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Maize (Zea mays) is India’s third-largest grain crop, serving as a primary food

source for at least 30% of the population and sustaining 900 million

impoverished people globally. The growing human population has led to an

increasing demand for maize grains. However, maize cultivation faces

significant challenges due to a variety of environmental factors, including

both biotic and abiotic stresses. Abiotic stresses such as salinity, extreme

temperatures, and drought, along with biotic factors like bacterial, fungal,

and viral infections, have drastically reduced maize production and grain

quality worldwide. The interaction between these stresses is complex; for

instance, abiotic stress can heighten a plant’s susceptibility to pathogens,

while an overabundance of pests can exacerbate the plant’s response to

environmental stress. Given the complexity of these interactions,

comprehensive studies are crucial for understanding how the simultaneous

presence of biotic and abiotic stresses affects crop productivity. Despite the

importance of this issue, there is a lack of comprehensive data on how these

stress combinations impact maize in key agricultural regions. This review

focuses on developing abiotic stress-tolerant maize varieties, which will be

essential for maintaining crop yields in the future. One promising approach

involves the use of Plant Growth-Promoting Rhizobacteria (PGPR), soil bacteria

that colonize the rhizosphere and interact with plant tissues. Scientists are

increasingly exploring microbial strategies to enhance maize’s resistance to

both biotic and abiotic stresses. Throughout the cultivation process, insect

pests and microorganisms pose significant threats to maize, diminishing both

the quantity and quality of the grain. Among the various factors causing maize

degradation, insects are the most prevalent, followed by fungal infections. The
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review also delves into the latest advancements in applying beneficial

rhizobacteria across different agroecosystems, highlighting current trends

and offering insights into future developments under both normal and

stress conditions.
KEYWORDS

abiotic and biotic stress, breeding improvement, maize, PGPR, transgenic
1 Introduction

Maize (Zea mays L.) is India’s third most significant grain crop,

trailing behind wheat and rice. It plays a key role as a food source for

billions of people in both advanced and developing nations

(Canton, 2021). It serves as a staple food for millions of people

living in poverty. On a global scale, maize is one of the most widely

cultivated crops, covering more than 100 million hectares in various

countries (Tubiello et al., 2009). The extensive cultivation of maize

is essential for the livelihoods of millions of small-scale farmers.

With the global population expected to increase from

approximately 7.7 billion in 2020 to around 9.3 billion by 2050,

demand for maize in developing countries is projected to double

over this period (Nur et al., 2020). The increasing human

population and rising demand for animal-based products are

driving up maize consumption. However, expanding maize

production is challenged by limited arable land and various biotic

and abiotic stressors that affect yield, productivity, and quality. To

tackle these challenges, scientists have genetically engineered maize

by introducing specific genes, leading to transgenic varieties with

improved traits. The release of the first commercially available

transgenic maize in the United States in 1996 marked a

significant milestone in crop genetic modification. Today, maize

is the most extensively modified crop in terms of genetic

engineering, with the highest number of transgenic varieties.

Consequently, developing transgenic maize has become a

forefront strategy for enhancing the genetic potential of this

essential crop (Raza et al., 2019).

Environmental factors are critical in influencing maize crop

yield. Maize productivity and traits are affected by both their genetic

makeup and the environmental conditions they face (Hudson et al.,

2022). Plants naturally progress through different stages to

complete their life cycle. However, recent changes in climate,

such as irregular precipitation and temperature fluctuations, have

created significant challenges. These shifts have caused extended

droughts and temperature variations that fall outside optimal

ranges (Yadava et al., 2017; Odell et al., 2022), affecting crop

production. In India, maize is cultivated in a range of

environments, from semi-arid to sub-humid and moderate

climates. Climate change is a persistent and critical issue that is

continuously reshaping the world. It has already caused significant
02
changes and is expected to drive even more substantial global

transformations in the future. While crop productivity has

improved over the past two decades, the growing vulnerability of

plants to abiotic stresses presents a new challenge in sustaining high

yields amidst shifting climate patterns (Mao et al., 2015; Alotaibi,

2023). Developing crops with tolerance to abiotic stress may be vital

for sustaining crop yields in the future (Duvick, 2005). In reaction to

various environmental stresses, plant cells activate complex

signaling pathways that involve hormones, transcription factors,

and signal transducers. These signals coordinate to regulate stress-

responsive genes, resulting in the production of proteins and

enzymes that help plants manage stress (Zandalinas et al., 2018).

Maize production is facing significant threats from variable drought

conditions, high temperatures, and inconsistent rainfall

(Lobell et al., 2014). Consequently, current research is focused on

enhancing traits that confer tolerance to abiotic stresses. However,

identifying the genetic factors responsible for this tolerance remains

a difficult task (Mao et al., 2015). Abiotic stress tolerance is

determined by complex quantitative traits that are frequently

associated with other developmental features. These traits are

controlled by numerous quantitative trait loci (QTL), each having

a minor impact on the overall trait expression, which complicates

their identification and modification (Miao et al., 2017). This study

seeks to evaluate the effects of various abiotic stresses on

maize productivity.

Using plant-supporting microorganisms such as arbuscular

mycorrhizal (AM) fungi, various other beneficial fungi, and plant

growth-promoting bacteria (PGPB) presents a promising

alternative strategy (Dodd and Ruiz-Lozano, 2012; Barea, 2015).

These microorganisms can enhance crop yields without the need for

additional mineral nitrogen. Research on maize has highlighted

their substantial benefits, including improved growth and better

crop quality (Montañez et al., 2012; Berta et al., 2014; Dhawi et al.,

2015; Marks et al., 2015; Dartora et al., 2016). Employing PGPR is a

promising strategy to mitigate the environmental effects of chemical

fertilizers, pesticides, and herbicides, as well as to address abiotic

stress. According to Kloepper (1978), PGPR are soil bacteria that

colonize the plant rhizosphere and support growth through various

mechanisms. With the increasing demand for agricultural output to

support a growing global population, excessive reliance on chemical

inputs has often led to soil degradation (Bhusal et al., 2021). Plant
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growth-promoting microbes have been shown to boost plant

nutrition and reduce the need for pesticides (Kimotho et al.,

2019). With modern agriculture grappling with environmental

and social issues from industrialization and the pressure to feed a

growing population, PGPR presents a viable solution for sustaining

high yields while reducing environmental impact (Pérez-Montaño

et al., 2013).

Researchers are focusing more on microbial strategies to boost

maize’s resistance to biotic and abiotic stresses. Maize faces damage

from insect pests and microorganisms during both pre-harvest and

post-harvest periods, which reduces its quality and yield (Burlakoti

et al., 2024). Maize plants and grains are affected by various

pathogenic bacteria and insects, leading to an estimated annual

global loss of 9.4%. Insects are the main cause of maize degradation

and reduced yields, with fungi contributing as a secondary factor

(Khosravi et al., 2007; Sitara and Akhter, 2007). Maize cultivation is

significantly challenged by pests, with insect and soil pests posing

some of the most serious threats. According to Roberts (2006),

global annual losses from plant diseases, encompassing both direct

and indirect effects, are estimated to reach nearly $40 billion.

This review explores how microorganisms can boost maize

yield and development. Microbial and transgenic methods,

including PGPR, help alleviate abiotic stresses. Some

microorganisms enhance plant growth directly, independent of

pathogen presence, while others offer indirect benefits by

safeguarding the plant from soil-borne diseases.
2 Factors affecting maize production

Abiotic and biotic factors are major environmental influences

on crop productivity. Rising global temperatures exacerbate these

factors, worsening climate change. Abiotic stressors such as cold,

drought, heat, salinity, and flooding negatively impact plant growth
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and productivity, causing various physiological, morphological,

molecular, and biochemical changes (Figure 1) (Popp et al.,

2013). These stressors also affect soil conditions by altering soil

composition, pH, and its physicochemical and biological properties.

Biotic factors encompass beneficial organisms such as decomposers,

natural enemies, and pollinators, as well as pests including weeds,

diseases, arthropods, vertebrates, and human-induced influences

(Burlakoti et al., 2024).
2.1 Abiotic stress

Abiotic factors such as temperature, drought, cold and salinity,

negatively impact various stages of plant development. These stresses

are complex, affecting various aspects of plant function at molecular,

physiological, and cellular levels, including grain filling, maturation,

and flowering (Atkinson and Urwin, 2012). Plant breeders and

researchers have consistently focused on enhancing maize’s resilience

to significant abiotic stressors, such as flooding, salt, drought, and

severe temperatures, as doing so is essential for preserving yield stability

(Halford et al., 2015). With the global population increasing and

environmental conditions changing rapidly, the development of crop

cultivars with stress tolerance is desperately needed. Understanding

how plants respond to multiple stresses at a molecular level is vital for

developing crops with broad-spectrum stress tolerance. Consequently,

it is crucial to comprehend the dynamics of abiotic stress tolerance and

to develop innovative strategies to counteract its negative effects on

agriculture. Recent advancements in bioinformatics, including

genome-wide association studies, gene mining, functional omics, and

research into transcription factors and microbial interactions, offer

promising methods for enhancing maize’s resilience to abiotic stress

(Takeda and Matsuoka, 2008).

Abiotic stresses, like waterlogging, cold, nitrogen deficiency,

salinity, and drought, significantly affect maize growth and yield.
FIGURE 1

Several disease and disorders of maize plant through biotic and biotic stress.
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For instance, salinity stress disrupts maize’s biochemical and

physiological processes, leading to cellular imbalances, ionic

disturbances, impaired nitrogen fixation and respiration, and the

inhibition of crucial metabolic enzymes involved in photosynthesis

(Iqbal et al., 2020). One serious stressor that can drastically lower

maize yields across the globe is drought. Its effects change according

to the stress’s length, intensity, and growth stage (Kim and Lee,

2023). Drought affects kernel weight from the silking stage through

to maturity. Maize plants have evolved a number of mechanisms to

deal with drought, and certain germplasms exhibit traits that

improve drought resilience. In severe drought conditions, maize

production can decrease by 20-30% due to rapid leaf wilting and

reduced photosynthesis during grain filling (Qiao et al., 2024).

Recent advancements in microbial techniques are being

investigated to enhance grain selection and development, aiming

to boost drought tolerance (Sade et al., 2018).

Plants have evolved several adaptation mechanisms to optimize

water usage and continue growing in harsh environments (Yuriko

et al., 2014). Extreme light conditions, whether excessively low or

high, can disrupt physiological processes and negatively impact

plant development. For instance, too much light can lead to photo-

oxidation, which generates reactive oxygen species that damage

biomolecules and enzymes, ultimately reducing plant productivity

(Li et al., 2010). Both freeze temperatures and extreme heat

contribute to crop losses (Koini et al., 2009; Pareek et al., 2010Soil

conditions such as alkalinity, acidity, and salinity (Bromham et al.,

2013; Bui, 2013), along with pollutants and human activities

(Emamverdian et al., 2015), adversely impact plant growth and

yield. Acidic soils affect nutrient availability, leading to deficiencies

and disrupting normal growth patterns (Rorison, 1986). Early

exposure to salinity can cause ion toxicity and osmotic imbalance,

with prolonged stress worsening these effects. Plants respond to

salinity by avoiding high-salinity areas, excreting excess ions

through their roots, or compartmentalizing ions to minimize

damage to critical cellular functions (Silva et al., 2010). In cold

conditions, plants may avoid freezing by preventing tissue

supercooling or developing resistance to freezing. Some species

achieve this through “cold acclimation,” adapting to cold

temperatures by enhancing their anti-freezing responses during

shorter daylight periods (Thomashow, 2010).
2.2 Maize physiological disorder due to
abiotic stress

Abiotic stresses affecting maize growth include water shortages

(drought), excessive moisture (waterlogging), extreme temperatures

(both high and low), salt stress, and nutrient deficiencies.

2.2.1 Drought stress
Maize, a crop highly sensitive to drought, is grown in a variety

of climates, from semi-arid to temperate zone, including drought-

prone areas in Africa, the Europe, Asia, and Americas (Xie et al.,

2017). Maize may reduce its life cycle to prevent stress in order to

escape drought, especially during critical reproductive periods.
Frontiers in Plant Science 04
Drought is recognized as a major environmental challenge,

drawing significant attention from environmentalists and

agricultural researchers (Burlakoti et al., 2024). It poses a critical

agricultural issue that affects plant growth and yields worldwide,

impacting nearly all major agricultural regions and having extensive

socio-economic consequences (Kumari et al., 2004; Xie et al., 2017).

During drought conditions, stress response genes and various

growth parameters are negatively affected. Reduced water

availability compromises membrane integrity, reduces cell size

and produces reactive oxygen species, which speeds up the aging

of leaves and the loss of agricultural productivity (Osmolovskaya

et al., 2018; Muhammad et al., 2023). Significant physiological and

molecular changes occur in plants when they lack water. These

changes include decreased photosynthesis, damaged photosynthetic

machinery, increased ethylene production, and changed

chlorophyll levels (Basu et al., 2016). Drought stress adversely

affects critical physiological processes in maize, such as

photosynthesis, water relations, and nutrient uptake. It induces

oxidative stress by increasing the production of reactive oxygen

species (ROS), which can damage cellular components and impair

growth (Cai et al., 2020). This response is essential for maintaining

water use efficiency during periods of water scarcity. Additionally,

drought stress leads to oxidative stress characterized by the

overproduction of ROS, which can damage cellular structures and

impair physiological functions (Agunbiade and Babalola, 2023).

Drought stress causes an accumulation of free radicals, disrupting

membrane functions and protein structures, leading to lipid

peroxidation and cell death. With climate change intensifying

these conditions, the frequency and severity of droughts are

expected to increase (Sharma et al., 2023). The precise molecular

mechanisms behind reproductive drought sensitivity are not yet

fully understood due to the intricate regulation of drought stress by

various genes. A more thorough understanding of the molecular

biology and connections in reproductive drought tolerance is

essential for developing next-generation maize cultivars that are

both climate-smart and drought-resistant. Despite considerable

research over recent decades to elucidate drought tolerance

mechanisms in maize, improving drought resilience through

traditional breeding methods has been challenging because

drought characteristics are complicated and multigenic. To

overcome this, advanced genome analysis, breeding strategies, and

molecular genetics tools, genes that improve drought tolerance in

maize can be found and exploited using tools like CRISPR-Cas

(Singh et al., 2023).

2.2.2 Temperature stress
High temperature stress is a critical factor contributing to

reduced maize productivity globally. Research indicates that

temperatures exceeding 35°C can negatively affect maize

development, particularly during critical growth stages such as

anthesis and grain filling. For example, temperatures above 40°C

during these stages can lead to severe yield losses (Waqas et al.,

2021). Heat stress disrupts several physiological processes,

including membrane integrity, photosynthesis, and respiration.

The over-accumulation of ROS under heat stress can cause
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oxidative damage, leading to cell toxicity and impaired plant

functions (Tiwari and Yadav, 2019). Maize plants exhibit a

considerable decrease in net photosynthesis when leaf

temperatures rise beyond 38°C; the fall is more pronounced when

temperatures rise abruptly as opposed to gradually (Magar et al.,

2019). This decrease in photosynthesis is not because of stomatal

closure, as transpiration rates increase with temperature. Instead,

temperatures above 32.5°C reduce Rubisco’s active state, leading to

its complete inactivation at 45°C. Additionally, higher leaf

temperatures cause a decrease in 3-phosphoglyceric acid levels.

Rubisco activation, which is associated with the expression of a new

activase polypeptide, adjusts to rising temperatures. Crafts-

Brandner and Salvucci suggest that Rubisco inactivation is the

main factor limiting net photosynthesis at temperatures above

30°C (Scafaro et al., 2023).

Chilling injury mainly affects maize leaves, causing premature

senescence. Low temperatures (around 10°C) coupled with intense

light significantly impair the irreversible suppression of

photosynthesis caused by CO2 assimilation (Foyer et al., 2012;

Riva-Roveda et al., 2016). A study by Janda et al. (1999) found that

treating young maize seedlings in a hydroponic setup with salicylic

acid provided defence against the stress of low temperatures. By

decreasing catalase activity, this treatment improved the seedlings’

resilience to freezing by increasing the activity of antioxidant

enzymes including glutathione reductase and peroxidases

(Alam et al., 2022).

Global warming is anticipated to cause more frequent extreme

temperature events, resulting in both hotter and colder days. Such

temperature extremes can severely impact maize germination,

seedling growth, and overall productivity (Zaidi et al., 2023). In

northern China, the risk of high-temperature stress is increasing,

while in the US, maize yields can drop significantly when

temperatures exceed 29-30°C. To address these challenges,

developing new crop management strategies or pursuing selective

breeding may be necessary (Bhusal et al., 2021).

2.2.3 Combined temperature and drought stress
Hussain et al. (2019) found substantial decreases in a number of

plant development metrics, including as fresh and dry shoot weight,

leaf area, kernels per ear, 100-kernel weight, and grain yield per

plant, in their investigation of the effects of heat and drought stress

on maize hybrids. These reductions were more pronounced under

the combined effects of heat and drought stress, with drought stress

having a more severe impact than heat stress alone. Heat stress

notably affected chlorophyll concentration, while drought stress

significantly reduced relative water content, a parameter unaffected

by heat stress alone. Additionally, drought stress, especially when

combined with heat stress, led to elevated intercellular carbon

dioxide concentrations. Bhusal et al. (2021) noted that

transpiration rates varied with stress conditions: dropping further

under combined heat and drought stress, decreasing under drought

stress, and increasing under heat stress.

Under stress conditions, the total antioxidant capacity (T-AOC)

significantly increased compared to normal growth conditions. heat
Frontiers in Plant Science 05
shock proteins, free proteins and Soluble sugars, increased in

response to drought and combined heat and drought stress, while

soluble protein concentrations reduced. Heat stress alone did not

impact nitrogen levels in the roots, leaves, or stems, but drought

stress significantly reduced nitrogen concentrations in the leaves.

Neither heat nor drought stress alone caused substantial reductions

in phosphorus and potassium levels compared to normal

conditions. However, when heat and drought stresses were

combined, there was a notable decrease in nitrogen levels in the

roots, as well as reductions in phosphorus and potassium levels

across the leaves, roots and stems (Hussain et al., 2019).

2.2.4 Salinity stress
Salinity stress is a significant abiotic factor that adversely affects

maize (Zea mays) growth and productivity, leading to various

physiological disorders. High salt concentrations in the soil create

osmotic stress, which limits water uptake and results in ion-specific

toxicity, particularly from sodium ions. This combination of stressors

can severely hinder maize’s physiological processes, including

photosynthesis, respiration, and nutrient uptake, ultimately reducing

plant growth and yield (Wang et al., 2020). Research indicates that

maize is particularly sensitive to salinity, with marked reductions in

growth observed in saline soils (Ngara et al., 2012). Maize can tolerate

salt stress up to 3 dS m−1; however, above this level, the plants

experience significant osmotic stress-related physiological changes,

nutrient imbalances, and ion toxicity. These changes include stunted

growth, shorter internodes, and reductions in leaf potassium,

magnesium, and phosphorus, with maize shoots being more

sensitive to salt stress than roots. Various factors, such as crop

growth stages, genetic traits, and soil conditions, all contribute to

reduced production under salt stress (Islam et al., 2024). Vennam et al.

(2024) report that maize plants modify their metabolic processes,

biochemical, and physiological, in response to salt stress through a

variety of pathways. Osmotic stress results from salt reducing the soil

water potential, which hinders the plants’ ability to take in water and

nutrients. The presence of cations like sodium (Na+), potassium (K+),

and calcium (Ca2+), as well as anions like chloride (Cl−) and nitrate

(NO3−), leads to soil salinity, which is frequently brought on by

insufficient rainfall or soil deterioration (Zorb et al., 2009). The

physicochemical and biological balance of the soil, as well as crop

yield, seed germination, and nutrient and water uptake, are all

impacted by salinity stress (Farooq et al., 2015). Additionally, it has

a detrimental effect on the nodulation process, which lowers crop

yields by reducing nitrogen fixation. Because the nitrogenase enzyme

involved in this process is less active in salinized environments,

nitrogen fixation—which is crucial for plant growth is especially

vulnerable to salt stress. Moreover, excessive salt within plant cells

becomes poisonous and inhibits growth, and high soil salinity reduces

the amount of water absorbed by roots. Salinity’s osmotic and ion-

toxic effects not only hinder plant growth but also interfere with soil

microorganisms’ ability to function. Extreme osmotic conditions in

the soil prevent both plants and microorganisms from efficiently

absorbing water, and fungi are more susceptible to high salt

concentrations than bacteria (Ying et al., 2020).
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2.2.5 Mechanical wounding
Mechanical injury, whether resulting from herbivore attacks

or abiotic factors like wind, rain, and hail, serves as the primary

entry point for pathogen infection. In addition to the injured

tissues, this damage also causes metabolic reactions in the plant’s

unaffected sections. In response to a localized injury, signal

transduction pathways are triggered throughout the plant,

inducing defence systems and promoting healing. Researchers

have explored maize’s response to wounding at the injury sites

and the related signal transduction pathways that extend to other

regions of the plant using phosphoproteomic and molecular

techniques (Schilmiller and Howe, 2005). A recent comparative

transcriptome analysis revealed that mechanical wounding leads

to the differential expression of 407 genes in maize, with 134 being

upregulated and 273 downregulated. The upregulated genes are

involved in protein synthesis, phytohormone signaling, and

responses to various stresses, while downregulated genes are

associated with primary metabolism and developmental

processes (Kumari et al., 2023).

2.2.6 Waterlogging
Waterlogging is a significant abiotic stress that adversely affects

maize, leading to various physiological disorders and reduced yield.

When maize is subjected to waterlogging, it experiences a decline in

leaf greenness due to chlorosis, which is linked to a decrease in

chlorophyll content (Tian et al., 2019). This stress also negatively

impacts plant height, leaf number and root development, ultimately

resulting in reduced biomass accumulation (Huang et al., 2022).

Furthermore, waterlogging at critical growth stages, such as

flowering, can severely impair ear development and grain yield

(Kaur et al., 2021). According to Zaidi et al. (2010), there is

insufficient oxygen reaching the roots due to the quick

consumption and delayed diffusion of oxygen. Oxygen is a vital

component for plant existence. In China and other countries where

waxy maize is a major crop, waterlogging often occurs during the

jointing stage, causing substantial yield losses. Understanding the

physiological mechanisms of waterlogging stress during this stage is

vital for formulating strategies to lessen its impact. The threshold

for waterlogging stress in waxy maize typically occurs between 4 to

6 days during the jointing stage. Waterlogging during this period

significantly reduces yield, primarily by decreasing kernel numbers

by 6.7-15.5%, which leads to a 9.9-20.2% reduction in final yield.

Additionally, waterlogging poses a serious risk to the development

of waxy maize production as it hinders the synthesis of

photosynthetic sources and the movement of photo assimilates,

especially during the summer (Zhang et al., 2023).
2.2.7 Ultraviolet
Excessive UV-B radiation can drastically affect crop yields.

Under normal sunlight conditions, plants mitigate UV-B damage

to macromolecules through repair or replacement mechanisms.

However, unpredictable surges in UV-B exposure, often due to

periodic ozone layer depletion, can overwhelm these natural

defenses (Casati et al., 2011b). As the protective function of the

ozone layer weakens, plants especially sessile species like maize—
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must significantly enhance their resistance to intense UV-B

radiation. This challenge is particularly severe for high-altitude

maize landraces, which must adapt to these increased UV-B levels

in addition to their usual acclimatization to standard UV-B fluences

(Casati et al., 2011a).

2.2.8 Nutrient inadequacy
To complete their life cycle, Plants need a minimum of 14 vital

mineral nutrients. Unfortunately, natural soils often lack these

critical elements in quantities sufficient to support optimal plant

growth (Liang et al., 2023). Nitrogen, a crucial macronutrient, is

particularly important because it is fundamental to the synthesis of

proteins, chlorophyll, and nucleic acids are example of secondary

and primary organic components found in plants (Xu et al., 2012).

A shortage of nitrogen can seriously impede the growth of maize,

resulting in greatly decreased yields (Liang et al., 2013).

2.2.9 Metals stress
Heavy metal pollution in soil, caused by ongoing industrial

processes, intensive agriculture, and other human actions, poses

significant environmental challenges. These metals, with densities

exceeding 4 g/cm³, are toxic even at low concentrations and are

non-degradable (Rahman et al., 2023). Heavy metal toxicity can

lead to various physiological disorders in maize, including reduced

growth, impaired photosynthesis, and nutrient imbalances. For

instance, copper (Cu) toxicity has been shown to cause severe

symptoms in maize, such as stunted growth, leaf chlorosis, and

root length inhibition (Franco et al., 2023). Addressing this

pollution is essential for safeguarding ecosystems, as traditional

remediation methods are often expensive and harmful to soil

health. According to Shen et al. (2013), a workable and affordable

substitute for heavy metal removal from soil is phytoremediation,

which involves using plants and the microorganisms they are

linked with to remove the metals. The inclusion of bacteria in

phytoremediation processes can further enhance its effectiveness.

Microbes, being highly sensitive to heavy metal stress, are valuable

indicators of contamination. The increasing interest in leveraging

microbial diversity for heavy metal remediation underscores its

low cost, environmental safety, and adaptability, making it a

promising solution (Wang and Chen, 2013).
3 To maintain the productivity of
maize through different approaches
for breeding

The International Institute of Tropical Agriculture (IITA)

focuses its maize breeding program on two main objectives:

improving populations to create open-pollinated varieties (OPVs)

and developing inbred lines to produce superior hybrids. To achieve

these goals, various strategies are employed, each tailored to specific

aims. Population improvement can involve enhancing genetic traits

within a single population through methods like mass or family

selection, or improving traits across populations using recurrent

selection techniques. A critical initial step in any breeding program
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is selecting the appropriate germplasm for both the pool and the

population. Breeders of maize can access a variety of genetic

variation sources, and new developments in genomics are driving

the creation of breeding methods and decision support systems that

optimize the effective utilization of these genetic resources

(Warburton et al., 2008).

Genomic strategies for enhancing maize start during the pre-

breeding phase by leveraging the extensive genetic diversity of

landraces and exotic germplasm. At this stage, markers are

mainly employed for Analysis of genetic diversity and

characterisation, which helps identify heterotic groups and

clusters to guide cross-breeding strategies for population

development. Genomic tools facilitate the detection of genetic

variations in landraces, which can then be incorporated into

adapted germplasm. Advances in next-generation genotyping,

along with improvements in data management and informatics,

have opened up new possibilities for modern breeding techniques

(Gorjanc et al., 2016). The rapid advancement of Advanced

sequencing technologies with high throughput have greatly

reduced sequencing costs, allowing for a comprehensive

evaluation of breeding lines and germplasm accessions. This

progress enhances genotype-based selection and prediction,

leading to improvements in maize productivity, nutritional

quality, and resilience, and enabling the development of diverse

breeding strategies. To complement these advancements, precise

phenotyping methods and high-throughput techniques are being

refined to maximize genetic gains and accelerate cultivar

improvement. Managing the extensive volumes of meta-data,

phenotypic and genotypic, generated requires advanced systems

for data capture, storage, and integration. Additionally, innovative

methods for handling and analyzing large-scale data are crucial for

interpreting molecular breeding results. Integrating traditional and

genomics-assisted breeding approaches demands advanced

information and communication technologies, as well as robust

statistical analysis (Wang et al., 2020).

Understanding the genetic structure of complex quantitative

traits and evaluating germplasm sets are crucial for effectively

modifying beneficial alleles and genes in genomics. In the Maize

Improvement Program (MIP), molecular markers are utilized

throughout various stages of the breeding cycle. These markers

aid in germplasm characterization, parentage validation, gene

mapping for important traits, line purity and genetic identity

verification, and population enhancement through recurrent

selection. This technology supports germplasm improvement,

enhances grain quality, develops resistance to abiotic and biotic

stresses, and ensures rigorous quality control and monitor of maize

varieties (Hu et al., 2018).
3.1 Improvement of germplasm

3.1.1 Analysis and grouping of diverse germplasm
To achieve significant progress in genetic improvement, it is

essential to have a deep understanding of germplasm diversity and

the relationships about elite genotypes. A key initial step in

breeding is classifying inserted lines into heterotic groups in
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order to maximize the production of synthetics and hybrids

with high yields. Breeders commonly use general combining

ability (GCA), specific combining ability (SCA), and other

methods to select the most suitable parent lines for crossing

(Gedil and Menkir, 2019). Since the advent of molecular

markers, identifying unique parental lines for crossing and

classifying genotypes into heterotic groups have relied on

analyzing genetic diversity. In the 1990s, genetic diversity was

typically assessed and genotypes categorized based on markers

such as SSR, AFLP, and RAPD. However, the use of these older

markers has declined with the development of techniques for

high-throughput genotyping like genotyping by sequencing

(GBS). The Maize Improvement Program (MIP) research team

employs a diverse array of germplasm, including various maturity

groups and traits from wild relatives like Zea diploperennis. To

develop hybrids with desirable characteristics, they classify inbred

lines into distinct, potentially complementary groups using a

range of techniques, including testcross performance,

phenological traits, and pedigree information (Gedil and

Menkir, 2019).

Mengesha et al. (2017) found that traits such as heat tolerance,

drought tolerance, and low soil nitrogen tolerance can be effectively

combined with Striga tolerance (Meseka et al., 2018). Mendel (2017)

used single nucleotide polymorphism (SNP) markers to analyze 128

lines for drought tolerance and Striga resistance, assessing their

genetic diversity. This analysis helped in selecting appropriate

inbred lines for hybrid formation by evaluating their genetic

variability. A more precise characterization of heterotic groups can

be achieved by integrating genotypic analysis and combining ability

with pedigree data (Badu-Apraku et al., 2016). According to Badu-

Apraku et al. (2018), markers are often used to differentiate heterotic

groups in medium-to-late maturity as well as two maturity groups:

early and extra-early. This approach complements traditional

methods of classifying inbred lines according to phenotypic

features, which are essential for developing synthetic varieties and

heterotic populations (Adebayo et al., 2015).

3.1.2 Identifying and using a diverse source of
germplasm for genetic improvement

Using foreign germplasm to enhance economic traits like yield is

becoming increasingly common. However, integrating exotic

germplasm into tropical varieties presents challenges, such as poor

adaptation to tropical conditions and heightened susceptibility to

unfamiliar diseases and pests. Despite these difficulties, there are

notable successes where foreign germplasm has improved hybrid

vigor. The MIP has adopted various strategies to boost genetic

diversity in maize, as shown in Figure 2. For instance, genetic

resources from landraces, advanced elite lines, and wild relatives

have been efficiently used in DNA-based genetic characterisation and

diversity evaluations (Menkir et al., 2006; Menkir and Ingelbrecht,

2007). Backcrossing with marker assistance is a more effective way to

introducing rare, novel traits from wild relatives compared to

traditional backcrossing, achieving results in a shorter timeframe.

By incorporating wild relatives and exotic germplasm, MIP has

successfully developed tropical varieties with nutrient-rich grains

(Menkir et al., 2015) and resistance to parasitic weeds.
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3.1.3 Maize ideotype for higher maize production
An “ideotype” is a particular combination of morphological,

physiological, or genetic characteristics intended to maximize crop

performance in a particular application, management system, and

environment (Martre et al., 2015). For advancing maize and

ensuring sustainable grain production, developing an ideotype

that enhances stress tolerance, adapts to high-density planting,

and improves water and nutrient (NPK) uptake efficiency is

essential (Table 1). Recent research indicates that an ideal maize

ideotype would include elite shoot characteristics such as efficient

kernel dehydration, rapid kernel filling, and a small leaf angle,

alongside root traits like a “steep, efficient, and deep” root system.
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Under drought conditions, this ideotype would feature a reduced

live larger cortical cell, fewer cortical cell files, and cortical area.

larger cortical cells. To achieve this, Transgenic maize will be

modified by adding stress-related genes to increase tolerance to

biotic and abiotic challenges and boost yields. This ideotype aims

to improve water and nutrient absorption, particularly in dry or

nutrient-poor soils, allow for higher plant densities per unit area,

and facilitate mechanical harvesting. To increase production across

various agricultural settings, the breeding program has been

flexible, employing techniques such as single-cross hybrid

breeding, three-way cross, composite breeding, and double cross

(Gong et al., 2015).
TABLE 1 NPK solubilization genes from microbial strains on maize.

Microbes (PGP) PGP
Traits

Gene of
particular
traits

Function References

Nitrogen fixing microbes- Bacillus aerius, Bacillus licheniformis, Bacillus subtilis, Bacillus
mucilaginous, Bacillus amyloliquefaciens, etc.

N Nif (L, R, A,
H, D, K, E, N,
B, Q, U, S, V,
M, F, J,
and Z)

nif genes increase
the production of
root nodules, plant
cell expansions

Barman
et al., 2017.

Posphorus solubilisation- Aspergillus niger, Achromobacter xylosoxidans, Acinetobacter
calcoaceticus, Aeromonas hydrophila, Arthroderma cuniculi, Acinetobacter baumannii, Bacillus
(aerius, amyloliquefaciens, licheniformis, mucilaginous, subtilis, megaterium, altitudinis,
thuringenesis), Burkholderia cepacia, Sphingomonas paucimobilis, Serratia nematodiphila, Serratia
marcescens, Pseudomonas (stutzeri, simiae, entomophila, luteola), Paenibacillus taichungensis,
Enterococcus casseliflavus, Enterococcus gallinarum, and Lecanicillium psalliotae,
Fusarium proliferatum

P Pqq (F, A, C,
E, B, and D)

Pqq genes play a
critical role in
enhancing maize and
other plants’ ability
to absorb phosphorus
into their shoots
and grains.

Puente
et al., 2004.

Potassium solubilisation- Aspergillus niger and Bacillus sp. K Trk H
and yvlC

Plant stress tolerance
and salt tolerance
are developed by the
action of Trk genes.

Subhashini,
2015.
FIGURE 2

Several genomics application for improving maize variety.
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4 Microorganisms based
comprehensive approaches

4.1 Transgenic

Tissue culture, gene transfer methods, and transgenic

recombinant DNA technology are essential for developing

transgenic plants. A crucial part of this process involves

integrating novel features into the DNA of the host plant.

Common gene transfer methods include: (i) the Agrobacterium-

mediated method, which is an indirect gene transfer technique,

(ii) the particle bombardment method, which is a direct gene

transfer approach, and (iii) protoplast transfer technology (Ishida

et al., 1996; Adams et al., 1999). While Agrobacterium-mediated

transformation and particle bombardment were invented at about

the same time, Agrobacterium-mediated transformation is still the

most popular and simple technique. However, it has limitations,

particularly with crops that are resistant to Agrobacterium. To

address these challenges, particle bombardment and protoplast

transfer technologies are employed, each with its own set of

difficulties. Particle bombardment requires specialized equipment,

while protoplast transfer demands skilled handling (Hansen and

Wright, 1999). Choosing the appropriate promoter and selective

marker is essential for successful gene integration. In the creation of

transgenic plants, the Cauliflower mosaic virus 35S RNA

constitutive promoter is frequently employed (Turrini et al.,

2015). Additionally, some selection markers function as toxins

that target specific organisms and are excreted by the plant’s

roots. Thus, it’s critical to assess how these genetic alterations

affect soil and rhizosphere bacteria (Turrini et al., 2004; Icoz and

Stotzky, 2008).

Maize, first domesticated in Mesoamerica around 12,000 years

ago, has become the most widely grown crop in the Americas. The

US is the global leader in maize production, with South Africa,

China, and Brazil, also making substantial contributions. Merely 2.5

percent of maize grown in the United States is eaten by people; the

rest is fed to animals. In 2007 about 29% of U.S. maize production

was dedicated to biofuels, a percentage expected to increase (Gould

et al., 1991). Key pests impacting maize in the U.S. and Canada

include the western corn rootworm (WCR; Diabrotica virgifera)

and the European corn borer (ECB; Ostrinia nubilalis). The WCR

alone causes approximately $1 billion in damage annually in the

U.S., with $800 million attributed to yield losses and $200 million to

pest management. ECB larvae damage maize stalks, while WCR

larvae target the roots, complicating traditional pest control

methods. The number of hectares planted with genetically

modified maize had increased to over 35 million by 2008,

following the introduction of Bt maize in 1996 to combat ECB

(James, 2003).

In 2003, Bt maize engineered to resist the western corn

rootworm (WCR) was introduced, targeting larvae that are highly

susceptible to these genetically modified plants. The total yearly

expenses of yield losses in the United States and pest control

associated with corn rootworms are estimated at $1 billion

(Metcalf, 1986). Prior to the commercial release of this transgenic
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maize, it was projected that farmers could save between $14 and $69

million annually. The new hybrid maize varieties, offering resistance

to multiple insects, are expected to provide even greater financial

benefits. Additionally, Bt maize has indirectly reduced the infections

by pathogen (Munkvold and Desjardins, 1997). Insects feeding on

plants can create wounds that increase the risk of infection by

mycotoxin-producing fungi or other microbes. These fungal

infections not only diminish crop yields but also cause health

risks to animals and humans, and reduce the crop’s market value.

The estimated annual savings from reduced fungal damage due to

Bt maize are approximately $17 million (Wu et al., 2004).

There are now 21 commercially accessible varieties of maize

that incorporate the cry gene. Some of these varieties are

engineered with multiple traits, combining two or more cry

genes with herbicide tolerance genes. Bt maize lines featuring

Cry3Bb1 or Cry34/Cry35A genes provide protection against the

western corn rootworm (WCR) and similar pests, demonstrating

significant resistance to both lepidopteran and coleopteran pests.

A prominent example is SmartStaxTM, a hybrid maize with eight

transgenes, including Cry2Ab, Cry1A.105, Cry1F, Cry3Bb1,

Cry34, and Cry35Ab1, along with two herbicide tolerance genes.

Approved by the U.S. Environmental Protection Agency (EPA)

and the Canadian Food Inspection Agency, SmartStaxTM was

first commercially planted in 2010. Initially, Bt maize was

primarily developed to target lepidopteran pests like the

European corn borer (ECB), leading to focused research on its

effectiveness against this insect. While Bt maize has proven

effective in controlling ECB, factors such as location, climate,

planting time, and pesticide use can influence infestation levels.

Farmers benefit from Bt maize by experiencing reduced labor

requirements and decreased use of toxic pesticides A recent study

found that agricultural income from Bt maize increased by over $8

billion during its first 13 years of commercialization (1996-2008)

(Brookes and Barfoot, 2010). Farmers with little resources have

embraced Bt white maize extensively in South Africa, where it is

an essential food supply. Considering its introduction in 2001, Bt

maize has grown to represent two-thirds of the 1.5 million

hectares of white corn cultivated in South Africa as of 2009

(James, 2003; Brookes and Barfoot, 2010).
4.2 Abiotic stress

4.2.1 Managing drought tress in maize
In environments with limited water, microorganisms resistant

to drought can promote the growth and development of maize.

These microorganisms that live in the soil help plants adapt to

drought by affecting trait selection and reducing the negative

impacts of abiotic stress.

These beneficial microorganisms alleviate plant stress by a

variety of direct and indirect methods. They influence root

morphology, enzyme activity (such as ACC deaminase),

osmolyte accumulation, exopolysaccharide (EPS) production,

and antioxidant defenses. They also impact phytohormonal

activity by producing volatile compounds, abscisic acid (ABA),

indole-3-acetic acid (IAA), and cytokinins. The concept of
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“induced systemic tolerance” (IST) describes how microbes

induce chemical and physical changes in plants, enhancing their

resistance to abiotic stresses (Yang et al., 2009). These microbes

can develop protective thick walls, enter a dormant state,

accumulate osmolytes, and synthesize exopolysaccharides, as

illustrated in Figure 3. In a number of ways, they lessen the

negative impacts of drought on plants and soil (Farooq et al.,

2009). By maintaining favorable environmental conditions and

supplying essential nutrients, these microorganisms support

ongoing plant growth even with limited water availability.

Additionally, under stress conditions, Hormones that promote

plant growth and cell division can be produced by PGPR. A potent

auxin called IAA controls root differentiation, shoot growth, and

cell division in response to drought stress (Farooq et al., 2009).

ABA, another crucial growth regulator, increases in concentration

in plants treated with PGPR, aiding in drought stress management

by adjusting root water uptake and

modulating expression of gene associated with drought resistance

(Jiang et al., 2013). Azospirillum lipoferum enhances drought

tolerance in corn through ABA production and gibberellins

(Cohen et al., 2009). Similarly, Azospirillum brasilense helps

Arabidopsis thaliana cope with drought by raising ABA

levels (Cohen et al., 2015). During drought conditions, the

enzyme ACC deaminase from these bacteria converts 1-

aminocyclopropane-1-carboxylate (ACC), a precursor of

ethylene, into ammonia and alpha-ketobutyrate, thereby

reducing ethylene levels (Bal et al., 2013). ABA, a stress

hormone produced in response to cellular dehydration, plays a

key role in regulating water loss by controlling stomatal closure

and stress signaling pathways (Gupta and Kaushal, 2015;

Yamaguchi-Shinozaki and Shinozaki, 1994).

PGPR increase drought tolerance by increasing biomass,

improving water potential, and reducing water loss. They also

decrease antioxidant activity while boosting levels of free amino
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acids, sugar production, and proline in plants (Vardharajula et al.,

2011). For instance, in soybeans, drought-induced chlorophyll loss

impairs photosynthesis. This issue is lessened by inoculating with

Pseudomonas putida H-2-3, which raises biomass, shoot length,

and chlorophyll content (Castaldini et al., 2005). In maize,

inoculation with Azospirillum brasilense improves both relative

and absolute water content during drought compared to non-

inoculated plants. This treatment also enhances proline

accumulation in leaves, foliar area, biomass, and root growth,

with more pronounced effects observed under a 75% water

reduction compared to a 50% reduction (Casanovas et al., 2002).

Combining endophytic and rhizospheric PGPR can enhance a

plant’s resilience to stress. These microorganisms produce

exopolysaccharides that boost drought resistance. For instance,

inoculating maize with Proteus penneri (Pp1), and Alcaligenes

faecalis (AF3), Pseudomonas aeruginosa (Pa2), has been

demonstrated to increase the plant’s relative water content, as

well as its protein and sugar levels (Naseem and Bano, 2014). To

manage drought, bacteria employ a variety of biochemical,

molecular strategies, and physiological, including the production

of exopolysaccharides, compatible solutes, and spores.

Exopolysaccharides help retain water during drought stress

(Sandhya et al., 2009). Compatible solutes such as proline,

betaine, glycine, and betaine accumulate in response to drought,

aiding bacteria in maintaining membrane integrity, enzyme

function, and protein stability. The impacts of drought can be

lessened by combining mycorrhizal inoculation with certain

bacteria, which can further improve plant growth, nitrogen

intake, and water content. For instance, by raising proline levels

in both shoots and roots, the combination of Bacillus thuringiensis

and Pseudomonas putida reduces electrolyte leakage and stromal

conductivity (Ortiz et al., 2015). Overall, microbial communities

that boost drought tolerance play an important role in helping plant

continue to grow and survive in water-scarce environments.
FIGURE 3

Heat and drought are first sensed via membrane-localized stress.
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4.2.2 Manage salinity stress in maize
Due to the fact that the accumulation of Na and Cl ions can

upset the balance of nutrients, negatively affecting plant

development and microbial activity, determining the salinity of

the soil is a difficult task for both farmers and agricultural scientists.

It has been demonstrated that inoculating plants with endophytic

and PGP bacteria may decrease the detrimental effects of soil

salinity (Kasim et al., 2016). These microorganisms aid growth of

plant under saline conditions through several indirect and direct

mechanisms. Furthermore, PGP bacteria’s biofilm has the ability to

reduce the effects of salt stress. For example, compared to untreated

controls, treating lettuce seedlings with Azospirillum enhanced both

germination and vegetative growth in saline settings (Barassi et al.,

2006). Similarly, applying Pseudomonas stutzeri to both salt-

resistant and salt-sensitive chili peppers has been shown to lessen

the harmful effects of salinity in the soil (Bacilio et al., 2016). While

some microbial species can prevent biofilm formation on barley

grains under saline stress, others do not have this ability (Kasim

et al., 2016). Combining AM fungi with salt-tolerant bacteria can

significantly enhance plants’ tolerance to salinity. For example, co-

inoculating maize with R. intraradices and Massilia sp. RK4

improved root colonization and nutrient uptake under salt stress,

highlighting the significant benefits of integrating fungal and

microbial interactions to boost maize’s salinity tolerance

(Krishnamoorthy et al., 2016).

4.2.3 Manage maize temperature stress
To tackle the challenges in crop production due to climate

change, innovative strategies such as using bacteria to manage heat

and cold stress are essential. Temperature profoundly influences the

microbe’s metabolism and physiology, with their enzymatic

functions playing a crucial role in adapting to extreme conditions.

These microorganisms employ sophisticated mechanisms to protect

their membranes, nucleic acid and proteins. For example, they

increase the production of heat-cold resistant enzymes and proteins

in response to extreme temperatures. Molecular chaperones are

particularly effective in safeguarding microorganisms from

heat stress.

Microbes are classified based on their temperature preferences:

psychrophilic bacteria, which thrive at or below 15°C, and

psychrotrophic bacteria, which perform best at or above 15°C (Li

et al., 2009). As a reaction to heat stress, microbes upregulate genes

crucial for their survival. For instance, in Alicyclobacillus

acidoterrestris, The DnaK gene is induced to express under heat

stress, which produces heat shock proteins (HSPs) to shield the

microorganism from thermal damage. This bacterium thrives in

temperatures range from 23°C to 70°C, with optimal growth

occurring between 45°C and 50°C. The production of HSPs is a

key adaptation that helps it endure extreme temperatures.

Heat shock proteins are essential for surviving extreme heat

stress. They help microbes endure heat stress by supporting

proper nutrition, water intake, and enhancing photosynthesis.

Trehalose, a sugar synthesized in response to thermal stress,

provides protection against heat, cold, and oxidative damage.
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During heat stress, the levels of trehalose in bacteria and fungi

increase significantly. Trehalose stabilizes proteins by preventing

heat-induced denaturation and aggregation, thereby preserving

their functional integrity. Additionally, trehalose is effective

against freezing and dehydration, making it a valuable

protective agent during drought conditions. Based on the

particular plant and microbe, different metabolites are produced

at different rates (Li et al., 2010).
4.2.4 Heavy metal remediation in maize with the
help of microbes

Microbes linked with plants, including rhizobacteria,

mycor rh i z a e , fi rmicu t e s , and heavy me ta l - t o l e r an t

microorganisms, can significantly improve plant development and

growth when exposed to metal stress. These microbes employ a

range of strategies to manage metal stress, such as metal efflux,

creating barriers to metal uptake, volatilization, sequestration

through exopolysaccharides, enzymatic detoxification, and metal

complexation. They also support plant health by lowering ethylene

levels, produce growth regulators like ACC deaminase, IAA and

controlling diseases (Glick, 2010). Additionally, they contribute to

plant health through phosphate solubilization, siderophore

production, nutrient mobilization and nitrogen fixation (Ahmad

et al., 2011; Verma and Kuila, 2019).

Microbial biomass, both dead and living, can be used to remove

heavy metals, with the characteristics and functional groups of

bacterial and fungal cell walls being critical to this process

(Vijayaraghavan and Yun, 2008), Table 2. Microbial

bioaccumulation is an effective technique for extracting heavy

metals from contaminated soils. certain microbial communities

such as Actinobacteria, Firmicutes, Proteobacteria, have shown

particular efficacy in removing higher concentrations of lead (Pb),

arsenic (As) and manganese (Mn), from metal-polluted soils (Zhang

et al., 2015). For instance, while elevated copper (Cu) levels adversely

affected the growth of Vicia faba, the presence of rhizobia and PGPR

mitigated these effects (Gould et al., 2018). Additionally, AM fungi

can alleviate cadmium (Cd) stress by decreasing levels of

malondialdehyde and hydrogen peroxide (Hashem et al., 2016).

Klebsiella sp. and Enterobacter sp. is highly effective in

tolerating metals and enhancing plant growth using producing

growth-promoting chemicals while also removing cadmium, lead,

and zinc from contaminated soils (Jing et al., 2014). Similarly,

cadmium-resistant PGPB, likes and Klebsiella sp. BAM1, and

Micrococcus sp. MU1 increase cadmium mobilization, root

elongation, and overall plant growth in polluted environments

(Prapagdee et al., 2013). From Pteris vittata Arsenic-resistant

bacteria was isolated that solubilize phosphate further improve

plant growth and nutrient uptake. Additionally, Bradyrhizobium

japonicum E109 and Azospirillum brasilense Az39 rapidly colonize

arsenic-contaminated soils, accumulate arsenic in them promote

plant growth. And biomass. These examples highlight how PGPR

can help plants thrive under heavy metal stress although lowering

the concentration of heavy metals in plant tissues (Li et al., 2007;

Armendariz et al., 2015).
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4.3 Biotic stress

Maize output is greatly impacted by biotic stress, which is mostly

caused by diseases and insect pests (Lodha et al., 2013). Aflatoxin

contamination, sugarcane mosaic disease, ear rot, maize, northern

leaf blight and rough dwarf disease are among the common illnesses

that affect maize. Corn borers from Europe, the Mediterranean, and

the tropics, along with maize weevil, which ruins stored grain, are the

main pests that affect maize. In the US, maize anthracnose, the fungus

Colletotrichum graminicola is the cause of these losses, which can

reach $1 billion per year (Frey et al., 2011; Balmer et al., 2013).

Furthermore, stalk-boring larvae of lepidopterans do enormous

economic harm worldwide. Particularly troublesome is the

European corn borer (ECB), which cause plant lodging during

harvest by eating on kernels and digging into stalks. According to

Tigar et al. (1994), maintenance Due to the extensive prevalence of

the maize weevil, farmers in tropical and subtropical regions

frequently experience grain damage of over 30% while storing their

crops (Sitophilus zeamais Motsch).

4.3.1 Northern leaf blight
Nearly every maize-growing location in the world is affected by

northern leaf blight, a leaf disease caused by Exserohilum turcicum,
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a fungus. This disease is especially common in cooler climes with

temperatures within 20° and 25°C, high relative humidity (90–

100%), and low light levels (Wu et al., 2014). Yield losses have

surpassed 50% in northern China, where E. turcicum infections are

common (Ji et al., 2010). It has been proven that the fungicide

systemic propiconazole successfully lessens the disease’s severity.

Using tolerant cultivars like BH-540 and resistant hybrids like BH-

660 can also aid in managing the illness. By lowering the amount of

inoculum accessible for the following growing season, techniques

including managing contaminated crop residues during the winter

and in addition, switching out maize for non-host crops can help

lower the disease load (Singh et al., 2014).
4.3.2 Southern corn leaf blight
Southern corn leaf blight (SCLB), a serious foliar disease that

affects maize, is brought on by the fungus Cochliobolus heterostrophus

(Drechsler) Drechsler [synonym: Helminthosporium maydis

Nisikado; anamorph: Bipolaris maydis (Nisikado) Shoemaker]. This

is a common illness in hot, humid regions of the globe where maize is

planted. There are three known races of the pathogen: The most

prevalent race, regardless of the resistance genes or cytoplasm type,

Race O infects all types of maize (Ullstrup, 1972). Race T, which is

particularly virulent on Texas male-sterile cytoplasm (cms-T)
TABLE 2 Microbial strains (Abiotic stress and PGP) for stress amelioration.

S. No. Microbial strains Crops Response References

1. Drought stress

Alcaligenes faecalis AF3 Zea
mays

Enhanced RW and protein Naseem and
Bano, 2014.

Azospirillum brasilense SP-7 and Herbaspirillum seropedicae
Z-152

Zea
mays

Enhanced biomass, Nitrogen Cohen
et al., 2015.

Pseudomonas putida H2-3 Zea
mays

increased production of several hormones, such as EPS,
which provide drought resistance.

Chieb and
Gachomo, 2023.

Actinobacteria Zea
mays

Illustrates drought induced alterations Iqbal
et al., 2023.

Piriformospora indica Zea
mays

Increased root growth, canopy development, SPAD values. Yun and
Xu, 2018.

2. Salinity stress

Pseudomonas fluorescens Zea
mays

Enhanced biomass, uptake of Na+ and K+ions Nadeem
et al., 2009.

Bacillus subtilis (PM31) Zea
mays

promote growth, and alleviate salinity stress Ali et al., 2023.

Pseudarthrobacter psychrotolerans MHR1, Pseudomonas simiae
MHR6, and Acinetobacter calcoaceticus MHR7

Zea
mays

Growth of maize seedlings under simulated salt stress. Liu et al., 2022.

3. Heavy metalstress

Pseudomonas fluorescens 002 Zea
mays

Alleviate Al stress Qian
et al., 2012.

Agrococcus terreus Zea
mays

Potential for increasing growth in maize plants cultivated
in soil contaminated with zinc and nickel.

Shahzad and
Anam, 2023.

4. Temperature stress

Serratia nematodiphila, Paraburkholderia nodosa Burkholderia
sensu stricto

Zea
mays

Plant growth-promoting effects. Tang
et al., 2020.
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cultivars, caused severe outbreaks in 1970 and 1971 (Ullstrup, 1972).

China’s Races C is particularly harmful to cultivars of Charrua male-

sterile cytoplasm (Wei et al., 1988). When compared to untreated

plants, maize seedlings treated with Azospirillum brasilense show

superior relative and absolute water content during drought

circumstances. Water potential, proline, biomass, leaf area, and

root growth accumulation in both leaves and roots are all

enhanced by this treatment. In terms of protection, Bacillus cereus

C1L was equivalent toManeb (2 kg a.i/ha), a fungicide that is advised.

Additionally, according to Fang et al. (2013), Pseudomonas

aurantiaca shown strong antagonistic activity against Bipolaris

maydis. Even when there were insufficient dithiocarbamate residues

on the leaf surfaces to provide sufficient protection, Bacillus cereus

CIL was successful in keeping southern leaf blight off of maize (Lai

et al., 2016).

More than 20 distinct mold species have been linked to stalk

and ear rot in maize, such as, Trichothecium spp. F. verticillioides,

Cladosporium spp., Fusarium graminearum, Penicillium spp., and

F. proliferatum. According to van Egmond et al. (2007), these

diseases are particularly common in places with high humidity

and little rainfall, such the southern United States and certain

lowland tropical regions. Mycotoxin-contaminated and moldy

grains cause large yield losses and endanger the health of humans

and livestock alike. Global proteomics was used by Mohammadi

et al. (2011) to look at F. graminearum early infections in the

sensitive line CO441 and The B73 line of inbred maize is tolerant.

Defence-related proteins, such as proteinase inhibitors, xylanase

inhibitors, chitinases, a class III peroxidase, pathogenesis-related-

10, and proteinase inhibitors, were found in high concentrations in

infected creating kernels. The susceptible line’s kernels had higher

concentrations of these defence proteins, suggesting that these

proteins play a vital defensive function against F. graminearum.

Furthermore, root diseases brought on by Macrophomina

phaseolina Fusarium moniliforme, and F. graminearum, have

been demonstrated to be made easier by the creation of

antibiotics and siderophores by strains such as Pseudomonas

fluorescens spp. M23 + Bacillus sp. MRF and Bacillus sp. MR-11

(2) + Bacillus sp. MRF (Pal et al., 2001).

Researchers examined resistant and susceptible inbred lines of

maize in order to understand the gene and metabolite responses to

Fusarium infection (Campos-Bermudez et al., 2013). Following the

Fusarium inoculation, microarray examination of maize kernels

showed that the resistant line showed only slight alterations in

metabolite levels or gene expression. On the other hand, in response

to the infection, the susceptible lines displayed notable changes in

defence-related gene expression. These findings suggest that innate

defensive mechanisms that ward off fungal infection account for a

significant portion of maize resistance (Campos-Bermudez et al.,

2013). Subsequent examination of these maize genotypes showed

that prior to infection, the susceptible line had lower levels of gene

expression linked to defence, while the resistant line had higher levels.

According to this, susceptible lines must upregulate these

defences as a reaction to infection, whereas resistant maize lines

maintain elevated amounts of genes and proteins linked to defence

both before and during infection (Alessandra et al., 2010).

Furthermore, modern methods like stereo fluorescence
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microscopy and PEG-CaCl2 mediated transformation are

becoming more and more important for researching stalk and

disease associated with ear rot in maize (Mesterhazy et al., 2020).
4.3.3 Stalk rot of pythium
Throughout the lowlands of southern Nepal and northern

India, stalk rot poses a serious threat and seriously damages

crops. The development of the disease is strongly impacted by

host variables as well as environmental factors. At temperatures

between 30 and 35 degrees Celsius and relative humidity levels

between 80 and 100%, the pathogen grows and most effectively

causes disease. Furthermore, areas that are wet, low-lying, or poorly

drained accelerate the rate of disease. The danger infection is

increased by high plant densities (≥ 60,000 plants per hectare)

and plant age, especially in the pre-flowering period (Diwakar et al.,

1980). In order to effectively manage stalk rot, it is necessary to

maintain sufficient soil nitrogen levels and mitigate plant stress

through appropriate soil drainage. Resistance to pyrethium stalk rot

in the Qi319 maize inbred line has been related to two

independently inherited dominant genes (Kenganal et al., 2017).
4.3.4 Bacterial stalk rot
In India, bacterial stalk rot has grown to be a serious problem

for maize crops produced in the kharif season (Kumar, 2015). This

ailment is worsened by the kharif season, which falls during the

monsoon season every year. Though Prasad first identified E.

dissolvens as the origin of the sickness in 1930, the disease’s

symptoms are more akin to those of E. chrysanthemi pv. zeae. It

became well-known in 1969 amid a serious epidemic in the Mandi

area of Himachal Pradesh. The disease is spread by precipitation

and runoff, and reports of cases have been made in many parts of

the world (Prasad, 1930; Martinez-Cisneros et al., 2014). Based on

Prasad (1930) and Samson et al. (2005), there are three bacterial

pathogens that cause maize stalk rot: Pseudomonas syringae pv.

Lapsa, E. dissolvens, Pseudomonas syringae, E. chrysanthemi pv.

zeae, E. dissolvens, and Pseudomonas syringae pv. lapsa., which has a

broad host range and causes soft rot, poses significant management

challenges (Bradbury, 1986). Severe infections can cause maize

plants to collapse and emit a foul odor, resulting to yield losses of

between 21% to 98% (Thind and Payak, 1978). Although complete

resistance to these pathogens has not yet been achieved, researchers

are focusing on identifying quantitative trait loci linked with

resistance (Canama and Hautea, 2010). Control strategies include

applying chemical treatments, employing biological control

methods, and developing host plant resistance. For chemical

control, chlorinating irrigation water or soil drenching with

bleaching powder before flowering is recommended, and copper

oxychloride formulations have also been effective. In biological

control, Pseudomonas fluorescens has shown potential against

Erwinia chrysanthemi in laboratory conditions, though its

effectiveness in field settings is still limited (Singh et al., 2020).
4.3.5 Head smut
An uncommon maize disease seen in Nepal is head smut, which

is brought on by Sporisorium reiliana (Kuhn) Langdon Full
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(previously known as Sphacelotheca reiliana (Kuhn) Clinton or

Ustilago reiliana Kuhn). In 1966, the illness was initially reported in

Ilam (Khadka and Shah, 1967). It’s common in Nepal’s hilly areas

and is typified by a characteristic black sori, which is frequently

accompanied by phyllody or other irregularities in the ears and

tassels (Gurung et al., 1985). Usually, smut balls or leafy growths

replace the tassels or ears completely or in part. During emergence

or the seedling stage, soil-borne spores infect maize plants, which

subsequently spread systemically through the meristem of the plant

(Xu et al., 1999). Farmers have reported difficulties with smut in

their fields, prompting the implementation of a several different

management techniques, including crop rotation, seed treatments,

foliar fungicide applications, fertility adjustments, sanitation and

biological controls. However, host resistance continues to be the

most successful strategy for managing common smut, particularly

in areas where U. maydis is widespread. Symptoms are first

noticeable on the tassels, but even plants with seemingly normal

tassels can be infected, with smutted ears only becoming visible

at harvest.

4.3.6 Common rust
The rust disease that Puccinia sorghi causes in maize is prevalent

in certain areas including South China, Nepal, Bhutan, and

northern India. In Nepal, infections on Oxalis species are rare,

whereas in India, Oxalis corniculata has shown susceptibility to

artificial inoculation with P. sorghi teliospores, though natural

infections have not been observed. Significant rust outbreaks have

been noted in Bihar, India, since the early 1970s, especially affecting

winter plantings of susceptible hybrids such as Ganga Safed-2 and

Hi-starch (Sharma et al., 1993). The disease development is

particularly higher in summer maize within mountainous regions

and valleys, with fewer cases in the Terai plains; however, it has also

affected winter and spring maize in Nepal’s Terai region

(Kushalappa and Hegde, 1970), typically appearing either when

tasseling or at the knee-high stage. In Nepal, local varieties of maize

are extremely vulnerable, suggesting that common rust existed

before its formal documentation in 1964 (Manandhar, 1972).

Rust-induced yield losses can range from 6% to 32% (Sharma

et al., 1982). Research by Sharma and Payak (1979) has indicated

that rust resistance is polygenic, involving multiple genes that

contribute to resistance. To manage maize rustfoliar fungicide

spraying and the adoption of resistant hybrids are standard

practices. Additionally, cultural methods can be effective,

particularly in areas where rust spores overwinter on plant debris

or diseased Oxalis species (Utpal and Ritika, 2015).

4.3.7 Downy mildews
The downy mildew (DM) species that are most common in the

region are P. sorghi, Java DM, P. maydis, Brown stripe DM

(Sclerophthora rayssiae var. zeae), Sorghum DM, P. sacchari, and

Peronosclerospora philippinensis. These pathogens show a

significant threat to the production of maize in South and

Southeast Asia. The disease is endemic in the warm, humid Terai

region (Shah, 1976). Typically, infection rates range from 10% to

20%, but can escalate to 30% to 60% during periods of excessive
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moisture and humidity (Manandhar, 1972). Downy mildew usually

manifests when plants are 3 to 4 weeks old, and severe infections

can cause a 10% to 20% reduction in grain yield. Most severe

outbreaks occur in crops sown late in the season (June-July)

(Manandhar, 1975). Since 1975, signs of crazy top, such as

deformed plants, have been seen in the inner Terai, although the

precise pathogen is still unknown. Agents like Trichoderma

harzianum, Bacillus subtilis, Gliocladium virens, and Trichoderma

viride are used for biological control. Spore germination can be

inhibited more successfully in dual cultures of T. viride with T.

harzianum or B. subtilis than in single cultures. Out of all of these,

T. viride combined with B. subtilis, T. harzianum works best to

reduce downy mildew infection, whereas G. virens works less well.

Chemically, the fungicide Apron has been found to be the most

effective treatment overall (Alzahrani et al., 2021).

4.3.8 Philippine downy mildew
The plains of Nepal, the Philippines, Laos, northern Vietnam,

and northern India are among the places where this disease is most

common. Within India, it was initially recorded in 1912. According

to Exconde (1970), this particular strain of DM is quite aggressive,

frequently resulting in yield decreases of 40% to 60% and disease

incidence rates of 80% to 100%. In Nepal, the disease reached

epidemic levels in 1987, causing up to 50% yield losses, with late-

sown crops suffering the most severe damage (Shah and Tuladhar,

1971). The infection commonly originates from the wild grass

Saccharum spontaneum, which can be found growing naturally or

as a planted barrier around fields. Managing this grass can help

control DM. Chemical control strategies include using protectants,

applying radiant sprays to leaves, treating soil, and treating seeds to

manage and eliminate P. philippinensis (Fornah et al., 2020).

4.3.9 Sorghum downy mildew
First discovered in 1905 in Pune in teosinte (Zea mays spp.

mexicana), the pathogen was later discovered in sorghum in 1907 in

India (Butler, 1907; Uppal and Desai, 1932). Since the 1960s, it has

been reported causing damage to Zea mays and Sorghum bicolor

globally. P. sorghi comprises three distinct strains: one that affects

maize, one that targets sorghum, and one that affects both crops. India

has observed all three variants, while only the strain specific to maize

has been identified in Thailand (Payak et al., 1979). Only four of the

fifteen alleles shared between the Thai sample and other P. sorghi

isolates, according to isozyme analysis conducted by Bonde et al.

(1984), indicates that P. sacchari and P. philippinensis is the complex

to which the Thai isolate is more closely linked than P. sorghi. When

resistant types are lacking, the disease can cause significant harm. Asia

has embraced the downy mildew-resistant cultivar Suwan 1, which

was created in Thailand in 1973 and is still very successful. Suwan 1 is

available in the following countries: Philippines, Vietnam, South

China, India, South China, Indonesia, Laos, Nepal, Burma, and the

Bhutan. Biological control techniques employing antagonistic bacteria

and the application of metalaxyl fungicides to seeds are examples of

management strategies. B2, Brevibacillus brevis 57, and Pseudomonas

fluorescens Pf1, Bacillus subtilis G1, and Bacillus amyloliquefaciens are

examples of effective biocontrol agents (Sadoma et al., 2011).
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4.3.10 Brown stripe downy mildew
Following its discovery in India (Subedi, 2015), reports of the

illness have been also made in Thailand, Pakistan, Burma, and

Nepal (Frederiksen and Renfro, 1977). Other than South and

Southeast Asia, no records exist for it. The disease mainly affects

areas in the northern Indian Himalayan region that are less than

1500 meters above sea level. It can result in yield losses of as much

as 63% in Uttar Pradesh’s Tarai region (Lim et al., 2023). Teosinte,

Digitaria sanguinalis in India, and D. bicornis in Thailand have also

been shown to harbor the disease, in addition to maize. While

separate chemical and biological control techniques have shown to

be ineffective, an integrated management approach that

incorporates preventive measures and chemical and biological

treatments is essential for managing the Brown Stripe Downy

Mildew (Lal et al., 1980).

4.3.11 Brown spot
Physoderma maydisis the cause of brown spot disease, is a

widespread affliction that commonly appears around the tasseling

stage of maize. It impacts several parts of the plant, such as stalks,

leaf sheaths, leaves, and occasionally, the outer husks. This disease

thrives in regions with high average temperatures and substantial

rainfall. Early signs of infection include small, chlorotic patches that

form distinct bands of affected and healthy tissue on the leaf blades.

Initial leaf lesions present as chlorotic dots, while spots on the

midribs are typically round and dark brown. In severe cases, brown

lesions can develop on nodes and internodes, sometimes merging to

cause stalk rot and plant lodging (CIMMYT Maize Program, 2004).

Fungicides including propiconazole, trifloxystrobin, azoxystrobin,

iprodione, and carbendazim are applied as part of management

techniques. Furthermore, prior to planting, seeds should be treated

with hot water at 53–54°C for 10–12 minutes to help prevent the

primary infection during the development of the seedlings.

4.3.12 Rough dwarf disease of maize
A severe ailment known as maize rough dwarf disease (MRDD)

significantly lowers maize output. Three distinct pathogens cause

this disease: Maizerough dwarf virus (MRDV), rice black-streaked,

Mal de Ro Cuarto virus (MRCV), and dwarf virus (RBSDV) (Dovas

et al., 2004). Whereas MRCV is the main culprit in South America,

MRDV is the principal pathogen causing MRDD in Europe. The

most common cause of MRDD in China is RBSDV, wherein

Laodelphax striatellus spreads throughout (Zhang et al., 2021).

Even though MRDD is a serious disorder, not much study has

been done using omics technology. Using 2-DE and MS/MS, a

comparative proteome study was conducted to examine the

differences between virus-infected and healthy maize leaves. This

study found that pathways related to glycolysis, starch metabolism,

and morphogenesis were notably upregulated in maize infected

with RBSDV compared to healthy plants (Li et al., 2011).

4.3.13 Sugarcane mosaic disease
Virus-induced diseases can significantly impact food

production, with the Sugarcane mosaic virus (SCMV) being a
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major contributor to yield losses in both grain and forage crops.

SCMV has posed particular challenges for maize cultivation in

Argentina (Perera et al., 2009) and China (Xu et al., 2008). A DIGE-

based proteomics method was used to examine the protein profiles

of types of maize that are both SCMV-resistant and -susceptible in

order to investigate the effects of SCMV infection on maize (Wu

et al., 2013). Ninety-three proteins were found to have changed

expression as a result of infection; Numerous proteins in question

play roles in energy metabolism, photosynthesis, and stress

responses, and carbon fixation. The majority of the SCMV-

responsive proteins in the maize cultivars Siyi and Mo17 were

found to be located in the cytoplasm, chloroplast membranes, 2-DE

and MALDI-TOF-MS/MS studies (Wu et al., 2013). Additional

investigation of these proteins may provide more comprehensive

understanding of the connections between SCMV and maize.

4.3.14 Nematodes
Nematode species damage maize; in some maize-growing

locations, particularly troublesome is the cyst nematode

Heterodera zeae Koshy, Swarup, and Sethi (Cui et al., 2024).

Many strategies are used to control nematode infestations: using

pesticides, rotating crops, adding fertilizers, solarizing the soil, and

planting resistant types. Soil solarization has shown to be

particularly successful among these techniques in managing

a variety of worms and il lnesses spread via the soil

(Mandal et al., 2021).

4.3.15 Contamination with aflatoxin
Maize crops are seriously threatened by aflatoxin, a

carcinogenic material that is mostly produced by the fungus

Aspergillus flavus (Klich, 2007). This fungus grows best in warm,

humid circumstances, which worsen ear rot and increase the

generation of aflatoxin. Hot, dry weather also increases

contamination. Aflatoxin contamination induced by A. flavus is a

frequent problem that causes large losses in maize production

worldwide . Abiot ic factors that exacerbate aflatoxin

contamination include heat and drought. Aflatoxin levels might

be lowered and A. flavus infection could be mitigated by increasing

host plant resistance. In a proteome analysis, rachises from

susceptible and resistant genotypes of maize showed increased

amount s o f p ro t e in s l i nked to th e me tabo l i sm o f

phenylpropanoid and abiotic stress in the resistant line. In

contrast, the susceptible line had elevated levels of pathogenesis-

related proteins, indicating that resistant maize employs

constitutive defences, whereas susceptible maize relies on

inducible defences. Distinct differences in stress and defence

protein expression were observed between 10- and 35-days post-

infection (Pechanova et al., 2011).

4.3.15.1 Plant growth-promoting rhizobacteria

Plant growth-promoting rhizobacteria (PGPRs) play a critical

role in augmenting plant health and growth via diverse direct and

indirect mechanisms. By improving soil conditions and generating

growth-promoting compounds that increase the accessibility of
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vital minerals such as potassium, calcium, and phosphorus PGPRs

directly increase fertility of soil (Tabassum et al., 2017; Naik et al.,

2019). Additionally, they provide plant growth regulators, which

help plants develop.

PGPRs also encourage plant growth in a number of indirect

methods. They also create phytohormones that enable biological

nitrogen fixation, increase phosphate and potassium availability,

and produce gibberellins, ethylene, abscisic acid, cytokinins, and

auxins. PGPRs help regulate or remove infections by creating

biological control agents, which enhances the growth

environment. Additional indirect mechanisms that break down

fungal cell walls include lytic enzymes like chitinases and

glucanases, competit ion for resources, and antibiosis

(Bhattacharyya, 2012).

By lowering the chance of infections and strengthening the

plant’s natural defenses against pathogens, PGPRs can further

encourage plant growth (Tabassum et al., 2017). For example,

mechanisms like antibiotic-induced systemic resistance (ISR) and

the production of siderophores contribute to these indirect benefits,

as illustrated in Figure 4. These mechanisms can lead to systemic

resistance across the plant or localized antagonistic effects against

soil-borne diseases. Antagonistic rhizobacteria generate substances

such as antibiotics and siderophores, which aid in disease

management and indirect growth enhancement. ISR, akin to

pathogen induced boosts the resilience of uninfected plant tissues,

systemic acquired resistance (SAR), Rhizobacteria induce resistance

through plant responses to ethylene and jasmonic acid or through

the salicylic acid dependent SAR pathway. Genera like

Pseudomonas and Bacillus are recognized for their ability to

induce ISR and exhibit antagonistic properties. These beneficial

rhizobacteria, which enhance plant resistance and act as
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antagonists, can be employed to create innovative inoculants that

integrate multiple mechanisms, thus enhancing the effectiveness of

biocontrol methods in agricultural systems.

An increase in fertilizer use is predicted as maize yield rises,

which will drive up production prices and cause environmental

problems. PGPR, on the other hand, have a history of success in

increasing crop yields and growth. For instance, it has been

demonstrated that Bacillus safensis, Brevundimonas vesicularis,

Bacillus pumilus, and Paenibacillus alvei, increase yields between

24 to 34% (Breedt et al., 2017). Bradyrhizobium japonicum and

Azospirillum brasilense together enhanced seed germination and

early plant growth, as shown by Cassán et al. (2009). Kuan et al.

(2016) discovered that bacteria that promote plant development

could function as a biological substitute for atmospheric nitrogen

fixation, leading to a possible 30.9 percent increase in agricultural

yields and a decrease in the requirement for nitrogen fertilizers.

Additionally, PGPR inoculants have been shown by Di Salvo et al.

(2018) to improve grain yield and growth in cereal crops like

maize. Despite these advantages, there is still much to learn

regarding the ways in which microorganisms and plants

interact, which emphasizes the need for more study on

microbial ecology in the rhizosphere of various agricultural

methods. Furthermore, whereas certain PGPR are known to

generate IAA and enhance shoot and root weight as well

nutrient intake to promote maize growth, other activities, such

phosphorus solubilization, are stil l poorly understood

(Lobo et al., 2019).

4.3.15.2 Nano-based approach

The integration of nanotechnology in agriculture is growing,

especially with the introduction of nanofertilizers (NFs) (Das et al.,
FIGURE 4

Plant interactions in the rhizosphere and PGPR.
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2024). According to Liu and Lal (2015), these consist of substances

such as Si- and Ti-based nanoparticles (NPs) and valuable metals

like gold (Au-NPs). Particles between 1 and 100 nm in size must be

classified as NFs because of their unique mobility, reactivity, and

possible toxicity compared to bulk materials (Šebesta et al., 2022).

Although their precise mechanisms are still somewhat unknown,

some types of NFs, such as the non-nutrient stimulant TiO2-NPs

and the micronutrient ZnO-NPs, have demonstrated the ability to

improve crop growth and yield (Kolenčıḱ et al., 2021).

Because NFs have a balanced agronomic impact and require

less application rates and more progressive nitrogen release, they

are beneficial for the environment. Studies reveal that applying

NPs, particularly ZnO-NPs, and TiO2-NPs, topically can improve

photosynthesis and yield in plants like foxtail millet, spinach, and

sunflower. Nevertheless, little is known about their effects on the

nutritional quality of humans and the possible health risks posed

by NP residues building up in edible plant parts (Holis ̌ová et al.,

2019; Ernst et al., 2024). Grains of interest for NP uses include

maize, which is the third most eaten grain worldwide. Rich in

nutrients, maize contains minerals that are critical to human

health, such as potassium, calcium, zinc, and iron. Certain

minerals, such as phytic acid, which contains phosphorus, can

prevent the absorption of nutrients. Si and Ti are examples of NFs

that have been connected to enhanced plant development, stress

resistance, and antifungal qualities; nevertheless, because of their

potential toxicity, other NPs, such as Au-NPs, may be hazardous

(Ernst et al., 2024).
5 Conclusion

As the world’s population keeps increasing, agriculture remains

crucial into meeting various needs. Historically, crops were grown

using natural methods without pesticides, but yields were

inadequate to support the rising population. As a result, farmers

turned to chemical fertilizers, which improved yields but disrupted

natural microflora and ecosystems. To address these issues,

scientists are now focusing on bio-fertilizers for large-scale crop

enhancement. Research indicates that bio-fertilizers are more

effective than chemical fertilizers in boosting crop yields. Utilizing

a consortium of natural bacterial cultures proves to be more

beneficial than using single strains, as these microbial

communities enhance productivity through their metabolic

activities. Improving crop predictability is another benefit of these

biological approaches. To date, 251 beneficial microorganism genes

have been successfully transferred to crops, offering both biotic and

abiotic resistance. The development of new microbial consortia is

expected to further enhance crop productivity through advances in

microbial biotechnology. Clear understanding of communication

within consortium inoculants will improve their effectiveness in

acclimatizing within the rhizosphere. Maize plants irrigated with

industrial and municipal waste host heavy metal-resistant bacteria
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in their rhizosphere and endorhiza, which provide several benefits,

including promoting plant growth. These heavy metal- and salinity-

resistant PGP (plant growth-promoting) bacteria can help lower the

concentrations of heavy metals in treated plants and lessen the

stress that wastewater causes to plants. To assess these strains’

efficacy in contaminated soils in both greenhouse and field settings,

more investigation is required. It is advised that PGPR be used more

widely in agriculture due to its benefits in bio-fertilization, bio-

control, and bioremediation—all of which increase crop output and

ecosystem health. As technology advances and research develops,

PGPR usage is expected to become more widespread, contributing

to stable and productive agroecosystems and advancing

agricultural practices.
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