (Alam et al., 2018; Alemu et al., 2022).

This genotyping method, which enables the generation of both SNP

and SilicoDArT markers, is particularly effective for crops with large

genomes abundant in repetitive sequences, such as pea (Barilli et al.,

2018). It sequences regions adjacent to restriction enzyme sites, and

preferentially targets coding regions over repetitive DNA by

employing methylation-sensitive enzymes (Akbari et al., 2006). In

GS analyses, prediction accuracy is often gauged by the correlation

between predicted and observed trait values. However, beyond

estimating the breeding value (BV) for entire populations, plant

breeders are particularly interested in accurately predicting top-

performing individuals for selection as elite cultivars or parental
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429802
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Osuna-Caballero et al. 10.3389/fpls.2024.1429802
lines for subsequent breeding cycles (Bassi et al., 2016). GS presents

a dual advantage in pea genetic improvement: it facilitates the

prediction of GEBV for individuals lacking phenotypic data and

enhances the precision of BV estimates for phenotyped individuals,

especially for traits that are challenging to measure (Rubiales et al.,

2021). This is achieved by integrating trait data from multiple

environments and/or years with genotypic information. Moreover,

leveraging molecular data for BV estimation offers inherent

advantages over traditional pedigree-based approaches (Hayes

et al., 2009). Molecular data provide a ‘realized relationship

matrix,’ reflecting the actual genetic relationships among

individuals, as opposed to the ‘expected values’ used in pedigree-

based matrices, where relative individuals are assumed to have

average and equal genetic contributions (Crossa et al., 2010). This

nuanced understanding of genetic relationships afforded by

molecular data underpins the enhanced accuracy of GS, making it

a transformative tool in modern plant breeding.

Assessments of different models usable for genomic selection

have not revealed a single model that always outperform the others,

since model performance depends on the number of genomic

regions influencing a trait and the magnitude of its effects (Habier

et al., 2011; Heffner et al., 2011). Furthermore, different models

make assumptions that may or may not match the genetic

architecture of the trait. The main objective of this study was to

provide a comprehensive evaluation of GS models for rust

resistance in peas, tailoring our approach to align with the

practical demands of current pea breeding programs

(Annicchiarico et al., 2023). Utilizing genotypic data from Rispail

et al. (2023) and phenotypic data for resistance to U. pisi from

Osuna-Caballero et al. (2022), we trained and validated several GS

models. Our comparison verified the influence of multi-trait indices

on their predictive accuracy and investigated the role of GEI in the

context of field condition predictions, using three cross-validation

schemes of high relevance and applicability for GS equations in

plant breeding. This methodical approach allowed us not only to

assess the efficacy of different GS models in a breeding context but

also to explore how the integration of complex data, such as multi-

trait indices and environmental interactions, can optimize

predictive accuracies, thereby crucially supporting the deployment

of GS strategies for enhancing rust resistance in pea.
2 Material and methods

2.1 Plant material

The pea panel utilized in this study comprise an extensive

collection of 324 accessions of Pisum spp., encompassing a diverse

range of genetic material, including wild relatives, landraces,

cultivars, breeding lines, and unidentified genotypes sourced from

various continents. The selection of these genotypes was carried out

meticulously, with an aim to cover a broad spectrum of genotypic

and phenotypic variance, as highlighted by Rispail et al. (2023). This

approach ensures a comprehensive representation of the Pisum

genera, capturing the genetic diversity across the three main

species – P. sativum, P. fulvum, and P. abyssinicum – as well as
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the P. sativum subspecies, namely sativum, arvense, jomardi, elatius,

and humile. The selection was also based on specific criteria

including historical resistance performance, genetic diversity, and

unique phenotypic profile that are potentially linked to disease

resistance and favorable agronomic traits (Rispail et al., 2023). The

inclusion of genotypes collected worldwide not only adds to the

genetic mixture but also allows for the examination of GEI effects.
2.2 Phenotyping and statistical analysis

The pea panel was evaluated under rain-fed conditions in three

autumn-sown environments in Cordoba, southern Spain. These

environments are referred to as Cordoba 2018 (DS-2018), Cordoba

2019 (DS-2019), and Cordoba 2020 (DS-2020). According to the

Köppen–Geiger classification system, this location represents the

hot dry-summer Mediterranean climate, a common form of

the Mediterranean climate characterized by hot, dry summers and

mild, wet winters (Kottek et al., 2006).

For each growing season, the experiment was conducted in an

alpha lattice design with 19 blocks replicated 3 times. Each

incomplete block contained 17 experimental units (i.e.,

accessions) plus two control plots using cv. Cartouche as

susceptible rust check. The trial procedures and evaluations are

detailed in Osuna-Caballero et al. (2022) and a graphical

representation of the experimental design to facilitate its

visualization is depicted in Supplementary Figure 1. The recorded

trait was disease severity (DS), expressed as the proportion of rust

pustules covering the whole plants in the experimental unit. For

each environment a one-way mixed effect model was applied to

analyze the variance components following the formula:

yijk =  m +  ai +   gj + (gt)jk + eijk

where yijk is the DS value of the i
th genotype (i = 1, 2,…, 324) in

the kth incomplete block (k = 1, 2,., 19) of the jth replicate (j = 1, 2, 3);

ai is the random effect of the ith genotype; gj is the fixed effect of the

jth complete replicate; (gt)jk is the random effect of the kth

incomplete block nested within the j replicate; and eijk is the error
associated to yijk. Broad-sense heritability (H

2) was estimated using

the formula from Toker (2004), defined as the ratio of genotypic

variance to phenotypic variance. This approach also facilitated the

calculation of the predicted means for each genotype, named Best

Linear Unbiased Predictors (BLUPs), following the methodology of

DeLacy et al. (1993) which were used in subsequent analyses.

In addition, a second linear mixed model was applied using a

multi-environment trial (MET) approach. The two-way model with

interaction effect used to analyze MET data followed the formula:

yilk =  m +  ai +   tl + (at)lk + glk + eilk

In this case, tl is the fixed effect of the lth environment (l = DS-

2018, DS-2019, DS-2020); (at)lk is the interaction random effect of

the ith genotype with the lth environment; glk is the fixed effect of the
kth block within the lth environment. This model enabled the

estimation of BLUPs for DS across the three environments,

representing the GEI-independent component (DS-joint).

Heritability in the MET model was calculated as the genotypic
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variance divided by the sum of the genotypic variance, GEI

variance, and residual variance.

The entire pea panel was also inoculated with U. pisi to assess

rust symptoms in controlled conditions (CC). This experiment

allowed the evaluation of four traits related to rust disease in pea

seedlings: (i) final infection frequency (IF), measured as the number

of pustules per cm² of leaf, counted at 14 day post-inoculation; (ii)

the area under the disease progress curve (AUDPC) based on the

daily IF scores from day 7 to day 14 post-inoculation; (iii) infection

type (IT), classified according to Stakman et al. (1962) and (iv) DS,

quantified in controlled conditions as the percentage of tissue

damaged by pustules.

Each accession underwent two evaluation rounds through

inoculation, with three inoculations performed using a

randomized complete block design (RCBD) leading a total of six

replicates per accession. Data quality control was performed

individually for each trait through graphical inspection of

residuals to assess normality, homogeneity of variance, and to

detect outliers as described in Osuna-Caballero et al. (2022). To

ensure residuals normalization and variance stabilization, arcsine

transformation was applied on DS while square root transformation

was applied for AUDPC and IF values. The model applied to assess

the variance components in CC was similar to the previous one-way

mixed effect model but without considering the block effect (gt)jk in
the formula. Therefore, four models were fitted, one per evaluated

trait in CC. This allowed the calculation of the genetic, phenotypic

and error variance, allowing the estimation of H2 and BLUPs. The

BLUPs estimated for each trait collected under CC served as

phenotypic data for computing a multi-trait index (FAI-BLUP)

based on factor analysis and ideotype-design proposed by Rocha

et al. (2018), and for subsequent genomic prediction assessments.

The genetic correlation (rg) for genotype rust responses across traits

and environments was estimated according to Howe et al. (2000).

Finally, GEI variation was dissected in more details using an

additive main effects and multiplicative interaction (AMMI)

analysis (Gauch et al., 2008). This approach is particularly

valuable for unravelling patterns of GEI because the AMMI

model decompose them into principal component axes,

facilitating a clear interpretation of the interaction structure

(Olivoto et al., 2019). Therefore, it was applied to determine the

range of genotype stability and adaptability among the nine most

resistant and the three most susceptible lines identified in the study

by Osuna-Caballero et al. (2022). All phenotypic models were fitted

using the ‘metan’ package (Olivoto and Lucio, 2020) in R software

version 4.2.2 (R Core Team, 2021).
2.3 Genotyping and data filtering

The pea core collection was genotyped using the DArTSeq

approach by DiversityArray Ltd, Australia. For this process, the

third compound leaves from twenty two-week-old seedlings of each

accession, grown under controlled conditions, were harvested.

These samples were pooled, flash-frozen in liquid nitrogen, and

subsequently lyophilized. DNA extraction was then carried out
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following the method prescribed by Diversity Arrays P/L, Canberra,

Australia (https://www.diversityarrays.com). The extracted DNA

was adjusted to a concentration of 20 ng/μl prior to DArT marker

analysis. This analysis was conducted using the high-density Pea

DArTseq 1.0 array, which consists of 50,000 markers and is

specially adapted for wild Pisum spp. accessions. The genotyping

process involved complexity reduction using PstI-MseI restriction

enzymes, followed by library construction, amplification, and

Illumina sequencing. These steps were performed by Diversity

Arrays Technology Pty Ltd, Canberra, Australia, as detailed in

Barilli et al. (2018). The DArTSeq sequence analysis yielded two

sets of markers: Single Nucleotide Polymorphisms (SNPs) and

presence-absence sequence variants (Silico-DArT). Marker

density has a positive impact over predictive abilities in GS

(Jannink et al., 2010). Therefore, Silico-DArT markers was the

genetic information used in the GS analysis as they yielded a higher

number of polymorphic variants (66,643 Silico-DArT vs 55,269

SNP markers; Rispail et al., 2023).

Therefore, data cleaning was performed on the Silico-DArT

dataset, obtaining a total of 26,045 markers ready to use for GS with

an excellent genome coverage (Figure 1). This process was

undertaken to eliminate low-quality and non-polymorphic

markers, as described by Rispail et al. (2023). Markers exhibiting

more than 20% missing data, a minor allele frequency (MAF) below

5%, and heterozygosity exceeding 0.1% were excluded from the

analysis. Missing data were imputed using the Singular Value

Decomposition (SVD) method, adhering to the recommendations

of Nazzicari et al. (2016).
2.4 Genomic regression models and
data configurations

Genome-enabled predictions in this study were based on 26,045

Silico-DArT markers. We focused on three genomic prediction

models known for their predictive ability in legume species,

particularly in relation to pea traits: Ridge regression BLUP

(rrBLUP), Bayesian Lasso (BL), and Genomic BLUP (GBLUP), as

identified in previous comparisons (Annicchiarico et al., 2017a;

Carpenter et al., 2018).

The rrBLUP model, proposed by Meuwissen et al. (2001),

assumes a common variance across all loci, making it suitable for

traits influenced by many minor genes. Its linear mixed additive

model equation is:

y = m1 + Gu + e

where y is the vector of observed phenotypes, m is the mean of y,
1 refers to the vector of ones allowing for the inclusion of the m, G is

the genotype matrix (i.e., {0, 1} for absence/presence sequence

variants Silico-DArT markers), u ∼ N(0, Is 2u) is the vector of

marker effects, and e ∼ N(0, Is 2e) is the vector of residuals. The

solution for the marker effects u, utilizing standard ridge-regression

methods, is obtained through the equation:

u=(G0G+lI)(−1)G
0y  
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where l = s 2
e =s 2

u is the ridge parameter, representing the ratio

between the residual variance and the variance of marker effects (Searle

et al., 2006) estimated by a REML method implemented by a spectral

decomposition algorithm (Hyun et al., 2008). Given the vector of

marker effects, it is then possible to predict phenotypes and GEBV.

The GBLUP model follows a similar equation to rrBLUP but

uses a marker-based genomic relationship matrix (GRM) instead of

the marker matrix (Hayes et al., 2009). The kinship coefficient

matrix based on Silico-DArT markers were computed following the

Astle and Balding (2009) methodology using the “statgenGWAS” R

package (van Rossum and Kruijer, 2023). This model was also

trained after incorporating the marker x environmental (M×E)

effect matrix as covariate to evaluate its influence over the

predictions. The R-script followed to fit single-environment,

across-environment, and M×E GBLUP models were described in

Lopez-Cruz et al. (2015) using the “BGLR” R package (Pérez and de

los Campos, 2014).

Bayesian Lasso (BL) model permits different effects and variances

for markers, typically few with large effects (Wang et al., 2018). This

model assigns prior densities to marker effects and induce various types

of shrinkage (Park and Casella, 2008). The BL system was solved via

Gibbs sampling approach (Casella and George, 1992) with proper

iteration count (12,000 repetitions in our configuration) and burn-in

period (1,200 repetitions in our configuration) to ensure convergence.

In addition, the kinship matrix was added to the model as a fixed (i.e.,

flat prior) component to account for population structure.

Predictive ability (rab) of these genome-enabled models for rust

traits in the pea panel was assessed using the R package “GROAN”

(Nazzicari and Biscarini, 2022). rab was estimated as Pearson’s

correlation between observed and predicted phenotypes, following

three cross-validation (CV) strategies:
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1. Single trait and intra-environment cross-validation [CV0],

training and testing each trait per environment. In this intra-

environment prediction scenario, the predictive ability of GS

models was assessed by a standard within-location 10-fold

cross-validation. Each analysis was performed 50 times,

reporting the average result, to ensure numerical stability.

2. Single trait and cross-environment validation [CV1],

predicting known lines (including in the training) over a

different environment used in the training, by splitting the

training data in a 90/10 fashion as done for intra-environment

predictions. The whole procedure was repeated 50 times for

numerical stability.

3. The third CV configuration [CV2] also consists in single trait

and across-environment cross-validation but predicting new

lines (not included in the training) in an untrained environment.
Overall, we assessed 11-model configurations represented by

combinations of three genomic prediction models (rrBLUP, GBLUP

or BL) in which M×E interaction is evaluated in GBLUP model and

three CV procedures with one marker data set (Silico-DArT).

Finally, the accuracy (rac) of these models was estimated from

rab and the square root of broad-sense heritability on an entry mean

basis in the validation environment (H), following Lorenz et al.

(2011): rac =
rab
H

3 Results

3.1 Phenotypic data

The phenotypic data revealed consistent patterns across

different years under field condition and between traits measured
FIGURE 1

Physical distribution and density of the 26,045 Silico-DArT markers across the seven chromosomes of the pea genome.
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under controlled conditions as shown in Osuna-Caballero et al.

(2022). Here, we further explored the phenotypic correlation (rp)

between the FAI-BLUP index, and the single traits measured under

controlled and field conditions, as well as their genetic correlations

(Figure 2). Notably, the integration of traits measured under

controlled conditions into the FAI-BLUP index improved Pearson

correlations between traits. Consequently, the rp values between

FAI-BLUP and DS in 2018 (DS-2018), 2019 (DS-2019), 2020 (DS-

2020), and DS-joint, were 0.24, 0.47, 0.41, and 0.46, respectively.

These values were higher than those between DS in controlled

conditions and DS-2018 (rp = 0.14), DS-2019 (rp = 0.32), DS-2020

(rp = 0.39), and DS-joint (rp = 0.44). In addition, the correlations

between FAI-BLUP and field data were also higher than those

estimated between any other single trait measured under controlled

conditions (AUDPC, IT and IF) and the corresponding field

data (Figure 2).

Under controlled conditions, we also observed that the FAI-

BLUP index correlated more strongly with individual traits and was

the only parameter with a non-skewed distribution (Figure 2). The

correlation between AUDPC and FAI-BLUP was the highest (rp =

0.90), while the correlation between IT and FAI-BLUP was

comparatively lower but still robust (rp = 0.70).

The genetic correlation, rg, which assesses the extent to which

the same genes influence a trait across different environments (such

as different field seasons or traits under controlled conditions), also

revealed differences between traits/environments. To calculate the

rg, the formula needs the variance components (i.e., reps or blocks).

Therefore, it was not possible to compute the rg between FAI-BLUP

and the other parameters since FAI-BLUP represents a single value

for each genotype, obtained from the merged CC parameters.

Nonetheless, the highest genetic correlation was observed between
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DS-2020 and DS-2019 (rg = 0.72), suggesting that rust severity in

those years was influenced by similar genetic factors. By contrast,

genetic correlations were generally lower between traits measured

under controlled conditions and in the field, with the notable

exception of DS, which exhibited a high genetic correlation (rg =

0.87) with DS-2020 (Figure 2).

The AMMI analysis of DS percentages revealed that the first

GEI principal component axis (PC1) was highly significant (P<

0.001), explaining 80% of the GEI variance (Supplementary

Table 1). This axis notably distinguished the 2020 field season

from the two preceding years in terms of genotype responses, as

depicted in Figure 3. The AMMI model illustrated pronounced GEI

interactions of cross-over type (i.e., characterized by a range change

between the resistant and susceptible lines across the different

environments). In the 2019 field environment there was some

increase in line variation (Figure 3). Importantly, resistant, and

susceptible accessions formed two clusters that did not intersect

across environments, indicating consistency in their response

patterns, (Figure 3). Specifically, the lines JI 224, PI 273209, JI

199, and CGN 10206 exhibited a distinct advantage in terms of

resistance and stability across these relatively contrasting

environments (Figure 3).
3.2 Genome-enabled modelling

3.2.1 Predictive abilities of rrBLUP, BL and GBLUP
under CV0 scenario

We assessed the intra-environmental ability of three genomic

prediction models (rrBLUP, BL and GBLUP) trained with a Silico-

DArT marker dataset to predict rust disease in pea across controlled
FIGURE 2

Trait correlation between field (yellow), controlled conditions (blue) and FAI-BLUP index (green). Phenotypic correlation (rp) and genotypic
correlation (rg) under brackets are depicted in each trait’s intersection. Each trait shows its distribution, heritability, and genetic variance. *, ** and ***
represent the significance of the rp at 0.05, 0.01 and 0.001, respectively.
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and field conditions. Based on average predictive ability (rab) values

obtained for each trait (Table 1), rrBLUP and BL showed similar

predictive abilities for all traits. Under controlled conditions,

predictive abilities (rab) of BL varied from 0.569 for IF to 0.635

for FAI-BLUP. In this scenario, rab of the GBLUP model were

slightly lower as shown in Table 1. The highest predictive ability of

the three models was reached for the FAI-BLUP trait.

For the field data, the predictive abilities of the three models

were notably lower. In this case, the GBLUP model achieved the

highest predictive ability for each single environment. Its ability to

predict DS-joint (rab = 0.446), which includes the overall

environmental variance, was nonetheless slightly lower than

rrBLUP and BL (Table 1).

3.2.2 Predictive abilities of rrBLUP, BL and GBLUP
under CV1 scenario

The genomic selection models were also trained and tested

across different environments, to evaluate their ability and accuracy

in predicting rust disease in pea. Under the CV1 scenario, moderate

predictive abilities were obtained for all three models when they

were trained with DS values obtained under controlled conditions

and tested on the DS-joint data as shown in (Table 2. In this case,

the highest predictive ability was reached by GBLUP (rab = 0.382).

Interestingly, training models with the FAI-BLUP index dataset and

testing them on DS-joint data improved the model predictive

abilities with GBLUP exhibiting the highest predictive ability (rab
= 0.500) and accuracy (rac = 0.577).

For the field data under CV1 scenario, models trained on DS-

2018 and tested on DS-2019 exhibited high predictive abilities and

accuracies, especially for GBLUP (Table 2). Conversely, models

trained on DS-2019 and tested on DS-2018, led to the lowest
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predictive abilities and accuracies. In fact, GS models tested

across-environment yielded lower predictive abilities when DS-

2018 was used to test the trained data. By contrast, the highest

predictive abilities and accuracies were observed after training the

models on DS-2020 and testing them on DS-2019 (Table 2). Once

again, GBLUP outperformed rrBLUP and BL, exhibiting predictive

ability and accuracy of 0.627 and 0.730 respectively (Table 2).

3.2.3 Predictive abilities of rrBLUP, BL and GBLUP
under CV2 scenario

In the last cross-validation scheme (CV2), the GS models were

trained on one set of data and validated on a different, untrained

environment, simulating the prediction of new pea lines

performance. When the models were trained on controlled

condition DS and validated on DS-joint, the predictive abilities

were moderate, with GBLUP exhibiting a slightly higher ability (rab
= 0.332) compared to rrBLUP and BL (Table 3). Training on FAI-

BLUP and validating on DS-joint data improved the model

predictive abilities with GBLUP displaying again the highest

ability and accuracy (Table 3).

For the field datasets, models trained on DS-2018 and validated

on DS-2019 showed notable predictive abilities and accuracies,

particularly GBLUP, while validating these models with DS-2020

decrease predictive abilities and accuracies. Training models with

DS-2019 led to low predictive abilities and accuracies. In addition,

to validate the models with DS-2018 data set produced the lowest

predictive abilities and accuracies in this case. Conversely, training

models on DS-2020 and validating them with DS-2019 exhibited

again the highest predictive ability (rab = 0.510 for GBLUP) and

accuracy (rac = 0.593 for GBLUP) within this validation

scenario (Table 3).
FIGURE 3

Estimated nominal disease severity (DS%) of nine most resistant (straight lines) and three susceptible (dashed lines) accessions based on FAI-BLUP
index along the GEI PC1 axis.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429802
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Osuna-Caballero et al. 10.3389/fpls.2024.1429802
3.2.4 Influence of the marker x environment
interaction in the GBLUP prediction

To improve the predictive abilities and accuracies of the GBLUP

model, we incorporated the M×E interaction matrix as covariate

within two cross-validation strategies: CV1 and CV2 (Table 4).

When models were trained on controlled condition DS and tested

on DS-joint dataset, the inclusion of the M×E interaction improved

the predictive abilities and accuracies under both CV1 and CV2

scenarios, reaching rab values of 0.457 and 0.443 and rac values of

0.528 and 0.511, respectively. The addition of the M×E covariate

also improved the predictive abilities and accuracies of GBLUP

models trained on FAI-BLUP index and validated on DS-joint

(reaching rab value of 0.500 and 0.465 and rac values of 0.578 and

0.537 for CV1 and CV2 scenarios, respectively (Table 4). Overall,

FAI-BLUP was found to be the best training-controlled condition

trait to predict accession response to rust in the field.

Using single-field DS data to predict the response of a novel

accession in a different field season revealed varying results.

Training in 2018 and validating in 2019 data showed high

predictive abilities and accuracies as shown in Table 4, indicating

that the model could accurately capture the year-to-year

environmental variance. The models trained in 2020 and

validated in 2019 exhibited the highest predictive ability and

accuracy. However, training models on DS-2019 and validating

on DS-2018 decreased the predictive ability and accuracy. In

summary, while the incorporation of the M×E matrix into the

GBLUP model did not significantly influence the average predictive

abilities and accuracies under CV1 scenario, it improved the
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predictive abilities under CV2 scenario by 11% on average

(Supplementary Figure 2). This underscores the potential for the

GBLUP model, with the M×E interaction, to predict disease

resistance with considerable accuracy, especially when data can be

validated with DS collected in field seasons with high and

homogeneous rust infestation levels.
4 Discussion

The integration of quantitative genomic methodologies into

plant breeding has opened a new era for variety development,

characterized by reduced cycle times and cost savings through

diminished reliance on extensive phenotyping (Crossa et al.,

2017). GS has gained attraction in legume breeding but its

accurate prediction of complex traits, such as disease resistance

with quantitative inheritance and strong environmental

interactions, remains a challenge and a significant barrier for its

effective integration into routine plant breeding workflows

(Rubiales et al., 2021). Our assessment of GS potential for pea

rust tolerance relied on a genotype sample size comparable with that

of other training sets for pea GS (Annicchiarico et al., 2019;

Annicchiarico et al, 2017b; Tayeh et al., 2015), a thorough multi-

environment phenotyping, and 26,045 high-quality polymorphic

Silico-DArT markers covering all pea chromosomes after thorough

data filtering (Figure 1). The average polymorphism information

content (PIC) value of these markers was 0.29 (Rispail et al., 2023),

indicating a moderate level of informativeness according to
TABLE 2 Cross-environment [CV1] predictive ability (rab) and predictive accuracy (rac) of pea rust across different traits and two environments estimated
with Ridge regression BLUP (rrBLUP), Bayesian Lasso (BL) or Kernel Genomic BLUP (GBLUP) model trained on a Silico-DArT marker dataet.

Training
set

Test
set

rab rac

rrBLUP BL GBLUP rrBLUP BL GBLUP

DS-CC DS-joint 0.378 0.369 0.382 0.436 0.426 0.441

FAI-BLUP DS-joint 0.419 0.402 0.500 0.484 0.464 0.577

DS-2018 DS-2019 0.498 0.491 0.605 0.579 0.571 0.703

DS-2018 DS-2020 0.384 0.411 0.465 0.430 0.460 0.520

DS-2019 DS-2018 0.357 0.358 0.369 0.450 0.451 0.465

DS-2019 DS-2020 0.463 0.465 0.503 0.518 0.520 0.562

DS-2020 DS-2018 0.357 0.386 0.388 0.450 0.486 0.489

DS-2020 DS-2019 0.605 0.596 0.627 0.703 0.693 0.730
TABLE 1 Intra-environment predictive ability of Ridge regression BLUP (rrBLUP), Bayesian Lasso (BL) or Kernel Genomic BLUP (GBLUP) models trained
with a Silico-DArT dataset to predict pea rust disease parameter in controlled or field environments.

Controlled Conditions Field Conditions

Model AUDPC IF IT DS-CC FAI-BLUP DS-2018 DS-2019 DS-2020 DS-joint

rrBLUP 0.602 0.572 0.579 0.601 0.633 0.258 0.544 0.308 0.460

BL 0.602 0.569 0.571 0.604 0.635 0.261 0.541 0.302 0.459

GBLUP 0.576 0.510 0.544 0.590 0.633 0.270 0.558 0.310 0.446
fr
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Hildebrand et al. (1992) classification although it was higher than

recent studies on genetic diversity in pea using the same DArT

approach, where the average PIC was 0.26 (Brhane and

Hammenhag, 2024). In addition, the fairly weak genetic structure

reported for our pea germplasm collection by Rispail et al. (2023)

was beneficial, as it may increase the accuracy in cross-validation

schemes of GS model validation and application.

GEI is a significant factor influencing rust DS in pea, as shown

in field studies by Das et al. (2019) and Osuna-Caballero et al.

(2022). Despite the complexity introduced by GEI, the phenotypic

and genotypic correlations of DS under field conditions and the

stability of selected accessions across environments allowed to

consolidate three individual field evaluations into one value (DS-

joint). The DS-joint reduces the effect of GEI and allows

researchers to extract valuable information about accessions

more effectively, making it a suitable solution for traits highly

affected by GEI such as rust DS (Gonzalez-Barrios et al., 2019).

The BLUP values derived from the DS-joint successfully

integrated the variance of the three environments while

retaining high correlation with each environment. This DS-joint
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dataset, which reflects analogous climatic and edaphic conditions,

is expected to act as a robust validation set for models trained on

controlled conditions, as confirmed by other studies (Lado et al.,

2016). Nevertheless, the shrinkage effect associated with random

effects can be over- or underestimated in the mixed models using

MET data (Olivoto et al., 2019). Therefore, GEI were explored in

more details through AMMI to evaluate the most promising

material derived from Osuna-Caballero et al. (2022) studies.

AMMI analysis using MET data targeted two main goals: (i) to

understand complex GEI, including selected genotypes to exploit

narrow adaptations, and (ii) to gain in accuracy to improve

recommendations, repeatability, selections, and genetic gains

(Gauch, 2013).

Field phenotyping of extensive collections is critical for

elucidating GEI, a cornerstone for the successful deployment of

GS schemes (Budhlakoti et al., 2022). Nonetheless, this necessity

stands in contrast to the associated high cost and intensive labor.

In this study, we have explored the potential of using controlled

condition data to predict rust severity observed under field

conditions, where disease-related parameters can be measured

with greater accuracy. While some multi-trait GS models that

incorporate various parameters for model training and validation

have reported promising results (Gill et al., 2021), others have found

that the improvements are not consistently marked across different

traits (Jarquıń et al., 2014). Our study introduced an alternative

approach that consolidates traits measured under controlled

conditions into a single index: FAI-BLUP (Rocha et al., 2018).

This index, similar to MGDI, accounts for the multicollinearity

among parameters, yielding more favorable outcomes than

traditional indices founded on linear models (Rocha et al., 2018;

Gonzalez-Barrios et al., 2019). Accordingly, the FAI-BLUP index

showed the best predictive abilities of the controlled condition traits

in the intra-environment GS scheme regardless of the model,

highlighting its efficacy, and validating its application for other

GS scenarios. Other authors who evaluated the consistency of

multi-trait GS models obtained lower predictive abilities

compared to the application of the FAI-BLUP index proposed

here in intra-environment and across-environment configurations

(Ward et al., 2019; Gill et al., 2021).
TABLE 4 Predictive ability (rab) and predictive accuracy (rac) fitting the
Kernel Genomic BLUP (GBLUP) model with the effect of the marker x
environment interaction (M×E) as covariate in two Cross-
Validation strategies.

Training
set

Validation
set

rab rac

CV1 CV2 CV1 CV2

DS-CC DS-joint 0.457 0.443 0.528 0.511

FAI-BLUP DS-joint 0.500 0.465 0.578 0.537

DS-2018 DS -2019 0.592 0.536 0.688 0.623

DS -2018 DS -2020 0.343 0.297 0.383 0.332

DS -2019 DS -2018 0.400 0.261 0.504 0.329

DS -2019 DS -2020 0.455 0.300 0.509 0.335

DS -2020 DS -2018 0.371 0.264 0.467 0.333

DS -2020 DS -2019 0.670 0.541 0.779 0.623
TABLE 3 Cross-environment [CV2] predictive ability (rab) and predictive accuracy (rac) of pea rust traits estimated with Ridge regression BLUP
(rrBLUP), Bayesian Lasso (BL) or Kernel Genomic BLUP (GBLUP) model trained on a Silico-DarT marker dataset.

Training
set

Validation
set

rab rac

rrBLUP BL GBLUP rrBLUP BL GBLUP

DS-CC DS-joint 0.329 0.319 0.332 0.380 0.368 0.383

FAI-BLUP DS-joint 0.331 0.400 0.427 0.382 0.462 0.493

DS-2018 DS -2019 0.377 0.330 0.519 0.438 0.384 0.603

DS -2018 DS -2020 0.223 0.217 0.295 0.249 0.243 0.330

DS -2019 DS -2018 0.198 0.197 0.177 0.250 0.220 0.223

DS -2019 DS -2020 0.326 0.307 0.352 0.365 0.384 0.394

DS -2020 DS -2018 0.198 0.204 0.201 0.250 0.236 0.253

DS -2020 DS -2019 0.479 0.435 0.510 0.557 0.502 0.593
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429802
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Osuna-Caballero et al. 10.3389/fpls.2024.1429802
In the initial GS scheme, the predictive abilities of three models

were evaluated for each trait within controlled and field conditions.

While rrBLUP and BL models showed comparable predictive

abilities under controlled conditions, GBLUP excelled under field

conditions, boasting superior predictive abilities as previously

shown in other related studies (Wang et al., 2018; Nazzicari and

Biscarini, 2022). Notably, this enhancement in predictive

performance was not mirrored for the FAI-BLUP index, which

exhibited uniform prediction abilities across all three models.

Additionally, the predictive ability of GBLUP was diminished for

the DS-joint assessment in comparison when DS-2019 data set was

used to validate the across-environment models but the results

improved in all the other configurations. These discrepancies may

be attributed to the distinct methodologies and assumptions

inherent to each model. GBLUP, like rrBLUP, assumes that traits

are influenced by many genes with small effects. However, the

GBLUP advantage emerges when considering the population

structure and genetic relationships, which are critical factors

under field conditions (Habier et al., 2007). Field conditions may

reflect more accurately the rust DS across the complete lifecycle of

the plant, whereas controlled conditions can only evaluate the initial

rust disease cycle on seedlings. Such controlled settings may not

fully capture the phenotypic expressions that characterize each sub-

population—such as leaf size and overall plant size—that could

impact disease variation. Conversely, in the field, these sub-

population traits are considered by the GBLUP model, leading to

more accurate predictions. This observation aligns with other

studies where GBLUP has been preferred over rrBLUP and BL,

particularly when modelling traits under field conditions that are

influenced by population structure (Guo et al., 2014; Roorkiwal

et al., 2016).

In the following GS framework, which is more relevant for plant

breeding, models were cross trained using data from two distinct

conditions, and predictions were made for the validation set, which

was also part of the training set (CV1). This strategy is particularly

informative when the environments are homogeneous and exhibit

strong interrelatedness. Indeed, our results confirmed that

environments with greater genetic or phenotypic similarity can

yield higher predictive abilities, as reported in earlier pea studies by

Carpenter et al. (2018) and Crosta et al. (2023). Consistently, the

GBLUP model provided the most robust predictions, achieving a

predictive accuracy of 0.730 when trained on DS-2020 and validated

on DS-2019, and 0.577 when employing the FAI-BLUP index for

training and validation on DS-joint. This finding, which highlighted

the enhanced predictive potential of a multi-trait index over single

traits measured under controlled conditions, can represent a

methodological progress over other GS research focused on pea

diseases employing a similar cross-validation scheme (CV1)

(Carpenter et al., 2018). With this method, we achieved higher

prediction accuracies than those reported for rust resistance in

wheat, which ranged from 0.33 to 0.44 using the same validation

strategy and the GBLUP model (Daetwyler et al., 2014).

In the context of plant breeding, the most valuable and

challenging scheme is the one that allows the prediction of

phenotypic values of novel lines in untrained environments, a

configuration referred to as CV2. In this study, CV2 assessment
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for rust resistance in pea mirrored the pattern seen in CV1, albeit

with lower rab and rac values. This outcome aligns with previous

studies that documented a decline in predictive performance from

CV1 to CV2 across legumes (Carpenter et al., 2018; Gill et al., 2021).

Despite this drop, the GBLUP model continued to exhibit moderate

and still useful predictive abilities and accuracies, outperforming

other models. The most effective approach to predict rust response

in the field with controlled conditions data was to train models with

the FAI-BLUP index and validate them on DS-joint. By contrast, to

predict rust responses under field conditions with DS collected

under field condition, the most accurate predictions were obtained

when DS-2019 was used as validation dataset. This strategy

achieved higher predictive values for plant disease resistance

compared to other GS approaches using similar strategies

(Rutkoski et al., 2011; Juliana et al., 2017), confirming the utility

of our models in practical breeding applications for rust resistance.

In the final GS arrangement, we revisited the CV1 and CV2

cross-validation scenario of GBLUP model, which consistently

provided superior predictive abilities and accuracies for the

evaluated traits. In this iteration, we introduced the DArT-seq

marker matrix’s interaction with the environments (M×E) as

covariate model (Lopez-Cruz et al., 2015). This addition

confirmed the critical role of GEI effects, enabling refined

adjustments to enhance the model predictive abilities, as

demonstrated in other studies targeting disease resistance in pea

(Carpenter et al., 2018). This modification is especially beneficial for

traits with complex genetic architectures such as rust resistance in

pea, which are shaped by the interplay of genetic and environmental

factors. By incorporating the M×E interaction, the model gains the

capacity to account for the unique expression of genetic markers

across different environments, a factor essential for the accurate

prediction of phenotypes in variable conditions (Cuevas et al.,

2016). As other researchers have shown for rust disease in other

species, modifying the GBLUP model to include the M×E matrix

empowers it to discern marker effects that may be prominent in one

environment but not others, an aspect that is critically important in

the CV2 scheme, where validation occurs in an environment not

represented in the training dataset (Lopez-Cruz et al., 2015; Fois

et al., 2021). Accounting for these interactions has generated more

precise predictions in new environments, improving accuracy by up

to 11% in this study. We suggest that integrating the M×E effect

might reduce model bias. Without this interaction, the model might

be overfitting the conditions of the training set, particularly in the

CV1 scheme. Thus, the inclusion of the M×E covariate is

instrumental to generalize the model, ensuring stability, and

enhancing the accuracy of predictions across a spectrum of

environmental scenarios.

The practical implications of our findings can be significant in

pea breeding for a trait, such as rust resistance, which is genetically

complex and affected by GEI. The adoption of GS based on

GBLUP with M×E interactions can decrease the need for

extensive phenotyping, which is often resource-intensive and

environmentally constrained. The use of the FAI-BLUP index

further refined our predictions, by integrating multiple traits

associated with disease resistance under controlled conditions,

thereby providing a more holistic view of the genetic potential of
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each accession. This multi-trait integration strategy may prove

useful for other complex traits in plant breeding. The optimized

model is already being used to select lines for rust resistance for

future field trials in our pea breeding program, which will serve to

continue enriching the model as well as to continue increasing the

predictive abilities. In conclusion, our study not only reaffirms the

efficacy of GS in plant breeding but also advances our

understanding of how to effectively model complex traits. The

insights gained here have broader applications in the field of

agricultural genetics, providing a roadmap for harnessing genomic

tools to accelerate the development of crop varieties that are

resilient to diseases and adaptable to varying environmental

conditions. The integration of advanced genomic tools, such

as those explored in this study, will be instrumental in meeting

the growing chal lenges of g loba l food secur i ty and

sustainable agriculture.
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