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Effects of shading on
morphology, photosynthesis
characteristics, and yield of
different shade-tolerant peanut
varieties at the flowering stage
Jing Wang1, Rui Yao1, Zexin Sun1, Meiwen Wang1,
Chunji Jiang1, Xinhua Zhao1, Xibo Liu1, Chao Zhong1,
He Zhang1, Shuli Zhao1, Xiaoguang Wang1* and Haiqiu Yu1,2*

1College of Agronomy, Shenyang Agricultural University, Shenyang, China, 2School of Agriculture and
Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, China
Introduction: In maize and peanut intercropping, shading emerges as a critical

factor for restricting peanut growth, yield, and quality.

Methods: This study investigated the impact of 30% shade on shade-tolerant

[Huayu 22 (HY22) and Fuhua 12 (FH12)] and shade-sensitive [Nonghua 11 (NH11)

and Nonghua 5(NH5)] peanut varieties, with non-shaded condition as the control

(CK). The effects of shade stress on plant morphology, photosynthetic

characteristics, dry-matter accumulation, chloroplast ultra-microstructure,

yield, and quality of different shade-tolerant peanut varieties were examined.

Results: Compared to that in the control, shade stress led to an elongation of the

main stem, shortening of the lateral branches, and reduction in the leaf area.

However, these changes were less significant in the shade-tolerant than in the

shade-sensitive peanut varieties, with minimal effect on the elongation of the main

stem height and shortening of the lateral branches. Differences in leaf area became

significant during the later stages of shade stress, particularly pronounced in the

shade-sensitive peanut varieties. To enhance light capture by leaves, the shade-

tolerant peanut varieties exhibited increased chlorophyll content and chloroplast

grain-layer numbers. The decrease in the chlorophyll a/b ratio was more

pronounced in the shade-tolerant than in the shade-sensitive peanut varieties,

with significant differences. However, reduced activities of ribulose 1,5-

biphosphate (RuBP) carboxylase/oxygenase and fructose 1,6-biphosphate aldolase

(FBA) resulted in decreased net photosynthetic rates, particularly evident in the

shade-sensitive peanut varieties during the late shade period. Shade stress led to

decreased dry-matter accumulation, reduced weight of 100 fruits and kernels, and a

significant decline in yield in the shade-sensitive cultivars. Shading also affected

peanut-kernel quality. Compared with that in the control, the protein content

increased and amino-acid (except cysteine) content decreased in the shade-

tolerant cultivars.
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Discussion: Under shade stress, shade tolerant peanut varieties have increased

the yield by improving the photosynthetic efficiency, which provided a reference

for rational selection of shade tolerant peanut varieties in maize and peanut

intercropping system.
KEYWORDS

peanuts, shading stress at the flowering needle stage, morphology, photosynthesis
characteristics, dry-matter accumulation, yield
1 Introduction

Peanut (Arachis hypogaea L.), originating from South America,

serves as a vital source of oil and protein for humans, making it an

important cash crop for both grain and oil production. It also plays

a crucial role in global oil production and trade (Kong, 2014). Due

to its favorable price and quantity dynamics, peanut has emerged as

one of China’s agricultural products with a perennial trade surplus

among oilseed crops, uniquely positioned in the international

market (Chen and Lv, 2012; Fletcher and Shi, 2016). Despite

China’s status as the largest peanut producer in world, domestic

consumption primarily caters to meeting domestic demand. With

continuous domestic-demand growth and insufficient supply,

China has transitioned into a net importer of peanuts since 2019.

In recent years, with increased food demand and decreased

arable land, intercropping has gained popularity as a prevalent

farming model. It maximizes light energy and land-utilization rates,

enhancing system stability and crop disease resistance by

optimizing agro-ecosystem composition. This approach makes a

sustainable ecological agriculture model, with intercropping

peanuts and other tall-stalk crops as the primary planting pattern

in China (Kong, 2014; Liang et al., 2021; Pelech et al., 2021). Light

serves as the primary energy source for plant photosynthesis and

acts as the signal for periodic plant changes (Li et al., 2017; Kaiser

et al., 2019). However, intercropping imposes shade inhibition on

peanut, reducing light intensity and decreasing the ratio of red to

far-red light, thereby placing peanut at a long-term light

disadvantage, which slows emergence and postpones flowering

(Gallemı ́ et al., 2016). The effect of shade on crops varies based

on light-demand characteristics, shade period and duration, and

crop-shade tolerance. Under shade conditions, plants experience

reduced net photosynthetic rate, stomatal conductance, and

chlorophyll content, along with damage to chloroplast

ultrastructure and the photosynthetic system, ultimately leading

to decreased yield (Yang et al., 2020a, b). Thus, it is essential to

comprehensively investigate differential responses of various peanut

varieties in morphology, photosynthesis characteristics, and yield

under shading.

Shading substantially promotes the vegetative growth of crops.

Chen et al. (2020) found that shading significantly increased the

length of the main stem and the longest internode (the third
02
internode from the bottom) of peanuts. Crops in intercropping

exhibit a strong shade-avoidance response, with increased plant

height and decreased stem diameter, branch number, aboveground

biomass, pod number per plant, kernel number per plant, 100 kernel

weight, and yield per plant (Cui et al., 2014; Fan et al., 2016; Chen

et al., 2019a; Feng et al., 2019a). Moreover, a previous study reported

decrease in the leaf-area index whereas an increase in specific leaf area

due to leaf thinning (Rylski and Spigelman, 1986). Furthermore, low

light intensifies the aging of the leaves, leading to a decrease in leaf

number and changes in leaf size, weight, pigment, and nutrient

content (Zhou et al., 2019). Wu et al. (2009) demonstrated that at

seedling stage, the main stem height of peanut was significantly

extended and became thinner under low light stress. In addition, dry

matter accumulation, branch number per plant, leaf area and lateral

branch/main stem ratio of each organ decreased, and root/shoot ratio

increased, but full flowering period was delayed, flowering amount

per plant significantly decreased, and pod number decreased.

Moreover, light influences photosynthesis and causes changes in

the structure and function of photosynthetic organs (Li et al., 2014).

Chloroplasts serve as the sites of photosynthesis (Xu et al., 2019);

however, their shape, size, and quantity in plant leaves change after

shade stress. After shading, the chloroplast structure in soybean

leaves remains largely intact; however, some chloroplasts exhibit

irregular oval shapes, with parts leaning against the cell wall,

reflecting the plant’s adaptability to low-light stress, further

affecting the structure and function of plant photosynthetic organs

(Li et al., 2015). Additionally, changes in chlorophyll and carotenoids

involved in the photosystem also affect plant photosynthetic capacity,

as they are located in thylakoids grana (Demeter et al., 1974). Under

shading conditions, the volume of chloroplasts and starch granules

decreases, while the number of chloroplasts and the thickness of the

grana layer increase. Excessive shading degree blurs the grana lamella

and result in incomplete development of the chloroplast membrane

and grana (Wu et al., 2014b). Furthermore, shading inhibits electron

transport from photosystem II to photosystem I, reducing the

electron transport rate, ATP production, and ribulose 1,5-

biphosphate (RuBP) carboxylase/oxygenase activity. Additionally,

photochemical quenching, quantum yield, and effective quantum

yield of the photosystem are inhibited (Hussain et al., 2019a, b).

Shading not only damages chloroplasts but also reduces its

photosynthesis efficiency.
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Dry-matter accumulation is fundamental to yield formation

and exhibits a significant positive correlation with yield. However,

shading causes a reduction in plant dry-matter accumulation (Gao

et al., 2020). Under the substitutive strip intercropping of maize and

peanut, the dry-matter accumulation in peanut was more allocated

into leaves than that in stems at flowering stage for chasing more

sun light (Fu et al., 2023). Also, at full seed stage, dry matter

accumulation reduced by 48.1% and there was less partitioned to

the pod (Fu et al., 2023). Insufficient light intensity is a critical

factor; to capture more light energy, plants extend their stems, and

photosynthetic products are primarily allocated to the stems.

Moreover, the higher the shading degree, the greater the decrease

in dry-matter accumulation, as photosynthetic capacity and

product decline continuously. Underground dry-matter

accumulation is more affected than aboveground dry-matter,

leading to reduced root/shoot ratio and increased risk of lodging.

Light significantly influences crop growth, development, yield

composition, and nutritional status. Shading reduces light

interception, causing a decrease in the net photosynthetic rate

and carbon assimilation rate, resulting in decreases in dry weight

and yield. Chen et al. (2020) observed that shade significantly

reduced the number of fruits and kernels per peanut plant,

resulting in a significant yield decline. Fu et al. (2023) found that

the pod number of per-plant of peanut had decreased 49.9% under

intercropping treatment, but also hundred-seed weight reduced

significantly indicating that the quick development of maize at

reproductive stage of peanut, the less pod peanut had. Wu et al.

(2008) reported that when under 85% shade stress, the yield

component of shade-tolerant cultivar of peanut had significantly

decreased except pods per plant, but every yield component was

significantly reduced in shade-sensitive cultivar, which confirmed

that under shade condition, selecting shade-tolerant cultivar was

of importance.

In the present study, shade-tolerant and shade-sensitive peanut

varieties were analyzed to assess the shade-stress effects on plant

morphology, dry-matter accumulation, photosynthesis physiology,

and ultramicroscopic structure, exploring shade’s impacts on

peanut yield and quality during flowering needle stage. These

results will provide a theoretical reference for exploring the

mechanism of peanut shade tolerance, selecting shade-tolerant

peanut varieties and high-yield cultivation of intercropping.
2 Materials and methods

2.1 Material and design

This study utilized shade-tolerant peanut varieties, Huayu 22

(HY22) and Fuhua 12 (FH12), along with shade-sensitive varieties,

Nonghua 11 (NH11) and Nonghua 5 (NH5), as identified in a

previous study (Gao et al., 2021). All seeds were sourced from the

Peanut Research Institute of Shenyang Agricultural University. The

composite fertilizer used in the experiment was procured from

Xinyangfeng Agricultural Technology Co., Ltd., with total nutrients

≥45% and nitrogen, phosphorus, and potassium contents of 14%,

16%, and 15%, respectively. Soil analysis of the experimental field of
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nitrogen, available phosphorus, available potassium, and organic

matter contents in the 0–20 cm soil layer as 105.7 mg kg-1, 25.1

mg kg-1, 115.3 mg kg-1, and 15.37 g kg-1, respectively.

The experiment was conducted at the agricultural and rural

department of Northeast Region Crop Cultivation Scientific

Observation Experiment Station of Shenyang Agricultural

University in 2020 and 2021 (E123°25’31.18’’, N41°48’ 11.75’’). It

involved two treatments: 30% shade and no shade (control) (Rao

and Zhao, 1989; Peng and Chen, 1999; Li et al., 2009). The field

experiment was arranged in randomized blocks, with each

treatment repeated three times. Each plot consisted of five rows

oriented along a north-south ridge to get more solar energy,

measuring 7 m in length, with intra row spacing of 0.580 m. Each

hectare had 150,000 holes with 0.115 m, and two seeds planted per

hole. The shade net was used for shade treatment around July 7th at

the flowering needle stage namely after 55 days after planting, using

a shade shed with a height of 1.5 m. The net was positioned 30-cm

above the ground on the east, south, and west sides, while the north

side remained completely open for ventilation. Photosynthetic

active radiation was measured using an AccuPAR LP-80 (METER

Group Inc, Pullman, Washington, USA) at 9:00 am, 11:00 am, 1:00

pm, and 3:00 pm on sunny days, 2 m from the ceiling of the shade

net. The shade net had a 30% shading rate, with an actual shading

rate of 28.7%. Samples were collected at 10, 20, 30, 40, and 50 days

after shading.
2.2 Collection of shade related indices

2.2.1 Morphological characteristics
Five representative plants were selected from each plot to

determine main stem height and lateral-branch length, and leaf

area using a ruler and the fresh-sample punching-and-weighing

method, respectively.

2.2.2 Determination of dry matter
dynamic accumulation

The plants were cleaned, and peanut organs were separated,

placed in kraft paper bags, and oven-dried at 105°C for 30 min to

inactive enzymes or bacterial and fungus, followed by drying at 85°

C to make dry matter characteristics unchanged until reaching a

constant weight. The dried samples were weighed and recorded

(Gao et al., 2024).

2.2.3 Determination of
photosynthetic characteristics
2.2.3.1 Chlorophyll content

Leaf samples were cut away from the veins and weighed

(approximately 0.1 g), soaked in 95% ethanol, and kept in dark

for 48 h. The light absorption values of the extracted solution were

measured using an ultraviolet spectrophotometer at wavelengths of

665, 649, and 470 nm (Xu et al., 2024). The chlorophyll content was

calculated using the following formula:

Chlorophyll a(mg · L−1) = 13:95 · D665 − 6:88 · D649
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Chlorophyll b(mg · L−1) = 24:96 · D649 − 7:32 · D665

Chlorophyll a + b(mg · g−1) = (Ca  +  Cb)� V � n=m

Chlorophyll a=b = Ca=Cb

Here, D665, D649, and D470 represent the absorbance of

chloroplast pigment extracts at wavelengths 665, 649, and 470

nm, respectively. C - pigment concentration (mg·L-1); V - the

volume of the extract (L); n - dilution ratio; m - fresh leaf weight (g).

2.2.3.2 Photosynthetic parameter

The portable CIRAS-2 photosynthmeter (Hansatech Instruments

Ltd., King’s Lynn, Norfolk, UK) was used to determine Pn, Gs, Ci,

and Tr of leaves with normal growth of the main stem on sunny days

from 9:00 to 11:00 am every 10 days after shading (Wang et al., 2023).

All treatments were measured at least three times.

2.2.3.3 Photosynthetic-related enzyme activity

Fresh peanut leaves (0.5 g) from the penultimate main stem were

collected every 10 days after shading, frozen with liquid nitrogen, and

stored in a refrigerator at -80°C. The activities of RuBP carboxylase/

Oxygenase and FBA in leaves were determined using the Rubisco-

bisphosphate Carboxylase/Oxygenase Activity Assay Kit (BC0445,

Solarbio, Beijing Solarbio Science and Technology Co., Ltd., Beijing,

China) and FBA Activity Assay Kit (BC2275, Solarbio, Beijing

Solarbio Science and Technology Co., Ltd), respectively, using

enzyme-linked immunoassay (Li et al., 2017; Bai et al., 2024). For

Rubisco-bisphosphate Carboxylase/Oxygenase Activity and FBA

Activity determination, 0.1 g leaves was collected, added 1 mL

extraction solution and ground into homogenate, centrifuged

according to instruction, collected supernatant and then centrifuged

(SCI-NTZ-48, Zhuhai Heima instrument company, China).

Absorbance (OD value) was measured at 340 nm with an

ELIASA (Thermo Scientific Multiskan GO, Thermo Fisher

Scientific Oy Ratastie 2, FINLAND). The RuBP carboxylase (U·L-1)

and FBA activities (U·L-1) were calculated according to the standard

curve equation.
2.2.3.4 Observation of the chloroplast ultrastructure

After 50 days of shade, leaf segments measuring 1 mm × 1 mm

× ~2–3 mm on both sides of the main vein were excised. These

segments were immediately placed into a penicillin bottle with

fixation solution, washed with phosphoric acid buffer, then

dehydrated, embedded, sliced, and stained in sequence. The

ultrastructure of the leaves was observed under a JEM-1200EX

(JEOL CO., LTD, Mitaka City, Tokyo, Japan) transmission electron

microscope (Luo et al., 2021).

2.2.4 Yield, yield component, and kernel
quality analysis

Upon harvest, 10 plants were selected from a representative and

complete row in each plot, and the entire plant was placed into a
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parameters were determined: number of fruit branches, number of

fruit per plant, number of full fruit per plant, fruit weight per plant,

100-fruit weight, and 100-kernel weight. From each plot, three

complete rows from the middle section were selected. The ends of

each row were discarded (0.5 m), and the total number of plants was

counted. Pods were harvested and placed into gauze bags, dried to a

constant weight, and then used to calculate the yield (Gao

et al., 2024).

The percentage of fat, protein, fatty acid, and amino acid

components in peanut kernel were determined using a FOSS

near-infrared grain analyzer (Infratec TM NOVA, Denmark).
2.3 Statistical analysis

Statistical analysis was performed using Microsoft Excel 2019

and DPSv7.05 and ANOVA (P<0.05; P<0.01) was used for data

analysis. Microsoft Excel 2019 and GraphPad Prism 8 software were

employed to generate charts.
3 Results

3.1 Effect of shade on the morphology of
peanut at the flowering needle stage

To investigate the effect of shading stress on the height of

peanut main stems, measurements were taken every 10 days after

shading. Compared to the control group, both shade-tolerant

peanut varieties exhibited a gradual increase in main-stem height

after shading (Figures 1, 2). The main-stem height and the stem

heights of the shade-tolerant peanut cultivar HY22 in 2020 and

2021 were 7.85%and 6.77%, and 9.09%, 5.95% (P< 0.05) higher than

that of the control at 40 days and 50 days after shade treatment,

respectively; similar results were also found in the shade-tolerant

cultivar FH12. In both 2020 and 2021, the maximum growth of

NH11 occurred at 50 and 10 days after shading, 17.31% and 13.19%

higher than that of the control, respectively. For NH5, maximum

growth occurred at 10 (17.47%) and 10 (16.35%) days after shading,

respectively. These results indicated that shade stress promoted the

elongation and growth of the main stem of peanut varieties,

particularly in shade-sensitive varieties. Compared with that of

the control group, the lateral branch length of different shade-

tolerant peanut varieties gradually decreased after shade stress

during the flower needle stage (Figures 3, 4). While the

differences were not significant, the lateral branch length of HY22

in 2020 and 2021 was 0.05%–2.44% and 0.58%–1.14% shorter than

that of the control, respectively, at 10–50 days after shading.

Similarly, FH12 showed reductions of 0.81%–2.47% and 0.01%–

1.95%, respectively, which were significant at 50 d. The lateral

branch lengths of NH11 were reduced by 13.3%, 9.8%, 7.77%,

11.2%, 15.52%, and 13.8%, 9.78%, 9.09%, 11.05%, 16.12%,

compared with that of the control 10–50 days after shading in

2020 and 2021, respectively, and the differences were highly

significant and significant; while in NH5, it decreased by 7.2%,
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9.09%, 9.43%, 8.28%, 8.57% and 5.5%, 10.31%, 8.85%, 8.10%, 8.43%.

These results indicated that the lateral branches of peanut were

shortened by shade stress, particularly in shade-sensitive peanut

varieties, resulting in incomplete development. Similarly, the leaf

area of different shade-tolerant peanut varieties showed a trend of

gradual decrease after shade stress (Figures 5, 6). In 2020, the leaf

areas of the shade-tolerant peanut varieties HY22 and FH12 were

not significantly different from 10 to 30 days after shading; however,

reductions of 9.69% and 14.54% and 12.37% and 11.84% were

observed after shading, respectively, with highly significant

differences. In 2021, similar trends were observed, the decrease

were highly significant at 30-50 days. The leaf area of shade-

sensitive peanut varieties NH11 and NH5 was highly significant

different from that of the control at 20 days after shading,

decreasing by 27.91%–50.53% and 23.44%–36.35% from 20 to 50

days, respectively, after shading in 2020. In 2021, the leaf area was

reduced by 19.24%–56.08% and 19.75%–46.73%, respectively, with

highly significant differences.
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3.2 Effects of shade on dry-matter
accumulation in the organs of peanut at
the flowering needle stage

The dry-matter accumulation in peanuts initially increased and

then slightly decreased as the growth progressed (Figures 7, 8).

Toward the later growth stages, some leaves and fruit needles

decayed, resulting in a slight decrease in the overall dry-matter

accumulation. Herein, the accumulation of dry matter in the organs

of different shade-tolerant peanut varieties decreased.

In 2020, the root dry-matter accumulation of shade-tolerant

peanut varieties HY22 and FH12 showed no significant difference

compared to that of the control at the early stage of shading but

decreased by 16.30% and 22.76%, and 26.70% and 23.99% at 40 and

50 days after shading, respectively, with significant differences (P<

0.05). NH11 and NH5 decreased by 17.19%–45.92% and 16.42–

50.87% 10–50 days after shading, respectively, with significant

differences (P< 0.05) (Figure 7). Similar results were obtained in
FIGURE 1

Effect of shading on the main stem height of peanut at the flowering needle stage (2020). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents
main stem height, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ± standard
error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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2021 (Figure 8). Compared to that by the control, the shade-tolerant

peanut varieties exhibited no significant difference in the first 30

days after shading, reaching a significant difference level at 40 and

50 days after shading (P< 0.05), while the shade-sensitive peanut

varieties exhibited a significantly huge decrease at 10–50 days after

shading (P< 0.05). In 2020 and 2021, the stem dry-matter

accumulation of the shade-tolerant peanut varieties HY22 and

FH12 exhibited no significant difference from that of the control

group at 10–40 days after shading; however, the stem dry-matter

accumulation decreased by 24.20% and 24.50% and 15.00% and

20.17%, respectively with significant differences (P< 0.05) at 50 days

after shading compared with that in the control. The stem dry-

matter accumulation of NH11 and NH5 varieties decreased by

28.15%–37.73% and 32.75%–37.73% and 24.53%–30.68% and

22.00%–32.81%, respectively, after 30–50 days of shading, with

significant differences (P< 0.05) (Figures 7, 8). In 2020, the dry-

matter accumulation in leaves of the shade-tolerant peanut varieties

HY22 and FH12 decreased by 19.65% and 26.30% and 19.49% and

38.42% compared with that in the control at 30 and 40 days after

shade, and the differences were significant (P< 0.05) (Figure 7). In

2021, the dry-matter accumulation of the shade-tolerant peanut
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varieties HY22 and FH12 decreased by 17.56% and 22.52%,

respectively, 40 days after shading, with significant differences (P<

0.05). In 2020 and 2021, the dry matter accumulation the shade-

sensitive peanut varieties NH11 and NH5 decreased by 28.57%–

41.43% and 29.57%–37.04%, and 28.83%–40.26% 27.95%–31.10%,

respectively, with significant difference (P< 0.05) after 30–50 days of

shading (Figure 8).In 2020 and 2021, the shade-tolerant varieties

HY22 and FH12 showed no significant difference in dry-matter

accumulation of fruit needles between 20 and 50 days after shade,

while the shade-sensitive varieties NH11 and NH5 showed no

significant difference between 20 and 40 days after shade. At 50

days, dry-matter accumulation decreased by 66.91% and 53.66%

and 55.12% and 52.98%, respectively, compared with that in the

control group, with significant differences (P< 0.05) (Figures 7, 8).

In 2020, the pod dry-matter accumulation of HY22 and FH12

decreased by 47.48% and 46.48% and 42.01% and 48.08% compared

with that in the control at 30 and 40 days after shade, respectively,

and the differences were significant (P< 0.05). However, no

significant difference was observed at 50 days after shading

compared to that in the control. NH11 and NH5 were

significantly reduced by 40.63%–58.72% and 31.54%–59.17% after
FIGURE 2

Effect of shading on the main stem height of peanut at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents
main stem height, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ± standard
error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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30–50 days of shading, respectively, compared to that in the control

(P< 0.05) (Figure 7), with similar results in 2021.The total dry

matter of HY22 and FH12 in 2020 was not significantly different at

10–30 days after shade; however, it decreased by 26.18% and 24.92%

and 35.15% and 19.97% (P< 0.05) at 40 and 50 days after shade,

respectively. The total dry matter of NH11 and NH5 had no

significant difference at 10 and 20 days but decreased by 33.81%–

48.51% and 25.77%–39.74% (P< 0.05) at 30–50 days after shade,

respectively. The results in 2021 were similar, with no significant

difference between the shade-intolerant peanut varieties at 10–30

days after shading, and significant difference observed at 40 and 50

days after shading (P< 0.05); however, the shade-sensitive peanut

varieties exhibited significant difference at 30–50 days after shade

(P< 0.05) (Figure 8). These results indicate that the dry-matter

accumulation of the shade-tolerant peanut varieties was greater

than that of the shade-sensitive peanut varieties under shade stress

at the flowering stage.
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3.3 Effect of shade on chloroplast pigment
content of peanut at the flowering
needle stage

Compared with that in the control, the chlorophyll a content in

the leaves of different shade-tolerant peanut varieties showed an

increasing trend under shade stress at the flowering stage. It increased

by 6.87%–26.78% and 10.16%–23.44% from 10 to 50 days after shade

stress, respectively, with significant differences (P< 0.05) in HY22 and

FH12 (Table 1). However, there were no significant differences at 10

and 20 days after shade but was 8.49%–14.18% and 11.67%–12.32%

higher than the control at 30–50 days, respectively, with significant

differences (P< 0.05) in NH11 and NH5. At 30 days after shading, the

increase rate of shade-tolerant peanut varieties was the highest at

26.78% and 23.44%, respectively, for the shade-tolerant peanut

varieties, and 14.18% and 12.32%, respectively, for the shade-

sensitive varieties, and both differences were significant (P< 0.05).
FIGURE 3

Effect of shading on lateral branch length of peanut at the flowering needle stage (2020). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents
lateral branch length, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ±
standard error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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Chlorophyll b absorbs light energy and transfers it to

chlorophyll a, and its content directly affects photosynthesis.

Chlorophyll b content in the leaves of different shade-tolerant

peanut varieties also increased under shade stress at the flowering

stage. It increased by 18.23%–46.34% and 24.00%–49.75%

compared with that in the control at 10–50 days after shading,

respectively, with significant differences (P< 0.05) in HY22 and

FH12 (Table 2). It increased by 13.38%, 23.49%, and 15.86% at 10,

30, and 50 days after shading, respectively, compared to that the

control, with significant differences (P< 0.05). However, no

significant difference was observed in NH11 at 20 and 40 days

after shading (Table 2). Similar results were observed in NH5, with

a significant difference at 40 days after shading but not at 50 days.

Chlorophyll a+b content in peanut leaves initially increased and

then decreased with plant growth. Compared to that in the control,

the chlorophyll a+b contents of different shade-tolerant peanut

varieties increased under shade stress at the flowering stage. The

values rose by 9.63%–31.10% and 13.43%–29.14% compared with

that of the control at 10–50 days after shade, respectively, and the

differences were significant (P< 0.05) (Table 3). The chlorophyll a+b
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contents in NH11 and NH5 showed no significant differences at 10

and 20 days after shading; however, they increased by 10.09%–

16.23% and 12.39%–14.47% compared with that in the control at

30–50 days after shading, respectively, and the differences were

significant (P< 0.05) (Table 3). These results indicate that shade

stress promoted chlorophyll synthesis, with greater increases

observed in shade-tolerant peanut varieties.

Chlorophyll a+b plays an important role in photosynthetic

electron transport, and a higher ratio is conducive to improving

the ability to capture weak light. Leaf chlorophyll a/b of different

shade-tolerant peanut varieties showed a downward trend after

shade stress at flowering stage. It decreased in HY22 and FH12 by

9.60%–16.50% and 11.16%–18.80% at 10–50 days of shade stress,

respectively, and the differences were significant (P< 0.05) (Table 4).

In contrast, it decreased by 5.60% and 9.35%, respectively, at 10

days after shade stress compared to that in the control, with the

differences reaching significant levels (P< 0.05) (Table 4); however,

there was no significant difference at 20–50 days after shade stress in

NH11 and NH5, but for 30 days in NH5. Under shade stress,

chlorophyll a+b content of the shade-tolerant peanut varieties
FIGURE 4

Effect of shading on lateral branch length of peanut at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents
lateral branch length, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ±
standard error, and stars indicate significant differences between shade and full sun (*P<0.05).
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decreased significantly, indicating a larger proportion of chlorophyll

b, which was conducive to capture short-wave radiation and

improve light energy utilization.
3.4 Effect of shade on photosynthesis of
peanut at the flowering needle stage

3.4.1 Photosynthetic physiological parameters
Under shade stress at the flowering stage, the net photosynthetic

rates of different shade-tolerant varieties were lower than those of

the control, and the net photosynthetic rates of HY22 decreased

highly significant only at 50 days of shade, with 32.80% (Figure 9A).

The net photosynthesis rates (Pn) of NH11 and NH5 were

significantly and highly significant different from that of the

control at 10–50 days of shade, and the maximum decrease rate

was 49.77% and 40.47% at 50 days of shade, respectively, indicating

that shade had an effect on the net photosynthetic rate of shade-

sensitive peanut varieties (Figure 9).
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The stomatal conductance (Gs) of peanut leaves decreased

compared to that of the control under shade stress at the flowering

stage. There was a slight decrease from 10 to 50 days after shade, and

the difference was significant in the shade-tolerant peanut varieties

HY22 and FH12 at 50 day (Figure 10). The Gs of the shade

intolerance peanut varieties NH11 had no significant difference

compared with that of the control at 10, 20, and 40 days after

shade but decreased significant at 30 days while in NH5 reduced

significantly at 20 and 30 days. However, it decreased by 24.06% and

27.36% at 50 days after shade, respectively, and the differences were

significant (P< 0.05) (Figure 10). Intercellular CO2 concentration (Ci)

of peanut leaves decreased compared with that in the control under

shade stress at flowering stage. It showed little decrease from 10, 20

and 50 days after shade, and the difference was significant and highly

significant at 30 and 40 days in HY22 and FH12. The Ci of NH11 and

NH5 were not significantly different from that of the control at 10, 20

and 40 days after shading; however, it decreased by 11.42% and

12.25% 50 days after shading, respectively, with significant and highly

significant differences (Figure 11).
FIGURE 5

Effect of shading on leaf area of peanut at the flowering needle stage (2020). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents leaf area, x-
axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ± standard error, and stars
indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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The transpiration rate (Tr) of peanut leaves decreased compared

with that in the control under shade stress at flowering period. The

transpiration rate of the leaves of the shade-tolerant peanut variety

HY22 showed no significant difference from that of the control at 10,

20, 40 and 50 days after shade. The transpiration rate of the leaves of

FH12 showed no significant difference from that of the control at 10–

40 days after shade; however, it decreased by 20.65% at 50 days after

shade, with significant difference (P< 0.05) (Figure 12). The

transpiration rate of the leaves of NH11 and NH5 were not

significantly different from that of the control at 10, 30 and 10, 20

days after shading; however, it decreased by 50.25% and 28.08% and

20.93% and 35.01% at 40 and 50 days after shading, respectively, with

significant and highly significant differences (Figure 12).

3.4.2 Enzyme activity related to photosynthesis
RuBP carboxylase is a key enzyme in photosynthesis, and its

activity has a significant influence on the photosynthetic carbon
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assimilation ability. The activity of RuBP carboxylase in peanut

leaves did not change significantly with the growth process.

Compared with that in the control, the RuBP carboxylase activity

of different shade-tolerant peanut varieties decreased after shade

stress at the flowering stage; however, the difference was highly

significant at 30–50 days in HY22 and 20 days in FH12 after shade.

Furthermore, the difference between the shade-sensitive peanut

varieties and the control group decreased highly significant at 10-

40 days after shade (Figure 13). The maximum decreases were

10.60% and 9.45% at 20 days in NH11 and NH5.

Compared with that in the control, FBA activity in HY22 and

FH12 decreased by 7.29% and 1.65%, respectively, during 10 days of

shade stress, while it highly significant decreased in NH11 and NH5

by 16.98% and 8.59%, respectively (Figure 14); the difference was

significant (P< 0.05). The FBPA activity of the shade-tolerant

peanut varieties HY22 and FH12 highly significant increased by

10.29% and 8.25% at 20 days after shade stress, while that in the
FIGURE 6

Effect of shading on leaf area of peanut at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents leaf area, x-
axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ± standard error, and stars
indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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shade-sensitive peanut varieties NH11 and NH5 highly significant

increased by 14.63% and 12.35% at 30 days, respectively (Figure 14).
3.5 Effect of shade on the ultramicroscopic
structure of the chloroplasts of peanut
leaves at the flowering needle stage

The ultra-microscopic structure of peanut leaves at the

flowering stage changed after shading. Compared with that in the

control, the chloroplasts of the shade-tolerant peanut varieties

HY22 and FH12 were well developed, and the grana lamella were

significantly increased and tightly laminated (Figures 15, 16).

However, the grana lamella of NH11 and NH5 were reduced,

showing signs of breakage and blurring (Figures 15, 16). The

number of starch grains in the leaves of the shade-tolerant peanut

varieties decreased, while the volume of starch grains increased.

Conversely, although the number of starch grains in the leaves of

the shade-sensitive peanut varieties increased, the volume of starch

grains decreased. The number of thylakoid particles in leaves of

different shade-tolerant peanut varieties increased; however, the

volume decreased. The influence of shade stress on the chloroplast

ultra-microstructure of the shade tolerant peanut varieties was less

than that of shade-intolerant varieties (Figures 15, 16).
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3.6 The effect of shade on peanuts at the
flowering needle stage

Shade has also effect on peanut yield and yield-related indicators at

flowering needle stage. The number of fruit branches per plant, pod

number per plant, full fruit number per plant, pod weight per plant, 100

fruit weight per plant and 100 kernel weight of peanut varieties with

different shade tolerance decreased compared with that in the control;

however, the shade-sensitive peanut varieties were more affected than

the shade-tolerant varieties by shade (Supplementary Table S1).

Compared with that in the control, the number of full fruit per plant,

100 fruit weight, and 100 kernel weights of shade-tolerant peanut

varieties decreased significantly (P< 0.05). Noticeably, those three

parameters and the number of fruit branches per plant, pod number

per plant, pod weight per plant and the kernel yield of shade-sensitive

peanut varieties decreased, and the difference was significant (P< 0.05).

Changes in the yield components directly affect the yield. Under shade

stress at the flowering stage, the yield of different shade-tolerant peanut

varieties decreased significantly compared with that in the control. In

2020 and 2021, the yield of HY22 and FH12 decreased by 11.19%,

19.79% and 16.26%, 17.81%, respectively, while that of NH11 and NH5

decreased by 36.01%, 30.07% and 36.67%, 27.14%, respectively. These

results indicated that the shade-tolerant peanut varieties were less

affected than the shade-intolerant varieties by shade stress.
FIGURE 7

Effect of shading on dry-matter accumulation of peanut at the flowering needle stage (2020). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis
represents dry-matter accumulation, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars
indicate ± standard error. Green bar indicates fruit, red bar indicates needle, pink bar indicates leaf, blue bar indicates stem, light blue indicates root.
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What’s more, correlation was conducted on chlorophyll a,

chlorophyll b, chlorophyll a+b, chlorophyll a/b, and yield

(Table 5). The results showed that the chlorophyll a/b of

different peanut varieties was positively correlated with yield
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under shading conditions at flowering stage, and the correlation

coefficient was 0.618, indicating that the chlorophyll a/b value

could be used as one indicator to define peanut yield under

shading stress.
FIGURE 8

Effect of shading on dry-matter accumulation of peanut at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis
represents dry-matter accumulation, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars
indicate ± standard error. Green bar indicates fruit, red bar indicates needle, pink bar indicates leaf, blue bar indicates stem, light blue indicates root.
TABLE 1 Effect of shading on chlorophyll a content in peanut leaves at the flowering needle stage (2021).

Cultivar Treatment
Treatment days

10 20 30 40 50

HY22
CK 1.55 ± 0.02a 1.69 ± 0.01a 1.25 ± 0.03a 1.10 ± 0.01a 1.06 ± 0.02a

Shade 1.73 ± 0.01b 1.81 ± 0.01b 1.59 ± 0.01b 1.32 ± 0.01b 1.22 ± 0.02b

FH12
CK 1.49 ± 0.01a 1.62 ± 0.02a 1.28 ± 0.02a 1.12 ± 0.01a 1.08 ± 0.01a

Shade 1.69 ± 0.02b 1.78 ± 0.01b 1.58 ± 0.03b 1.37 ± 0.02b 1.23 ± 0.02b

NH11
CK 1.71 ± 0.02a 1.77 ± 0.02a 1.42 ± 0.01a 1.31 ± 0.01a 1.28 ± 0.01a

Shade 1.83 ± 0.02a 1.86 ± 0.03a 1.62 ± 0.03b 1.44 ± 0.01b 1.39 ± 0.02b

NH5
CK 1.57 ± 0.03a 1.82 ± 0.04a 1.38 ± 0.02a 1.16 ± 0.01a 1.10 ± 0.01a

Shade 1.71 ± 0.02b 1.91 ± 0.02a 1.55 ± 0.02b 1.31 ± 0.02b 1.23 ± 0.01b
Different lowercase letters in the same column in each index indicated significant differences among samples (P<0.05), ± indicates standard error.
Unit: mg·g-1
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429800
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1429800
3.7 Effect of shade on the quality of peanut
kernel at the flowering needle stage

Shade also affects the quality of seed at maturity stage. Compared

to that in the control, protein content in seed kernels of different

shade-tolerant peanut varieties increased after shade stress at

flowering stage, and the differences between NH11 in 2020 and

NH5 in 2021 were significant (P< 0.05), increasing by 4.03% and

6.63%, respectively (Supplementary Table S2). There were no

significant differences observed in HY22 and FH12. Regarding the

amino acid components, compared with that in the control, the

contents of amino acids (except for cysteine) increased, and the

increase in the contents of alanine, arginine, aspartic acid, glutamic

acid, glycine, histidine, and isoleucine were significant (P< 0.05) in

NH11 in 2020 and NH5 in 2021 (Supplementary Table S1).

Compared with that of the control, the fat content of different

shade-tolerant peanut varieties decreased in 2020 after shade stress at

the flowering stage. The fat content of the shade-tolerant peanut

varieties HY22 and FH12 decreased by 8.23% and 6.31%,

respectively, and that of the shade-sensitive peanut varieties NH11

and NH5 decreased by 7.06% and 7.94%, respectively (Supplementary
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Table S3). All the differences were significant (P< 0.05); however, the

differences in 2021 were not significant, which may be related to the

field-test conditions. In 2020 and 2021, the oleic acid content of NH11

and NH5 decreased by 14.05% and 12.50% and 5.95% and 5.19%

compared with that in the control, respectively, and the differences

were significant (P< 0.05). There were no significant differences in the

other components compared with that in the control.
4 Discussion

4.1 Effect of shade on the morphological
characteristics of peanut

Light is necessary for crop growth and plays an important role

in the growth, development, and morphology of crops. Shade has a

significant effect on the growth and development of peanuts, and

morphological indices are important factors directly affecting yield

formation. In the intercropping system between peanut and maize,

the higher the degree of shade received by peanut, the more

vigorous the vegetative growth of the plant in the early growth
TABLE 2 Effect of shading chlorophyll b content in peanut leaves at the flowering needle stage on (2021).

Cultivar Treatment
Treatment days

10 20 30 40 50

HY22
CK 0.43 ± 0.02b 0.54 ± 0.01b 0.36 ± 0.01b 0.34 ± 0.01b 0.31 ± 0.01b

Shade 0.58 ± 0.01a 0.64 ± 0.01a 0.52 ± 0.01a 0.46 ± 0.01a 0.42 ± 0.01a

FH12
CK 0.44 ± 0.02b 0.50 ± 0.02b 0.35 ± 0.01b 0.33 ± 0.01b 0.30 ± 0.01b

Shade 0.58 ± 0.01a 0.62 ± 0.01a 0.53 ± 0.01a 0.48 ± 0.01a 0.42 ± 0.01a

NH11
CK 0.49 ± 0.02a 0.52 ± 0.02a 0.40 ± 0.01a 0.39 ± 0.01a 0.36 ± 0.01a

Shade 0.56 ± 0.02b 0.58 ± 0.01a 0.49 ± 0.01b 0.45 ± 0.01a 0.41 ± 0.01b

NH5
CK 0.40 ± 0.02b 0.55 ± 0.03a 0.39 ± 0.01b 0.34 ± 0.01b 0.32 ± 0.02a

Shade 0.48 ± 0.02a 0.60 ± 0.05a 0.47 ± 0.01a 0.42 ± 0.01a 0.37 ± 0.01a
Different lowercase letters in the same column in each index indicated significant differences among samples (P<0.05), ± indicates standard error.
Unit: mg·g-1
TABLE 3 Effect of shading on chlorophyll a+b content in peanut leaves at the flowering needle stage (2021).

Cultivar Treatment
Treatment days

10 20 30 40 50

HY22
CK 1.99 ± 0.05b 2.23 ± 0.06b 1.61 ± 0.02b 1.44 ± 0.04b 1.37 ± 0.01b

Shade 2.31 ± 0.02a 2.45 ± 0.05a 2.11 ± 0.01a 1.78 ± 0.03a 1.64 ± 0.01a

FH12
CK 1.93 ± 0.03b 2.12 ± 0.02b 1.63 ± 0.02b 1.45 ± 0.01b 1.38 ± 0.03b

Shade 2.27 ± 0.05a 2.40 ± 0.02a 2.11 ± 0.03a 1.85 ± 0.02a 1.65 ± 0.02a

NH11
CK 2.20 ± 0.06a 2.29 ± 0.08a 1.82 ± 0.01b 1.70 ± 0.02b 1.64 ± 0.02b

Shade 2.38 ± 0.01a 2.44 ± 0.05a 2.11 ± 0.01a 1.89 ± 0.01a 1.80 ± 0.01a

NH5
CK 1.97 ± 0.04a 2.37 ± 0.03a 1.77 ± 0.02b 1.51 ± 0.02b 1.42 ± 0.01b

Shade 2.19 ± 0.07a 2.51 ± 0.04a 2.02 ± 0.01a 1.72 ± 0.02a 1.60 ± 0.01a
Different lowercase letters in the same column in each index indicated significant differences among samples (P<0.05), ± indicates standard error.
Unit: mg·g-1
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period. The growth parameters include an increase in the length of

the main stem, shortening of lateral branches, reduction of branch

number, and decrease in dry-matter accumulation, especially at

later stage of growth (Yang et al., 2015). However, the influence of

shade on leaf area varies. Zhang et al. (2007) demonstrated that

soybean leaves in a low-light environment for extended periods

were large and thin, with small specific leaf weight, along with soft

and long petioles. Moreover, the leaf area of winter wheat increased
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with the decrease of light intensity, which confirmed that different

shade conditions had different effects on the morphological growth

of winter wheat (Shi et al., 2019).

Under low-light conditions, peanuts grew taller and thinner

with significantly reduced leaf area and specific leaf weight (Rao and

Zhao, 1989). Similarly, shade resulted in an increase in plant height

and thinning of stems, along with a decrease in the number of main

stem branches and leaf area of mung beans (Gong et al., 2022). In
TABLE 4 Effect of shading on chlorophyll a/b of peanut at the flowering needle stage (2021).

Cultivar Treatment
Treatment days

10 20 30 40 50

HY22
CK 3.57 ± 0.03a 3.13 ± 0.03a 3.52 ± 0.02a 3.24 ± 0.06a 3.41 ± 0.07a

Shade 2.98 ± 0.04b 2.83 ± 0.03b 3.05 ± 0.06b 2.87 ± 0.01b 2.90 ± 0.04b

FH12
CK 3.39 ± 0.04a 3.24 ± 0.02a 3.62 ± 0.05a 3.39 ± 0.09a 3.61 ± 0.03a

Shade 2.91 ± 0.01b 2.88 ± 0.04b 2.98 ± 0.02b 2.84 ± 0.05b 2.93 ± 0.03b

NH11
CK 3.48 ± 0.04a 3.40 ± 0.04a 3.54 ± 0.08a 3.36 ± 0.04a 3.60 ± 0.04a

Shade 3.29 ± 0.01b 3.21 ± 0.17a 3.28 ± 0.05a 3.21 ± 0.08a 3.37 ± 0.06a

NH5
CK 3.92 ± 0.01a 3.33 ± 0.02a 3.56 ± 0.05a 3.41 ± 0.04a 3.41 ± 0.05a

Shade 3.55 ± 0.06b 3.19 ± 0.05a 3.30 ± 0.04b 3.12 ± 0.06a 3.32 ± 0.05a
Different lowercase letters in the same column in each index indicated significant differences among samples (P<0.05), ± indicates standard error.
FIGURE 9

Effect of shading on net photosynthesis rates (Pn) of peanut leaves at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-
axis represents net photosynthesis rates (Pn), x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates,
bars indicate ± standard error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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this study, the elongation of the main stem, shortening of the lateral

branches, and reduction in the leaf area were observed in both

shade-tolerant and shade in-tolerant peanut varieties under shade

stress compared with those in the control. However, these changes

were more evident in shade-sensitive than in shade-tolerant peanut

varieties, with significant differences compared with those in the

control (Figures 1–6). Under changing light conditions, crops adjust

to the new environment by altering their own morphological traits

to chase the light, which is essential for survival. The extension of

the main stem is conducive to the plants obtaining more light;

however, the increase in the height of the main stem leads to more

dry-matter transfer to the stem, which is not conducive to yield

formation (Lu et al., 2023). To compete for limited light resources,

the lateral growth of stems is inhibited, while the elongation of

stems is promoted, and the proportion of photosynthetic products

transferred to stems is increased to maintain the availability of

nutrients required for their growth. The main stem of shade-

tolerant peanut varieties remained low, which was also an

important reason for shade tolerance. Furthermore, the larger leaf

area of shade-tolerant peanut varieties facilitates higher light-energy

interception power and photosynthetic efficiency under shade

conditions, with little influence on material production

(Figures 5, 6).

Peng and Chen (1999) found that Arachis pintoi with robust

growth under shade had significantly large leaf area under different
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levels of shade. In addition, under light and moderate shade stress,

the leaf area of soybean with tolerance to shade had relatively

sustained (Tan, 2018). Thus, it appeared that large leaf area was an

important index for identifying shade-tolerant varieties, laying a

solid foundation for capturing more light for photosynthesis and

accumulating more carbohydrates. Additionally, the lateral

branches of peanuts play a vital role in determining yield as they

are the main fruit-bearing branches. The significant decrease in

lateral branch length of shade-sensitive peanut varieties while a

slight decrease in shade-tolerant peanut varieties (Figures 3, 4),

confirmed that shade-tolerant cultivars had the ability to sustain

longer lateral branch under shade stress than shade-intolerant

cultivars. Taken together, under shade stress, the shade-tolerant

cultivars exhibited a more stable morphology than the shade-

intolerant cultivars.
4.2 Effect of shade on the photosynthesis
of peanut

Light is one of the most important ecological factors in plant

growth and development. Different light intensities have regulated

growth, photosynthesis, morphogenesis, and metabolism of leaf

(Shi et al., 2008). Chlorophyll is responsible for the absorption,

transmission and transformation of light energy in the plant body.
FIGURE 10

Effect of shading on stomatal conductance (GS) of peanut leaves at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-
axis represents stomatal conductance (GS), x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates,
bars indicate ± standard error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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With the weakening of light intensity, the contents of chlorophyll a

and chlorophyll b both increased, indicating that soybean seedlings

enhanced the photosynthetic intensity by increasing the chlorophyll

content to adapt to the weak-light environment (Wu et al., 2014a).

Increasing chlorophyll content, particularly chlorophyll b, after

shading helps absorb short-wave light, capture light-energy, and

improve light-energy utilization efficiency under low-light

conditions. Moreover, the contents of chlorophyll a, chlorophyll

b, and chlorophyll a+b in peanut leaves increased after shade stress

(Tables 1, 2), which confirmed the plants ability to adapt to shade

stress, similar to the findings of Lu et al. (2023).

Moreover, Zhang et al. (2010) found that shading not only

significantly decreased the chlorophyll content per unit mass of

peanut leaves at seedling stage but also significantly reduced the net

photosynthetic rate, stomatal conductivity, intercellular CO2

concentration, and the activities of RuBP carboxylase and PEP

carboxylase and that the degree of influence increased with the

degree of shading. Similarly, Pn, Gs, Ci, and Tr were decreased, and

significantly reduced in shade-sensitive cultivars (Figures 9–12).

Under shade conditions, Pn of peanut decreased gradually under

low-light conditions. Stomatal factors primarily caused Pn

reduction, with concurrent deceases in Gs and Ci (Sharkey, 1984).

Additionally, nonstomatal factors, such as decreased carboxylation
Frontiers in Plant Science 16
efficiency, led to reduced photosynthetic activity of mesophyll cells

(Zhang et al., 2010).

The activity of RuBP carboxylase is closely related to the

photochemical efficiency of PS II reaction center, directly

impacting Pn. The activities of RuBP carboxylase decreased

significantly in shade-sensitive cultivars under shade stress

(Figure 13), confirming that the shade-sensitive variety was

incapable of sustaining normal photosynthesis. The same trend

was found in mung bean leaves under shade conditions, such as

decreased RuBP carboxylase activity, along with reduced Pn, Tr,

and Ci (Gong et al., 2022). Although RuBP carboxylase of the

carboxylation stage marks the beginning of the Calvin cycle, the

RuBisco-reduction stage is vital to define whether there is sufficient

ribulose 5-phosphate for RuBP carboxylase (Cai, 2017). It is of next

step that investigate the enzyme changes relating to RuBP

reduction. FBA, as an important rate-limiting enzyme in

photosynthesis, is the first enzyme to catalyze the conversion of a

3C compound to a 6C compound, that is, to catalyze the reversible

synthesis of FBA with dihydroxyacetone phosphate and

glyceraldehyde 3-phosphate, which is an essential enzyme

involved in starch metabolism, and synthesis of the 7C sugar

setiheptulose-1, 7-biphosphate (Iwaki et al., 1991; Sonnewald

et al., 1994; Flechnera et al., 1999; Wei et al., 2006). FBA plays a
FIGURE 11

Effect of shading on intercellular CO2 concentration (Ci) of peanut leaves at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D),
NH5. Y-axis represents intercellular CO2 concentration (Ci), x-axis represents the days of different cultivars under shade stress. Values are mean of
three replicates, bars indicate ± standard error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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key role in the regulation of plant abiotic stress resistance such as

low temperature, high temperature, salt stress, drought, strong light.

Zhang et al. (2002) found that accumulation of the FBPA gene

transcripts was increased in the leaf and stem tissues under drought,

saline, and Abscisic Acid (ABA) treatment. It was evident that

under shade stress, FBA level initially decreased at 10 days and

subsequently increased significantly after 20 and 30 days in shade-

tolerant and shade-sensitive cultivars, respectively (Figure 14). This

finding implied that shade stress also had promoted FBA activity,

which accumulated faster in shade-tolerant than in shade-sensitive

cultivars. The heterologous FBA gene can improve the synthesis

ability of sugar and starch, increase the photosynthetic efficiency,

and significantly enhance the resistance of transgenic plants (Kang

et al., 2004; Chen et al., 2006; Ma et al., 2008). Shading can reduce

the activities of RuBP carboxylase and FBPA in leaves, which

further leads to a decrease in the net photosynthetic efficiency.

Photosynthetic capacity of plant organs is reflected by their

photosynthetic rate (Feng et al., 2019b). In this study, compared

with that in the control, Pn, Gs, Ci, and Tr were decreased in all

varieties, with more pronounced reduction in the shade-sensitive

cultivars (Figures 9, –12). The decrease in Pn under shading

conditions is primarily caused by the weakening of the light

intensity, which was significantly decreased in shade-sensitive

varieties after 30–50 days of shading, while it was significantly
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reduced after 50 days of shading in shade-tolerant cultivars.

Stomatal factor is responsible for the decrease in the

photosynthetic rate with decreasing Ci and increasing stomatal

limit value. Gs and Ci were both decreased in all cultivars but

reduced significantly after 50 days of shading in shade-sensitive

varieties (Figures 10, 11). However, non-stomatal factor is another

reason that the photosynthetic activity of mesophyll cells decreases,

RuBP carboxylase efficiency significantly decreased in shade-

sensitive varieties but not significantly in shade-tolerant cultivars

(Figure 13), implying that under the shading treatment, RuBPcase

activity was a limiting factor for Pn and that the shading conditions

may damage the function of RuBPcase.
4.3 Effect of shade on the ultra-
microstructure of peanut cells

Shading not only reduces the photosynthetic production

capacity but also affects the structure of the photosynthetic organs

(Skene, 1974; Ivanova et al., 2008; Huang et al., 2011; Yamazaki and

Shinomiya, 2013). Plants living in low-light conditions for extended

periods morphologically adjust their leaves based on light intensity

and even undergo structural changes to enhance the absorption and

utilization ability of low light (Lichtenthaler et al., 1981; Yao et al.,
FIGURE 12

Effect of shading on transpiration rate (Tr) of peanut leaves at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis
represents transpiration rate (Tr), x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars
indicate ± standard error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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2007). The effects of low light on the chloroplast structure vary

depending on the variety and genotype of the crops (Königer and

Bollinger, 2012). Wu et al. (2014b) showed that under moderate

low-light stress, peanut exhibited an improved ability to capture and

use light energy by increasing the light-receiving area of the

chloroplast, number of grana, and number of grana lamellae;

however, under severe low-light stress, the chloroplast grana

development was incomplete, the grana lamellae damaged, and

the ability to capture light energy reduced. Under the condition of

insufficient light energy, the chloroplast volume of the shade-

tolerant peanut varieties increased to obtain enough light for

growth (Figures 15, 16). Furthermore, increased granula lamellae,

orderly stacking, and clear structure, along with only a few

chloroplasts containing starch granules, was observed in tolerant

cultivars of tomato (Meng et al., 2021). Similarly, fewer starch

granules were present in the shade-tolerant than in the shade-

intolerant cultivars (Wu et al., 2014b). However, there were more

starch granules in the shade-tolerant cultivars with blurred granula

lamellae than that in shade-sensitive cultivars (Figures 15, 16).

Thus, the significant decrease of Pn possibly affected the supply of

inorganic phosphorus, hindered the transport of sucrose inside and

outside the cytoplasm (Figure 9), and reduced the release of

inorganic phosphorus. Furthermore, triose phosphate was mainly

used for starch storage in the chloroplast. The accumulation of a
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large number of starch granules would cause mechanical damage to

the thylakoids and adsorb some carbon assimilation-related

enzymes, reducing their enzyme activity (Yao et al., 2007; Meng

et al., 2021). Taken together, the shade-tolerant peanut varieties

utilize light energy much higher than the shade-intolerant varieties

due their improved environmental adaptability; this improved

adaptability is mediated by decreased starch grains, intact

chloroplast grana layers structure, and increased chloroplast grana

layers, which help accelerate the transfer of light energy on

thylakoids and improve the ability of peanut to capture light

energy (Wu et al., 2014b).
4.4 Effects of shade on dry-matter
accumulation, yield, and quality of peanut

Yield is a measure of dry-matter accumulation, and a higher

amount of dry-matter accumulation is the basis of yield formation,

which also depends on the characteristics of dry-matter

accumulation and distribution in various organs. Promoting the

transfer of dry matter to seeds and increasing the transfer volume of

dry matter is the fundamental way to increase yield (Wang et al.,

2021). Shade affects the accumulation and transport of dry matter in

crops; it restricts photosynthesis, resulting in a significant decrease
FIGURE 13

Effect of shading on RuBP Case activity in peanut leaves at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis
represents RuBP Case activity, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ±
standard error, and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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in total dry-matter mass under shade stress (Zhang et al., 2018).

Moreover, Cai et al. (2009) found that the accumulation of dry

matter in different aboveground organs was inhibited during pre-

flowering shading of a strong gluten wheat variety. In this study, the

dry-matter accumulation in the entire plant and organs of different

shade-tolerant peanut varieties under shade decreased compared

with that in the control; however, the rate of decline in shade-

sensitive peanut varieties was greater than that in the shade-tolerant

varieties, and reached a significant level during the late shade period

(Figures 7, 8). These results indicate that the shade-tolerant peanut

varieties maintained relative stable chloroplast structure,

accelerated the transfer of light energy, and improved nutrient

transport compared with that by the shade-sensitive peanut

varieties, which transferred more nutrients to the grain and

adapted to the shade environment.

Leaf photosynthesis is the foundation of crop grain formation,

and yield components directly affect yield formation (Liu et al.

2015). Fan et al. (2016) found that low light reduced the yield per

plant by reducing pod number per plant, kernel number per plant,

and 100-kernel weights. Under shade conditions, the seed setting

rate, 1,000-grain weight, and yield of rice decreased significantly
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(Pan et al., 2016), while it was more obvious in shade-sensitive rice

cultivars (Chen et al., 2019b; Du et al., 2014). Similarly, in this study,

shade significantly reduced the number of full fruits per plant, 100-

fruit weight, and 100-kernel weights of peanuts, thereby

significantly reducing peanut pod yield (Supplementary Tables

S1–S3). Insufficient light intensity directly affected the peanut

photosynthesis and dry-matter accumulation. Furthermore, the

dysfunctional development of lateral branches could also account

for the decrease of pod yield due to lateral branches being the main

fruiting branches (Lin et al., 2020). Compared with the shade-

sensitive peanut varieties, shade-tolerant peanut varieties

maintained the morphology and physiology, and the rate of full

fruit number per plant, 100-fruit weight, and 100-kernel weight

decreased slightly, which gave solid foundation for the yield, and

shade tolerance.

Studies have shown that the change in light conditions affects

the physiological processes such as photosynthesis, nutrient

absorption, and redistribution in the plant and ultimately affect

the formation of crop quality. Ren et al. (2003) found that under

low-light stress, poor grain filling led to poor rice-milling and

appearance. However, Campbell et al. (1987) demonstrated that
FIGURE 14

Effect of shading on FBA activity of peanut leaves at the flowering needle stage (2021). (A), HY22; (B), FH12; (C), NH11; (D), NH5. Y-axis represents
FBA activity, x-axis represents the days of different cultivars under shade stress. Values are mean of three replicates, bars indicate ± stander error,
and stars indicate significant differences between shade and full sun (*P<0.05, **P<0.01).
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the reduction in light intensity increased the crude protein content

in the grains. Furthermore, the protein content of peanut kernel

increased, while the fat content was less affected under the moderate

and mild drought stress at the seedling stage. Under severe drought

conditions, the fat content of peanut kernel significantly reduced,

while the protein content was only slightly affected (Yan et al.,

2007). Han et al. (2014) found that the protein content of peanut

kernel increased and the fat content decreased after intercropping

with shading stress. Herein, peanut kernel protein content increased
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and fat content decreased under shade stress. Thus, the decrease in

the photosynthetic capacity and dry-matter accumulation in each

organ and whole plant was harmful to the formation of yield, and

the significant decrease of number of full fruits per plant, 100-fruit

weight, and 100-kernel weight directly led to the decrease of yield

(Supplementary Tables S1–S3). However, shade-tolerant varieties in

this study maintained relative better morphological and

physiological level to obtain higher yield than shade-

intolerant varieties.
FIGURE 15

Effect of shading on chloroplast ultrastructure of peanut leaves at the flowering needle stage (2020). (A), HY22 CK. (B), HY22 shade. (C), FH12 CK.
(D), FH12 shade. (E), NH11 CK. (F), NH11 shade. (G), NH5 CK. (H), NH5 shade. Chl, chloroplast; GL, basal lamina. Observed at 5.0 k.
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FIGURE 16

Effect of shading on starch granules ultrastructure of peanut leaves at the flowering needle stage (2020). (A), HY22 CK. (B), HY22 shade. (C), FH12
CK. (D), FH12 shade. (E), NH11 CK. (F), NH11 shade. (G), NH5 CK. (H), NH5 shade. Chl, chloroplast; O, osmiophilic particles; S, starch granules.
Observed at 5.0 k.
TABLE 5 Correlation between shading on chlorophyll and yield in peanut at the flowering needle stage (2021).

chlorophyll a chlorophyll b chlorophyll a+b chlorophyll a/b yield

chlorophyll a 1 0.920** 0.994** -0.224 -0.305

chlorophyll b 0.920** 1 0.957** -0.581** -0.491**

chlorophyll a+b 0.994** 0.957** 1 -0.325* -0.361*

chlorophyll a/b -0.224 -0.581** -0.325* 1 0.618**

yield -0.305 -0.491** -0.361* 0.618** 1
F
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“**” represent the significant difference at 1% probability level between different treatments. “*”in the table represent the significant difference at 5% probability level between different treatments.
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5 Conclusion

The shade-tolerant peanut varieties exhibited significant

differences in their tolerance to the shade than the shade-

intolerant varieties. Shade-tolerant peanut varieties showed

relatively shorter main stem height and longer lateral branch than

the control; however, the difference was not significant. The leaf

area and dry-matter accumulation of shade-tolerant peanut

varieties were significantly increased during the late stage of shade

stress. Although Gs and Ci decreased due to the insufficient light

energy, the increased chloroplast grana layers, intact chloroplast

grana layers structure, increased starch grains volume, less

decreased RuBP enzyme and early functioned FBA enzyme had

maintained Pn thereby accelerating the transfer of light energy to

the thylakoids. Consequently, in 2020 and 2021, the yield of the

shade-tolerant peanut varieties HY22 and FH12 decreased by

11.19%, 19.79%, and 16.26%, 17.81%, respectively, while that of

the shade-sensitive peanut varieties NH11 and NH5 decreased by

36.01%, 30.07% and 36.67%, 27.14%, respectively.
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