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Estimation of forest biomass at regional scale based on GEDI spaceborne LiDAR

data is of great significance for forest quality assessment and carbon cycle. To

solve the problem of discontinuous data of GEDI footprints, this study mapped

different echo indexes in the footprints to the surface by inverse distance

weighted interpolation method, and verified the influence of different number

of footprints on the interpolation results. Random forest algorithmwas chosen to

estimate the spruce-fir biomass combined with the parameters provided by GEDI

and 138 spruce-fir sample plots in Shangri-La. The results show that: (1) By

extracting different numbers of GEDI footprints and visualize it, the study

revealed that a higher number of footprints correlates with a denser

distribution and a more pronounced stripe phenomenon. (2) The prediction

accuracy improves as the number of GEDI footprints decreases. The group with

the highest R2, lowest RMSE and lowest MAE was the footprint extracted every

100 shots, and the footprint extracted every 10 shots had the worst prediction

effect. (3) The biomass of spruce-fir inverted by random forest ranged from 51.33

t/hm2 to 179.83 t/hm2, with an average of 101.98 t/hm2. The total value was

3035.29 × 104 t/hm2. This study shows that the number and distribution of GEDI

footprints will have a certain impact on the interpolation mapping to the surface

information and presents a methodological reference for selecting the

appropriate number of GEDI footprints to derive various vertical structure

parameters of forest ecosystems.
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1 Introduction

As the energy base and material source of forest ecosystem

operation, forest aboveground biomass (AGB) is a key indicator to

evaluate the health status of forest ecosystem and the sustainable

utilization of vegetation resources (Assiri et al., 2023). It is also the

basis for the study of ecosystem carbon cycle and carbon storage.

Spruce-fir forest is the most widely distributed forest type in

Chinese cold-temperate evergreen coniferous forest, which has

high economic and ecological value (Liu et al., 2023a). Spruce-fir

has important ecological functions in water retention and soil and

water conservation. It can not only maintain biodiversity in high

altitude and high latitude areas, but also affect the sustainable

development of social economy (Chen, 2023). Chinese spruce-fir

resources are extremely rich, with a stand volume of 2.2 billion m3,

accounting for about 24.23% of the national stand volume, and

ranking first among all tree species (Huang et al., 2004). The spruce-

fir ecosystem is one of the most productive ecosystems on earth, and

its carbon storage capacity is outstanding. Because of its important

carbon storage capacity, it plays an important role in mitigating

climate change (Lang et al., 2019). Therefore, accurate and large-

scale monitoring of the AGB of the Shangri-La spruce-fir is of great

significance for ensuring the safety of the alpine ecosystem and

maintaining its carbon balance. Remote sensing technology has the

potential to quickly obtain large-scale vegetation growth conditions

(Yun et al., 2024). However, accurate regional AGB data still

requires detailed field surveys on a finer scale (Liu et al., 2023b).

Combining field survey data with RS technology has become a

common method for estimating regional AGB. According to the

different ways of obtaining forest vertical structure and sensors,

remote sensing data can be divided into optical, synthetic aperture

radar (SAR) and laser radar data. At present, medium-resolution

optical data is still the most commonly used data source for large-

scale acquisition of forest AGB, and its rich spectral information can

effectively reflect the growth of vegetation (Jiang et al., 2021).

Landsat data can provide multi-spectral images with medium

resolution for decades, which is the most widely used data for

forest researchers to solve various practical tasks. However, cloud

cover and the saturation effect of dense forests are its main

limitations (Wang et al., 2021). SAR obtains information by

actively emitting energy, also known as active remote sensing. Its

wavelength can penetrate the vegetation canopy and obtain more

detailed structural information. It has obvious advantages in

obtaining the vertical structure of forests (Cartus et al., 2012).

However, SAR must work in a specific range of electromagnetic

spectrum, but the characteristics of these bands are not necessarily

suitable for biomass estimation.

As early as the mid-1980s, LiDAR technology has been applied in

the field of forestry. As an active remote sensing technology, LiDAR

has strong penetrability and can overcome the signal saturation

problem in SAR and optical remote sensing data (Gao et al., 2022).

According to it carrying platform, it can be divided into Terrestrial

Laser scanner, Airborne Laser Scanner and Space-borne Laser.

Terrestrial Laser scanner is usually used for the acquisition of single

target or small-scale fine 3D data (Comesaña-Cebral et al., 2021). Its

top-down working model allows individual trees to be segmented to
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provide accurate estimates of DBH and tree position. However, due to

its top-down scanning method, the information at the top of the

canopy may be missing, and it is limited by terrain, scanning field of

view and distance, so it is not suitable for inverting continuous large-

scale forest vertical structure parameters. Airborne LiDAR is the best

choice for forest AGB estimation at single tree scale due to its low cost,

flexible operation and centimeter-level spatial image resolution. In

recent years, it has been more and more widely used to estimate forest

canopy height and biomass. However, the point cloud data of airborne

LiDAR has the characteristics of large density and inhomogeneous

distribution, which increases the difficulty of data processing, and the

application in large areas and the acquisition of data are limited by

high cost. Compared with airborne LiDAR, spaceborne LiDAR has the

characteristics of large observation range and regular repeated

observation. It has great advantages in quantitative inversion of

forest parameters at large regional scale. It can not only reduce the

consumption of manpower and time in field investigation, but also

ensure accuracy, spatial integrity and time consistency (Yuan, 2022).

At present, because the spaceborne LiDAR data can be used to detect

the forest vertical structure in a large area, some scholars have applied

it to the estimation of forest canopy height (Wang et al., 2023), forest

height (Zhu, 2021; Lin et al., 2023; Luo et al., 2023), closure (Zhang

et al., 2021) and biomass (Xu et al., 2023a; Song et al., 2022). ICESat-1

is the world’s first spaceborne LiDAR altimetry system. After its

retirement in 2009, the United States launched ICESat-2 satellite in

2018. The photon counting laser altimeter on board adopts micro-

pulse multi-beam photon counting LiDAR technology. These two

satellites have been successfully applied to measure forest structure

parameters, lake water level, glacier change and sea ice surface

classification (Zhu, 2021; Song et al., 2022; Liu et al., 2023c; Petty

et al., 2021; Cheng et al., 2023).

GEDI is the only full-waveform LiDAR system designed

specifically to measure the vertical structure of vegetation that

NASA launched at the end of 2018 (Xie et al. 2018). The

difference between GEDI and other spaceborne LiDAR is its

penetration ability in dense vegetation. The GEDI system consists

of three lasers, one of which is divided into two beams (coverage

beam), and the other two lasers maintain full power (full power

beam). The coverage beam and the full power beam can penetrate

95% and 98% of the forest canopy to the ground, respectively (Liu

et al., 2022). It is equipped with the world ‘s first multi-beam linear

system laser altimeter for high-resolution forest vertical structure

measurement, which is mainly used for accurate measurement of

forest canopy height, vertical structure and ground elevation in

tropical and temperate regions. From the GEDI waveform, four

types of structural information such as landform, canopy height,

canopy coverage and vertical structure can be extracted (Hang,

2022). GEDI is a full-waveform LiDAR data that can generate a

forest canopy profile with a diameter of 25 meters. However, due to

the fact that the GEDI footprints are distributed along the track and

there is a certain distance between the footprints, the GEDI data is

discrete and sparse. In order to overcome this limitation, previous

studies have integrated continuous optical or SAR images with

GEDI to infer GEDI samples spatially (Potapov et al., 2021). This

extrapolation technique has been used in several studies to generate

large-scale CHM and AGB maps. For example, Francini et al.
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(2022) integrated GEDI data and four decades of optical images to

analyze forest disturbance and biomass changes in Italy,

demonstrating that GEDI can capture changes in forest biomass

caused by disturbance. Tamiminia et al. (2024) integrates the GEDI

footprint with the Sentinel-2 image to generate a 10-meter wall to

wall CHM of New York State in 2019, and then uses the generated

CHM, Sentinel-1 and Sentinel-2 data to create a 10mAGB map of

New York State in 2019. Guo et al. (2023) proposed a new method

to integrate field measurement data, GEDI LiDAR, sentinel and

terrain data to construct multi-source data-driven forest CHM and

AGB models with a resolution of 30 m. Firstly, RFE-SVM method

was used to determine the characteristics sensitive to forest height

and AGB, and then three regression models were used to construct

the CHM model. The GEDI point data was extended to the wall to

wall CHM map, and finally the common features and measured

data were selected to construct the model for estimating AGB.

Although many scholars have done a lot of research on GEDI in

forest attribute estimation, most of them are to evaluate forest

canopy height or jointly estimate forest attributes with other remote

sensing images. At present, no scholars have studied the effect of the

number of GEDI light spots on the biomass estimation results.

The objective of this study is twofold. First, GEDI footprint of

different orders of magnitude are evaluated and the optimal data set

is selected. Secondly, the biomass was estimated by using the

selected optimal footprint combined with the random forest

model. Specifically, this paper aims to address the following

research questions: 1) investigate the interpolation accuracy of

GEDI footprint on different orders of magnitude. 2) explore the

feasibility of using inverse distance weight interpolation to

interpolate footprint spaceborne LiDAR samples. 3) and

determine the optimal GEDI footprint as the input predictor of

accurate AGB mapping.
2 Study area and research data

2.1 Study area

Shangri-La is located in the northwest of Yunnan Province and

the eastern part of Diqing Tibetan Autonomous Prefecture, and

characterized by a rugged internal terrain, mainly comprising a

series of high mountains that stretch from the middle to the

northeast (Figure 1). The altitude varies in the region, being

higher in the northwest and lower in the southeast, with an

overall altitude range of 1503 to 5545 meters, and an average

altitude of approximately 3459 meters. The region experiences a

mountainous cold temperate monsoon climate, with an average

annual temperature of 5.4°C and an average annual precipitation of

618.4 mm. The frost-free period typically lasts from 129 to 197 days,

with the rainy season occurring from July to September. This

microclimate is attributable to its location in the transition zone

between the subtropical evergreen broad-leaved forest vegetation

area of Yunnan and the alpine vegetation area of the Qinghai-Tibet

Plateau. As a result, the vegetation distribution varies significantly

between the north and the south, with distinct vertical structure

characteristics prevailing in the region. The distribution of the
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species varies based on altitude. At 1500 ~ 2800 m, its primary

habitat is found within warm-temperate coniferous forests, where

Pinus armandii and Pinus yunnanensis dominate. As the altitude

ranges from 2800~3500 m, the species tends to thrive in warm and

cool coniferous forests, with Tsuga yunnanensis and Pinus densata

as the dominant species. Moving further up, at an altitude of 3200 ~

4200 m, the species is predominantly distributed in cold-temperate

coniferous forests, where larix potaninii var.macrocarpa, picea

brachytyla var.complanata, and longbract fir are the dominant

species. Above 4200 m, the distribution extends to cold-temperate

shrubs, particularly rhododendron delavayi, and meadows.
2.2 Field inventory data and calculation
of AGB

Forest resources survey data used in our study. For the purpose

of this study, we focused on the two dominant tree species, Picea

asperata and Abies fabri, totaling 138 plots, in order to compute the

biomass. To determine the total biomass of each sample, it is

necessary to calculate the biomass of individual trees.

Consequently, the cumulative biomass of all individual trees

within the sample represents the total forest biomass of the

sample. Common standing tree biomass models mainly include

one-dimensional, binary and multivariate biomass models. The

one-dimensional biomass model mostly selects the DBH of the

tree as an independent variable, and the binary biomass model

selects the DBH and tree height (Wang et al., 2018). In this study,

the biomass in the plot was calculated by referring to the binary

biomass model provided by the forestry industry standards such as

‘Tree biomass models and related parameters to carbon accounting

for Picea’ (Zeng et al., 2016a), ‘Tree biomass models and related

parameters to carbon accounting for Abies’ issued by the State

Forestry Administration (Zeng et al., 2016b). Based on the data of

tree height and DBH of forest resource survey data, the

aboveground biomass values of spruce-fir in the plot were

calculated by equations, respectively. The AGB of the sample plot

is divided by the area, which can be converted into the AGB per

hectare, and the unit biomass information of the sample plot is

obtained as shown in Table 1.

Mspruce = 0:09152D2:21060H0:25663

Mfir = 0:06127D2:05753H0:50839

Where Mspruce the model of aboveground single is tree biomass

of spruce, and Mfir is the model of the aboveground single tree

biomass of fir. M is the AGB; D is the diameter at breast height; H is

the single tree height.
2.3 GEDI data

GEDI spaceborne LiDAR is a form of active remote sensing

technology that captures extensive data by emitting short-

wavelength laser pulses to penetrate the forest canopy and
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retrieve precise three-dimensional forest structure information

(Saarela et al., 2022). Comprising three lasers, two of which are

full-power lasers and the remaining one functioning as a covering

laser, GEDI utilizes beam jitter to split into two beams, resulting in a

total of eight beams. The footprint diameter is approximately 25 m,

with a footprint spacing of 60 m along the track and 600 m spacing

between adjacent ground tracks. The overall width of the laser

trajectory is 4200 m (Potapov et al., 2021). GEDI data is composed

of discrete footprints, each containing various echo indicators for

feature extraction and input into forest biomass models. These echo

indicators are crucial for subsequent GEDI data analysis and

interpretation. In this study, the data product of the spaceborne

LiDAR GEDI Level 2B Version 2 is utilized. GEDI Version 2

enhances geo-positioning accuracy, updates metadata to include

spatial coordinates, and enables querying in NASA Earth data

retrieval. The average geolocation error of version 2 data product

is 10.3 m, showing a 50% improvement in geolocation accuracy

compared to Version 1. GEDI contains four levels of products: Level

1 encompasses geolocated return energy waveform, Level 2 includes

footprint level canopy cover and vertical profile metrics, Level 3

comprises gridded land surface metrics, and Level 4 consists of
Frontiers in Plant Science 04
footprint level and gridded aboveground biomass density

(Tian, 2023). All GEDI data used in this study are sourced from

Earthdata (https://www.earthdata.nasa.gov), with the data

acquisition time ranging from April 23, 2019 to December 04, 2019.
3 Methods

The implementation of this method encompasses five steps, as

described in the flowchart of Figure 2: 1) GEDI Data Filtering;

2) GEDI Footprint Distribution and Interpolation Results Analysis;

3) Accuracy Evaluation of GEDI Footprint Interpolation Results;

4) Correlation Analysis between GEDI Variables and Biomass;

5) Biomass Modeling.
3.1 Inverse distance weighting model

The inverse distance weighting method (IDW) is based on the

assumption that nearby things are more similar to each other than

those that are farther apart. It considers that each measurement
FIGURE 1

Geographical location of Shangri-La (A); Altitude spatial variation (B); Land use type (C); Spruce-fir and sample site distribution (D).
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point has a local influence, and that this influence gradually

diminishes as the distance between point’s increases. In essence,

IDW assigns a weight to each interpolation point by taking the

reciprocal of the distance between the interpolation point and the

measured point to perform a weighted average. This method is

particularly suitable for situations where measurement sites are

evenly distributed and of high density.

Z*  (x0) =oN
i=1l iZ(xi) =oN

i=1
d−pi0

oN
J=1d

−p
i0

 !
Z(xi)

where Z*  (x0)   is the interpolation result of the interpolation

point x0; Z(xi) is the measured value of the measured point xi; n is

the number of measured points involved in the calculation; li is the
weight coefficient;. is the distance between the measured point xi
and the interpolation point x0; p is the power of distance, generally

p =1 or p =2.
3.2 Evaluation of interpolation accuracy

The accuracy of interpolation was assessed by comparing the

root mean square error (RMSE) and the coefficient of determination

(R2) between the measured and predicted values at both the

interpolated footprints and the verification sample points. R2

quantifies the correlation between the predicted and estimated

values, with a value closer to 1 indicating higher model accuracy.

On the other hand, RMSE primarily elucidates the estimation’s

sensitivity to extreme effects within the sample data. The mean

absolute error (MAE) calculates the average difference between

predicted and measured values. A smaller MAE indicates a more

accurate prediction model.
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n
i=1(ŷ i − yi)

2

on
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2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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i=1(ŷ i − yi)
2

n

s

MAE =
1
no

n

i=1
ŷ i − yij j

where n is the number of footprints, ŷ i is the predicted value on

the footprint i,  yi is the observed value on the footprints, and �yi is

the arithmetic mean of the observed value.
3.3 Biomass estimation model

3.3.1 Support vector machine
Support Vector Machine (SVM) is an efficient machine learning

algorithm, which is based on the principle of dividing hyperplanes.

The core idea of this classifier is to divide the data into several

possible categories by constructing a hyperplane. By continuously

adjusting and optimizing this hyperplane, the overall deviation is

minimized (Chen et al., 2023). For the known training data set, the

SVM algorithm will find the hyperplane that maximizes the

classification interval, and use these intervals to predict the new

data set. A hyperplane is a character space one dimension less than

its surrounding planes. In the two-dimensional data set, the straight

line is a hyperplane. The key to its core idea is to map complex

nonlinear data onto a high-dimensional array, a mapping process

called kernel learning (Qiu et al., 2020). In this way, the data can be

regarded as a linear function in the high-dimensional feature space,
FIGURE 2

Steps used to estimate AGB using GEDI data.
TABLE 1 Spruce-fir plot information summary.

Number
of plots

Maximum
(t/hm2)

Minimum
(t/hm2)

Average
(t/hm2)

Median
(t/hm2)

Standard error
(t/hm2)

139 296.09 5.19 101.42 92.73 65.09
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while the nonlinear features are mapped to the low-dimensional

space. In this study, the e1071 package in R language was used, the

kernel function was radial basis, the C of spruce-fir was 1, and the g

was 0.92.

3.3.2 K-nearest neighbor algorithm
K nearest neighbor regression (KNN) is a typical nonparametric

algorithm. It is a univariate or multivariate prediction method based

on the spatial similarity between observation points and prediction

points. It can be used for classification and parameter estimation

problems, especially for remote sensing data with non-normal or

unknown probability density distribution function (Zhang et al.,

2022). As a non-parametric learning method widely used in

scientific research and engineering technology, its core is to use

the observation point data in the nearest k neighborhoods to predict

the value of unknown points. This algorithm can effectively deal

with remote sensing data that are affected by the non-normal

distribution of the probability density distribution function (PDF)

or unknown distribution, and realize the classification task and

parameter estimation of the data by analyzing the correlation

between the observed value and the predicted point (Wu et al.,

2024). In this paper, the knn function in the class package of R

language is used to implement the algorithm, and the K value of

spruce and fir is set to 9 respectively.

3.3.3 Random forest regression
Random forest is a machine learning algorithm that exhibits

high accuracy and robustness, making it suitable for analyzing high-

dimensional and highly correlated data sets (Wei et al., 2024). The

algorithm operates on the principle of utilizing the bootstrap

method to iteratively and randomly sample from the original

data, constructing decision trees for each sample. Through the

combination of predictions from multiple decision trees, the final

prediction results are determined by collective voting (Lourenço

et al., 2021). This approach eliminates the necessity for feature

selection and enables the handling of high-dimensional data.

Moreover, the random sampling of instances leads to the

utilization of different training sets for each decision tree, thereby

mitigating overfitting to a certain extent (Yang et al., 2021a).

Notably, the Random Forest package within R software facilitates

predictive regression using the random forest algorithm,

necessitating adjustments to the number of decision trees (ntree)

and the number of variables extracted during tree splitting (mtry).

The ntree is set to 300 and the mtry is set to 2.
3.4 Biomass model validation

To improve the accuracy of the biomass inversion model, it is

essential to select the optimal variables that are conducive to biomass

inversion while avoiding data redundancy, which can diminish the

accuracy of model inversion. This process not only reduces the

running time of the algorithm, but also prevents over-fitting caused

by model complexity. Through an analysis of the correlation between

independent variables and the biomass of spruce-fir, the first five
Frontiers in Plant Science 06
variables with the highest correlation were identified and selected as

the determinants of the model. These variables were utilized to

estimate the biomass of spruce-fir within the study area, and their

accuracy was subsequently evaluated through cross-validation

(Vaithiyanathan and Sudalaimuthu, 2022). This method ensures

that the model is based on the most relevant data, leading to an

improved accuracy in biomass estimation.

To ensure the stability of the model and reduce accidental error

caused by the division of training and verification samples, we

employed the ten-fold cross-validation method in this study. The

data set, containing 138 ground observation samples, was divided

into 10 groups with an equal number of samples. Each group was

subsequently utilized as the verification set in turn to assess the

model’s estimation ability, while the remaining 9 groups served as

the training set for constructing the model. For each cross-

validation, we calculated the determination coefficient (R2), the

root mean square error (RMSE) and mean absolute error (MAE)

between the predicted and measured values. This process was

repeated 10 times, and the accuracy of each model was evaluated

based on the average R2, RMSE and MAE values. The calculation

formulas for R2, RMSE and MAE can be found in 3.2 sections.
4 Results

4.1 GEDI preprocessing and data filtering

4.1.1 GEDI data pre-processing
GEDI is a geolocation waveform product, which contains 8

beams and 1 metadata. Each beam group stores the transmitted and

received waveforms, geolocation parameters and geophysical

correction parameters obtained by the beam after geolocation

correction (Dubayah et al., 2021). GEDI uses 1064nm laser pulse

to measure the vertical structure of the forest, and the obtained

waveform needs a series of processing to obtain the vertical

structure parameters of the forest. According to the theoretical

basis file of GEDI official algorithm, a Gaussian filter (smoothing

width) with a width of 6.5ns is first used to smooth the waveform to

reduce the noise in the signal without affecting the signal in the

waveform (Schwartz et al., 2024). After smoothing, the two

positions represented as searchstart and searchend in the

waveform are determined. Searchstart and searchend are the first

and last positions of the signal with a signal strength higher than the

following thresholds:

threshold = mean + c*std

Where ‘threshold’ is the background threshold, ‘mean’ is the

average noise level, ‘std’ is the standard deviation of the smoothed

waveform noise, and ‘c’ is a given constant, which is stored in the

data-aided group of waveform processing as back_threshold

or front_threshold.

After determining the positions of searchstart and searchend,

the region between them (i.e., waveform range) is extended to the

expected length, and the highest (toploc) and lowest (botloc)

detectable echoes are determined within the waveform range.
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toploc and botloc represent the highest and lowest positions in the

waveform range when the two adjacent intensities are higher than

the threshold, respectively. At this time, the threshold equations

used to determine toploc and botloc are the same as the above

equations. As shown in Figure 3, the black waveform is the

waveform before Gaussian fitting, and the red waveform is the

waveform after Gaussian fitting. After fitting, the burr part of the

waveform is removed, and a smoother waveform is obtained, while

reducing the influence of noise on the waveform. Subsequently, the

second filtering is performed on the waveform part whose intensity

exceeds the threshold to determine the position of different peaks in

the waveform, such as the ground peak or the peak at the top of the

crown. The width of the second Gaussian filter is expressed as

smoothwidth cross. Finally, the position of the final detected peak is

used to determine the position of the ground echo in the waveform.

After smoothing and filtering the waveform data stored in the L1B

product, the results such as noise mean, noise standard deviation,

waveform processing-related parameter settings, and geolocation

parameters are output and stored in the L2B product.

4.1.2 GEDI data filtering
In the range of Shangri-La, python software is used to write code

to extract and filter the footprints according to the position and

parameter name of each parameter in the GEDI L2 B data source file,

and convert it into a Shapefile format that can be processed by

ArcGIS. In this study, 14 modeling parameters were extracted from

GEDI_L2B data products, which are cover, dem, fhd_normal,

Landsat_treecover, leaf_off_doy, leaf_on_doy, modis_treecover,

modis_nonvegetated, pai, pgap_thea, rg, rh100, rv and sensitivity.

The specific names of these 14 parameters and their corresponding

descriptions are listed in Table 2. Due to the lack of information or

poor quality of some footprints, not all waveform data can meet the

forest resource survey. Therefore, when processing data, three values

(sensitivity, degrade_flag, quality_flag) of GEDI’ s own quality

characteristics are used to screen out the spots that meet the

conditions. A quality_flag value of 1 indicates the laser shot meets

criteria based on energy, sensitivity, amplitude, real-time surface

tracking quality and difference to a DEM. Sensitivity is defined as
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the difference between the ratio of the ground echo area to the total

echo area and 1, and its value range is 0 ~ 1. Different surface

coverage types have different values, and the general forest is set to

0.9. Degrad_flag indicates the degradation flag of the satellite pointing

to the positioning state, and the footprint with degrad_flag of 0 needs

to be retained (Jiang et al., 2021).
4.2 GEDI data distribution analysis

To verify the effect of footprints interpolation of different data

and achieve a random and uniform distribution of footprints, our

study utilized a Python algorithm to extract representative

footprints at intervals of 10, 30, 50, 70, and 100 shots when

extracting GEDI data. The extracted data is presented in Table 3,

which reveals that 13,127 footprints were extracted at intervals of 10

shots, and 4,343 footprints were extracted at intervals of 30 shots.

Similarly, 2,646 footprints were obtained at intervals of 50 shots,

while 1,871 and 1,309 footprints were obtained at intervals of 70

and 100 shots, respectively.

The footprints distribution map can be obtained by visualizing

the extracted footprints. Figure 4 illustrates the distribution of

footprints extracted at intervals of every 10, 30, 50, 70, and 100

shots (as denoted by a-e in Figure 4). The characteristics of GEDI’s

laser scanning are evident in the distribution of GEDI footprints,

demonstrating the formation of footprints lattices as a result of orbit

overlap. Dense footprints are primarily concentrated around the

lattice, with no footprints inside. It is apparent from Figure 4 that an

increase in the number of footprints results in closer distances

between footprints, leading to a more pronounced lattice effect,

especially in Figure 4A. Conversely, a decrease in the number of

footprints significantly reduces the density of footprints on the same

track, as depicted in Figure 4E, subsequently weakening the lattice

effect and evoking a more random distribution pattern.
4.3 GEDI footprint interpolation results

The spatial interpolation prediction of independent variables

extracted from different numbers of GEDI footprints is depicted in

Figures 5–9. Overall, the spatial distribution of the independent

variable prediction does not exhibit significant differences across the

five orders of magnitude of footprints. However, variations are

evident in the specific areas where the footprints are located. The

prediction map (Figures 5–7) derived from the interpolation of the

independent variables with shot intervals of 10, 30, and 50,

demonstrates a lack of smoothness, characterized by the presence

of a “bull’s-eye” phenomenon, which allows for clear visibility of the

footprint positions (For example, the local magnification of

sensitivity and Landsat_treecover in Figures 5–7). Moreover, the

distribution of GEDI orbit reveals discernible staggered bands in the

prediction results of four specific independent variables – cover,

Landsat_treecover, pgap_thea, and pai. This observation may be

attributed to the dense distribution and substantial number of

footprints along the track. In contrast, the four independent

variables of dem, modis_nonvegeted, leaf_on_doy, and
FIGURE 3

Received waveform before and after GEDI fitting (Dubayah
et al., 2020).
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leaf_off_doy yield relatively smooth prediction results with minimal

error, regardless of the magnitude of the prediction, compared to

other variables.

The estimation results of different independent variables have

changed as the number of predicted footprints decreases. Figures 8,

9 demonstrates that the previously observed staggered bands in the

prediction results of each variable have notably reduced, albeit the

persisting presence of point-like ‘salt and pepper’ high-value points

in the figure (Such as the local magnification of sensitivity and

Landsat_treecover in Figures 8, 9). A comparison of the spatial

prediction maps of the five quantities of independent variables

reveals smoother interpolation results for the footprints extracted

every 100 shots, with a relatively continuous spatial distribution

map. These results exhibit more gradients and smoother edges

compared to the other five respective results. Notably, among the

interpolation results of different numbers of footprints, those

extracted every 100 shots yield the best outcomes, followed by 70

and 50, with 30 and 10 producing the least favorable results.
4.4 Accuracy evaluation of GEDI footprint
interpolation results

To evaluate the accuracy of the GEDI footprint extraction, the

data was divided into two parts: 70% for interpolation and 30% for

accuracy evaluation. The study area’s accuracy of spatial prediction

for independent variables at different sampling densities is

measured through the R2, RMSE and MAE of the verification set

(consisting of 3938, 1303, 794, 561, and 275 footprints). It can be
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seen from Table 4 that the R2 of the independent variable increases

with the decrease of the sampling density, while the values of RMSE

and MAE generally decrease with the decrease of the sampling

density, indicating that the prediction accuracy increases with the

decrease of the number of light spots. This trend suggests that

prediction accuracy improves with decreasing footprints. Notably,

the group with the highest R2 and lowest RMSE and MAE is the one

with extractions made every 100 shots, followed by 70 and 50 shots.

The prediction effect for footprints extracted every 10 shots is the

poorest, with the lowest R2 observed for pai, Landsat_treecover,

pgap_thea, and cover recorded at 0.47, 0.47, 0.49, and 0.51,

respectively. These accuracy results align with the interpolation

findings in Figure 4 to Figure 8, demonstrating that lower accuracy

in variable interpolation leads to a more pronounced band

phenomenon along the footprint distribution.
4.5 Correlation analysis between GEDI
variables and biomass

In section 3.2, the footprint extracted from every 100th shot is

found to have the best interpolation effect of GEDI independent

variables. Consequently, the 916 footprint independent variables are

chosen for biomass estimation. In conjunction with Shangri-La’s

topographic factors, a correlation analysis is performed with the

biomass of Shangri-La spruce-fir, and the variables showing the

highest correlation are then identified as the modeling indicators.

The correlation coefficient matrix presented in Figure 10 displays

the Pearson correlation coefficients between all remote sensing

variables and forest aboveground biomass (AGB).

Upon examination of Figure 11, it is evident that seven

characteristic factors of the GEDI independent variables, derived

from 100 shots, exhibited significant correlations with the biomass

of the plot. These factors, in descending order of correlation
TABLE 3 The Number of Spots with different shot intervals.

Shot interval 10 30 50 70 100

Number of footprints 13127 4343 2646 1871 1309
TABLE 2 GEDI parameters information.

Parameters
name

description
Parameters

name
description

cover Total canopy cover, DEM Digital elevation model

fhd_normal
Foliage Height Diversity index calculated by vertical foliage profifile normalized
by total plant area index

landsat_treecover Landsat tree canopy cover

leaf_off_doy Leaf off day of year leaf_on_doy Leaf on day of year

modis_treecover Percent tree cover from MODIS data modis_nonvegetated
Percent non-vegetated from
MODIS data

pai Total plant area index pgap_thea
Estimated Pgap(theta) for the selected
L2A algorithm.

rg Integral of the ground component in the RX waveform rh100
Height above ground of the received
waveform signal start

rv Integral of the vegetation component in the RX waveform sensitivity
Maximum canopy cover that can be
penetrated considering the SNR of
the waveform

degrad_flag
Non-zero values indicate the shot occurred during a degraded period. A non-zero
tens digit indicates degraded attitude, a non-zero ones digit indicates a
degraded trajectory.

quality_flag
Flag simplifying selection of most useful
data for Level 2B
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strength, are: pai, pgap_thea, cover, fhd_normal, rh100, and DEM.

Notably, DEM, rh100, pai, fhd_normal, and cover were found to be

significantly positively correlated with AGB, with correlation

coefficients falling within the range of 0.174 to 0.224. Conversely,

rg and pgap_thea were significantly negatively correlated with AGB,

yielding correlation coefficients ranging from -0.208 to -0.236.

Notably, among the 14 factors, rg and pai demonstrated the

highest correlation, being significantly correlated at the 0.01 level
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with correlation coefficients of -0.236 and 0.224, respectively. The

impact of GEDI L2B provided vegetation leaf area index, leaf height

diversity index, and vegetation coverage area on biomass estimation

for Shangri-La spruce-fir becomes evident through the analysis of

variables. On the other hand, the remaining 10 factors show no

significant correlation with the biomass of Shangri-La spruce-fir.

Hence, based on the correlation analysis results of each

characteristic factor and plot biomass, the top 5 factors with the
FIGURE 5

GEDI parameter interpolation results with a shot interval of 10.
FIGURE 4

The distribution of different number of footprint points, (A) is 10 shots, (B) is 30 shots, (C) is 50 shots, (D) is 70 shots and (E) is 100shots.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1428268
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1428268
highest correlation coefficients were selected to serve as the

independent variables in the subsequent random forest biomass

estimation model.
4.6 Biomass modeling

In this study, the first five variables with the highest correlation

were selected as the modeling factors of support vector machine, k-

nearest neighbor method and random forest to estimate the

biomass of spruce-fir in the study area, and the accuracy was

tested by cross validation. In order to intuitively compare the
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estimation performance of the three machine learning algorithm

estimation models, the relationship between the estimated biomass

and the measured biomass was drawn (Figure 12). It can be seen

from Figure 3 that the AGB estimation accuracy based on the

random forest model is higher, R2 = 0.87, RMSE=30.96t/hm2,

MAE=23.65t/hm2, followed by KNN, R2 = 0.45, RMSE=49.90t/

hm2, MAE=35.94t/hm2, while the SVM model has the lowest

estimation accuracy, R2 = 0.31, RMSE=54.12t/hm2, MAE=38.19t/

hm2.From the data distribution map Figure 13, it can be seen that

the distribution range of AGB predicted values of the three models

is 16.19~177.40t/hm2, 24.04~181.78t/hm2, 27.22~199.10t/hm2,

respectively, which is less than the measured value range of
FIGURE 7

GEDI parameter interpolation results with a shot interval of 50.
FIGURE 6

GEDI parameter interpolation results with a shot interval of 30.
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5.19~296.10t/hm2. Among the three models, random forest has

higher estimation accuracy than SVM and KNN, and the overall

performance of the estimated value is closer to the measured value,

and the model performance is better.

Based on the footprints provided by GEDI, the AGB of spruce-fir

forest in the whole study area was inverted by using the random forest

model with the highest estimation accuracy (Figure 14). The random

forest estimation revealed that the above-ground biomass of spruce-fir

forest in the study area was generally at a medium level, with a

maximum of 179.33 t/hm2, a minimum of 51.83 t/hm2, and an

average of 101.98 t/hm2. The total biomass value was estimated to
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be 3035.29×104 t/hm2. From the perspective of spatial distribution of

biomass, the spruce-fir in the study area showed patches

inhomogeneous distribution from northwest to southeast. On the

whole, it is distributed longitudinally along the Hengduan Mountains,

which conforms to the growth habit of spruce-fir. The biomass of

spruce-fir in the northwest and east of Shangri-La is relatively higher

than that in the southwest and northeast of Shangri-La. The total

biomass of mountain and hilly areas mountainous and hilly areas such

as Shangri-La Grand Canyon and Pudacuo National Park display the

highest total biomass (Figure 14A), while Xiaozhongdian and Shangri-

La urban area have the lowest total biomass (Figure 14C).
FIGURE 9

GEDI parameter interpolation results with a shot interval of 100.
FIGURE 8

GEDI parameter interpolation results with a shot interval of 70.
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FIGURE 10

GEDI parameters and spruce-fir AGB correlation coefficient matrix. ‘ ** ‘ was significantly correlated at the 0.01 level (bilateral), and ‘ * ‘ was
significantly correlated at the 0.05 level (bilateral).
TABLE 4 Different GEDI footprints interpolation R2, RMSE and MAE.

parameter name

Different GEDI footprints interpolation R2, RMSE and MAE

10 30 50 70 100

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

pai 0.47 1.23 0.90 0.61 1.04 0.70 0.62 1.03 0.67 0.63 1.02 0.64 0.94 0.44 0.26

Modis_treecover 0.88 8.90 5.60 0.79 11.56 7.76 0.7 13.14 7.68 0.77 12.10 7.98 0.96 5.34 3.10

Modis_nonvegeted 0.71 6.15 4.13 0.73 5.92 3.55 0.75 5.81 3.31 0.69 6.17 3.34 0.97 2.2 1.98

Landsat_treecover 0.47 25.09 18.45 0.6 21.92 14.08 0.6 21.35 14.66 0.66 20.42 13.43 0.93 9.44 5.39

Leaf_off_doy 0.8 3582.7 889.6 0.78 3144.4 686.25 0.8 3086.9 711.47 0.87 2618.5 715.29 0.98 1420.5 349.48

Leaf_on_doy 0.71 3590.4 893.9 0.78 3151.8 690.23 0.8 3093.0 715.45 0.87 2625.3 718.96 0.98 1425.4 351.19

Fhd_normal 0.56 0.39 0.26 0.71 0.32 0.20 0.68 0.34 0.20 0.67 0.34 0.19 0.96 0.12 0.07

DEM 0.97 108.6 76.23 0.96 118.95 73.42 0.95 129.96 77.44 0.94 146.82 83.13 0.99 55.33 35.49

cover 0.51 0.22 0.17 0.63 0.19 0.13 0.61 0.21 0.13 0.64 0.19 0.12 0.94 0.08 0.05

rg 0.52 3041.9 2010.7 0.67 2543.7 1585.2 0.6 2565.3 1564.4 0.68 2610.0 1491.8 0.95 1032.1 563.69

Pgap_thea 0.49 0.22 0.17 0.65 0.19 0.13 0.65 0.19 0.13 0.69 0.12 0.12 0.9 0.08 0.05

Sensitivity 0.57 0.014 0.01 0.61 0.013 0.01 0.65 0.012 0.01 0.68 0.011 0.01 0.92 0.004 0.00

rv 0.54 2799.5 1899.3 0.67 2340.7 1492.3 0.68 2356.7 1478.7 0.62 2361.2 1388.2 0.89 1007.8 583.94

Rh100 0.55 721.1 505.81 0.63 638.88 389.63 0.62 648.05 391.44 0.67 612.99 382.29 0.96 224.04 139.90
F
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5 Discussions

5.1 Effects of the distribution and number
of GEDI footprint points on the
interpolation results and
biomass estimation

GEDI is the first space-borne LiDAR satellite dedicated to

detecting the three-dimensional structure of vegetation. The beam

emitted by GEDI can accurately obtain the vertical structure of

vegetation. Its data record the energy returned by different trees at

different heights on the ground, including structural information

such as surface topography and canopy height, coverage and

vertical profile indicators. Most of the previous studies on

biomass estimation by GEDI are combined with multi-source

remote sensing data extrapolation to obtain continuous forest

biomass. For example, Chen et al. (2023) first estimated the

biomass on the GEDI footprint point through random forest, and
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then combined with the characteristic variables of Landsat 8 and

Sentinel-1 to estimate the biomass of the entire study area. The ALS

biomass extracted by Dorado-Roda et al. (2021) in the GEDI lens is

used as an independent variable. The GEDI footprint contains a

number of different echo indicators for subsequent GEDI data

feature extraction and forest biomass model input. The ALS-

derived biomass model is used to estimate the AGB of different

forest ecosystems at the GEDI footprint level.

GEDI data are composed of discrete footprint points. After

visualization, it can be seen that its distribution law is that the beam

emitted along it is evenly distributed on the running track at a

distance of 60 m. In our research, different echo indexes of

footprints are extended to the surface by using interpolation

method. Therefore, in order to verify the effect of interpolation of

footprints with different amount and make the distribution of it

random and uniform, representative footprints are extracted every

10, 30, 50, 70 and 100 shot when extracting GEDI data. The analysis

shows that the interpolation results of the footprint (1309
FIGURE 11

The correlation coefficient between GEDI parameters and AGB of spruce-fir.
FIGURE 12

The scatter plots of measured values and predicted values of SVM, KNN and RF models.
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footprints) extracted every 100 shots are smoother than the other

five results (the number of footprints is 13127, 4343, 2646, 1871,

respectively). The fewer footprints there are the better the

interpolation effect and the higher the prediction accuracy. It can

be seen that the distribution and number of GEDI footprints will

affect the spatial interpolation results, and also affect the subsequent

biomass estimation. Previous studies have shown that the modeling
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sample size has a significant impact on the uncertainty of the

estimation of tree aboveground biomass at the regional scale. Fu

et al. (2015) found that the influence of parameter variability of

individual tree biomass estimation model caused by modeling

sample size on the uncertainty of regional-scale tree aboveground

biomass estimation increased with the decrease of modeling sample

size, which eventually led to the increase of total uncertainty.

Increasing the amount of modeling data can effectively improve

the estimation accuracy, accuracy and efficiency of the biomass

estimation model, and reduce the uncertainty. In this research,

when dealing with footprint data, Python is used to randomly select

its number so that it has randomness and distribution uncertainty,

so as to disrupt its aggregation distribution phenomenon. In the

follow-up study, we can refer to the sample optimization method

proposed by Shu et al. (2022), which combine the variance function

in geology with the value coefficient in value engineering, or the

second-order and third-order spatial sampling methods to extract

different numbers of footprint point data (Duncanson et al., 2019).
5.2 The influence of GEDI parameter
selection on biomass estimation accuracy

In this study, we extracted 14 features from GEDI data that are

highly correlated with the AGB of the Shangri-La spruce-fir,

including canopy cover area, leaf area index, waveform return
FIGURE 13

The violin plots of the measured values and predicted values of SVM,
KNN and RF models.
FIGURE 14

Spatial distribution of aboveground biomass of spruce-fir in Shangri-La, (A) high biomass area, (B) medium biomass area, (C) low biomass area.
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ground energy value, etc. These features are used for subsequent

random forests to estimate the explanatory variables of the AGB of

the spruce-fir. Through correlation analysis, it was found that

among all the variables, the variables with the highest correlation

with the biomass of spruce-fir in Shangri-La were the integral of the

ground component in the waveform (rg), leaf area index (pai),

vegetation gap (pgap_thea), canopy cover (cover), leaf height

diversity index (fhd_normal). These variables are related to

vegetation structure and topography. Several variables with the

highest correlation were input into the random forest model, and a

higher inversion accuracy (R2 = 0.87, RMSE = 30.96 t/hm2,

MAE=23.65t/hm2) was obtained. And Figure14 shows that the

biomass estimation results (3035.29 × 104 t/hm2, 101.98 t/hm2)

in the study area are similar to the results of Yang et al. (2021b)

based on the second survey data of forest resources, using the

biomass expansion factor method to calculate the biomass of

Shangri-La spruce-fir (total value: 3665.9×104 t/hm2, average

value 113.02 t/hm2), indicating that the inversion algorithm based

on the parameters provided by GEDI is feasible and the results

are reliable.

The predicted biomass of spruce-fir in this study averaged

101.98 t/hm2. The estimated biomass at lower positions generally

exceeded that at higher positions. This disparity may be attributed

to the inclusion of low shrubs and grasslands in the prediction at the

sparsely-covered areas beneath the forest canopy, resulting in

higher estimates, while the lower predictions at higher positions

could be due to the limited penetration of GEDI spaceborne lidar in

dense forest areas. Although the saturation of biomass cannot be

completely eliminated, the addition of effective remote sensing

features can reduce the impact of signal saturation (Qian et al.,

2021). Subsequently, the GEDI data can be combined with other

image data with reference to previous research methods to

overcome the problem of high-value underestimation or low-

value overestimation. For example, Xu et al. (2023b) combined

Landsat 9 data and GEDI data to invert the carbon storage of

Shangri-La Quercus; Silva et al. (2021) integrated GEDI, ICESat-2

and NISAR data to estimate regional-scale biomass, and obtained

high estimation accuracy. In addition, although the increase in the

number of independent variables makes the estimated biomass

closer to the true value, it also reduces the general validity of the

biomass model. Therefore, when constructing biomass models, the

theories of other disciplines (ecology, biology, meteorology, etc.)

should be cross-referenced, and the balance between statistical

standards and practical application requirements should be

considered (Tamiminia et al., 2021).
5.3 The potential and prospect of
interpolation technology combined with
machine learning model in using GEDI to
predict future AGB on a large scale

The discrete footprint points of GEDI lead to the fact that the

acquired data are not continuously distributed like optical remote

sensing or SAR data. Therefore, most studies combine GEDI and

multi-source remote sensing data for large-scale AGB prediction
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(Kanmegne Tamga et al., 2022; Rodda et al., 2024). In this study, the

GEDI footprint is taken as the research object, and the GEDI

footprint points are interpolated to obtain the information in the

whole research area. By focusing on exploring the influence of the

number of different footprint points, that is, the number of sample

locations, on the interpolation results. Using different light spot

data, the inverse distance weight method is used to interpolate the

parameters in the GEDI footprint. Our research results show that

the number of light spots is different, and the accuracy of

interpolation results is different. The less the number of

interpolation spots is, the more dispersed the distribution is, and

the closer the interpolation result is to the actual observation value.

The machine learning model can capture the complex nonlinear

relationship between AGB and explanatory variables through

flexible model structure (Pham et al., 2018). Compared with

statistical models, machine learning prediction is usually more

accurate, so it has been widely used in forest AGB estimation

research (Hopman et al., 2021). In this study, based on the

interpolation of GEDI in the early stage, GEDI parameters were

used as the dependent variable of the random forest model, and

spruce-fir sample sites were used as independent variables. The R2

of the model predicted by the random forest model was 0.88, RMSE

was 30.96 t/hm2, and MAE was 23.65 t/hm2. The results show that

the model has high accuracy. Previous studies have shown that

machine learning methods have great potential and advantages in

predicting future forest biomass (Li et al., 2020). For example, Liu

et al. (2023c) comprehensively considered the contribution of forest

factors, site conditions and meteorological factors in modeling, and

used BP-ANN and SVM to establish a prediction model for future

forest biomass based on sample plots. In the future research, the

GEDI parameters can be continuous based on the interpolation

method, so as to be added to the biomass model as independent

variables together with stand factors, site conditions and

meteorological factors, and then the future biomass changes can

be predicted by machine learning methods.
5.4 Limitations and prospects

In GEDI observations, the reflection of a portion of the laser

pulse from a flat bare land or something other than vegetation may

lead to biased predictions of information at the footprint level, such

as waveform that intersect with buildings, low clouds, steep slopes,

rough terrain, or other topographic features, including vegetation

and non-vegetation waveform (Bruening et al., 2023). The presence

of steep slopes (with or without vegetation) or non-vegetated

objects in the waveform footprint will change the value of the

relative height index, and may also lead to geodesic errors. If many

such observations are used in the mixed estimation, the estimated

results may be very different from the unbiased independent

reference data. Although the L2B algorithm has a built-in quality

marker, when a waveform clearly does not represent surface

conditions (such as clouds over the earth ‘s surface), the GEDI

algorithm cannot distinguish between waveform from forest canopy

and those containing buildings, low clouds, or non-vegetation

terrain features, such as rock outcrops, canyon walls, or steep
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slopes. Therefore, it is necessary to identify these observations and

remove them from the set used in the mixed AGB estimation. In

this study, GEDI ‘s three filtering conditions were used to eliminate

outliers, but the footprint points at buildings, low clouds and non-

vegetated terrains were not considered. Subsequent research can

refer to Zhang et al.’s (Zhang et al., 2023) filtering of low-quality

observation data that is not suitable for AGBD estimation through

improved data filtering and GEDI-FIA fusion AGBDmodel, so as to

accurately estimate AGB on the basis of ensuring the quantity and

quality of GEDI footprint.

At the same time, the GEDI user manual mentions that

although the second version of GEDI ‘s data has improved its

geo-positioning accuracy compared to the first version, there

is still a position error of 10.2m. The uncertainty of GEDI’s

geographical location means that the GEDI ‘s 25m diameter

footprint will move within a range of 10.2m. Occasionally, this

leads to GEDI data being obtained from adjacent but spatially

disjoint regions of footprint locations reported by GEDI products.

Therefore, caution will be taken in the use of GEDI data on canopy

layers with spatial heterogeneity, such as small stand or forest

land with fragmented distribution, and at the edge of the forest

(Roy et al., 2021). However, in this study, the surface information

is mainly obtained by interpolation using the attribute

information in the GEDI footprint point. The geolocation error

has little effect on this study, so it is not corrected for geolocation.

However, some researchers have proved that the geolocation error

of GEDI has little effect on the estimation results (Adam et al.,

2020). Therefore, whether it is necessary to do geolocation

correction for GEDI application scenarios is the focus and

difficulty of the next research.
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Schwartz, M., Ciais, P., Ottlé, C., Truchis, A. D., Vega, C., and Fayad, I. (2024). High-
resolution canopy height map in the Landes Forest (France) based on GEDI, Sentinel-1,
and Sentinel-2 data with a deep learning approach. Int. J. Appl. Earth Observ.
Geoinform. 128, 103711. doi: 10.1016/j.jag.2024.103711

Shu, Q., Xi, L., Wang, K., Xie, F., Pang, Y., and Song, H. (2022). Optimization of
samples for remote sensing estimation of forest aboveground biomass at the regional
scale. Remote Sens. 14, 4187. doi: 10.3390/rs14174187

Silva, C. A., Duncanson, L., Hancock, S., Neuenschwander, A., Thomas, N., and Hofton,
M. (2021). Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground
biomass mapping. Remote Sens. Environ. 253, 112234. doi: 10.1016/j.rse.2020.112234

Song, H., Xi, L., Shu, Q., Wei, Z., and Qiu, S. (2022). Estimate Forest aboveground
biomass of mountain by ICESat-2/ATLAS data interacting cokriging. Forests 14, 13.
doi: 10.3390/f14010013

Tamiminia, H., Salehi, B., Mahdianpari, M., Beier, C. M., Johnson, L., and Phoenix, D. B.
(2021). A comparison of decision tree-based models for forest above-ground biomass
estimation using a combination of airborne lidar and landsat data. ISPRS Ann. photogram.
Remote Sens. spatial Inf. Sci. 3, 235–241. doi: 10.5194/isprs-annals-V-3-2021-235-2021

Tamiminia, H., Salehi, B., Mahdianpari, M., and Goulden, T. (2024). State-wide
Forest canopy height and aboveground biomass map for New York with 10 m
resolution, integrating GEDI, Sentinel-1, and Sentinel-2 data. Ecol. Inf. 79, 102404.
doi: 10.1016/j.ecoinf.2023.102404

Tian, H. C. (2023). Remote sensing estimation of aboveground biomass in
subtropical forests based on active remote sensing data, passive remote sensing data,
and spaceborne LiDAR data. NanJing Forestry. Nan Jing University.

Vaithiyanathan, D., and Sudalaimuthu, K. (2022). Area-to-point regression Kriging
approach fusion of Landsat 8 OLI and Sentinel 2 data for assessment of soil
macronutrients at Anaimalai, Coimbatore. Environ. Monit. Assess. 194, 916.
doi: 10.1007/s10661-022-10571-1

Wang, J., Du, H., Li, X., Mao, F., Zhang, M., and Liu, E. (2021). Remote sensing
estimation of bamboo forest aboveground biomass based on geographically weighted
regression. Remote Sens. 13, 2962. doi: 10.3390/rs13152962

Wang, J. H., Li, F. R., and Dong, L. H. (2018). Additive aboveground biomass
equations based on different predictors for natural Tilia Linn. J. Appl. Ecol. 29, 3685–
3695. doi: 10.13287/j.1001-9332.201811.020

Wang, S., Liu, C., Li, W., Jia, S., and Yue, H. (2023). Hybrid model for estimating forest
canopy heights using fused multimodal spaceborne LiDAR data and optical imagery. Int.
J. Appl. Earth Observ. Geoinform. 122, 103431. doi: 10.1016/j.jag.2023.103431

Wei, C., Qin, H., Li, W., Wang, W., Hua, Y., and Yao, Y. (2024). Estimating
aboveground biomass of urban trees based on ICESat-2 LiDAR and Zhuhai-1
hyperspectral data. Phys. Chem. Earth 135, 103605. doi: 10.1016/j.pce.2024.103605

Wu, Z., Yao, F., Zhang, J., and Liu, H. (2024). Estimating forest aboveground biomass
using a combination of geographical random forest and empirical bayesian kriging
models. Remote Sens. 16, 1859. doi: 10.3390/rs16111859
frontiersin.org

https://doi.org/10.3390/rs15245653
https://doi.org/10.3390/rs15245653
https://doi.org/10.3390/rs15174143
https://doi.org/10.3390/s21186007
https://doi.org/10.3390/rs13122279
https://doi.org/10.1007/s10712-019-09538-8
https://doi.org/10.3390/s22052015
https://doi.org/10.5846/stxb201405130980
https://doi.org/10.3390/rs14112568
https://doi.org/10.1016/j.ecoinf.2023.102348
https://doi.org/10.1016/J.JAD.2021.04.081
https://doi.org/10.13466/j.cnki.lyzygl.2004.04.008
https://doi.org/10.1016/j.scitotenv.2021.147335
https://doi.org/10.3390/S23010349
https://doi.org/10.11929/j.swfu.201811019
https://doi.org/10.1038/s41598-020-67024-3
https://doi.org/10.1016/j.agrformet.2023.109592
https://doi.org/10.1016/j.agrformet.2023.109592
https://doi.org/10.1016/j.gecco.2022.e02359
https://doi.org/10.1016/j.jhydrol.2023.130304
https://doi.org/10.7523/j.ucas.2021.0076
https://doi.org/10.7523/j.ucas.2021.0076
https://doi.org/10.3390/f14051008
https://doi.org/10.1016/j.rsase.2021.100560
https://doi.org/10.3390/f14030454
https://doi.org/10.3390/f14030454
https://doi.org/10.1029/2020ea001491
https://doi.org/10.1080/01431161.2018.1471544
https://doi.org/10.1016/j.rse.2020.112165
https://doi.org/10.1016/j.rse.2020.112165
https://doi.org/10.3390/rs13245030
https://doi.org/10.1080/22797254.2019.1686717
https://doi.org/10.1080/22797254.2019.1686717
https://doi.org/10.1007/s12524-023-01693-1
https://doi.org/10.1016/j.srs.2021.100024
https://doi.org/10.1016/j.rse.2022.113074
https://doi.org/10.1016/j.jag.2024.103711
https://doi.org/10.3390/rs14174187
https://doi.org/10.1016/j.rse.2020.112234
https://doi.org/10.3390/f14010013
https://doi.org/10.5194/isprs-annals-V-3-2021-235-2021
https://doi.org/10.1016/j.ecoinf.2023.102404
https://doi.org/10.1007/s10661-022-10571-1
https://doi.org/10.3390/rs13152962
https://doi.org/10.13287/j.1001-9332.201811.020
https://doi.org/10.1016/j.jag.2023.103431
https://doi.org/10.1016/j.pce.2024.103605
https://doi.org/10.3390/rs16111859
https://doi.org/10.3389/fpls.2024.1428268
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1428268
Xie, D. P., Li, G. Y., Zhao, Y. M., Yang, X. D., Tang, X. M., and Fu, A. M. (2018). U.S.
GEDI Space-based Laser Altimetry System and its Application. Space Int. (12), 39–44.

Xu, L., Lai, H., Yu, J., Luo, S., Guo, C., and Gao, Y. (2023a). Carbon storage
estimation of quercus aquifolioides based on GEDI spaceborne liDAR data and landsat
9 images in Shangri-La. Sustainability 15, 11525. doi: 10.3390/su151511525

Xu,L.,Shu,Q.,Fu,H.,Zhou,W.,Luo,S., andGao,Y. (2023b).EstimationofQuercusbiomass
in Shangri-LabasedonGEDI spaceborneLiDARdata.Forests14, 876. doi: 10.3390/f14050876

Yang, H., Li, F., Wang, W., and Yu, K. (2021a). Estimating above-ground biomass of
potato using random forest and optimized hyperspectral indices. Remote Sens. 13, 2339.
doi: 10.3390/rs13122339

Yang, Y., Wang, R., and Xu, H. (2021b). Optimal design of second-order sampling
for forest biomass in Shangri-La city based on the forest management inventory. J.
Southw. Forest. 41, 160–167. doi: 10.11929/j.swfu.202012009

Yuan, H. Z. (2022). Research on forest height retrieval and monitoring method using
space-borne LiDAR data. Hennan Polytech. Kai Feng University.

Yun, T., Li, J., Ma, L., Zhou, J., Wang, R., and Eichhorn, M. P. (2024). Status,
advancements and prospects of deep learning methods applied in forest studies. Int. J.
Appl. Earth Observ. Geoinform. 131, 103938. doi: 10.1016/j.jag.2024.103938
Frontiers in Plant Science 18
Zeng, W., Li, L., Xiao, Q., Dang, Y., Ma, K., and Sun, J. (2016a). Tree Biomass Models
and Related Parameters to Carbon Accounting for Picea, LY/T 2656-2016 (Beijing,
China: Standards Press of China).

Zeng, W., Li, L., Zhou, X., Wang, X., Ma, K., and Gan, S. (2016b). Tree Biomass
Models and Related Parameters to Carbon Accounting for Abies, LY/T 2655-2016
(Beijing, China: Standards Press of China).

Zhang, G., Niu, L., Wu, M., Kaufmann, H., Li, H., and He, Y. (2023). Ecological
impact patterns and temporal cycles of green tide biomass in the settlement region:
based on time-series remote sensing and in situ data. IEEE J. Select. Topics Appl. Earth
Observ. Remote Sens. 17), 1610–1622. doi: 10.1109/jstars.2023.3338979

Zhang, J., Tian, J., Li, X., Wang, L., Chen, B., and Gong, H. (2021). Leaf area index
retrieval with ICESat-2 photon counting LiDAR. Int. J. Appl. Earth Observ. Geoinform.
103, 102488. doi: 10.1016/j.jag.2021.102488

Zhang, W., Zhao, L., Li, Y., Shi, J., Yan, M., and Ji, Y. (2022). Forest above-ground
biomass inversion using optical and SAR images based on a multi-step feature
optimized inversion model. Remote Sens. 14, 1608. doi: 10.3390/rs14071608

Zhu, X. X. (2021). Forest height retrieval of chine with a resolution of 30 m using
ICESat-2 and GEDI data (Bei Jing: Chinese Academy of Sciences).
frontiersin.org

https://doi.org/10.3390/su151511525
https://doi.org/10.3390/f14050876
https://doi.org/10.3390/rs13122339
https://doi.org/10.11929/j.swfu.202012009
https://doi.org/10.1016/j.jag.2024.103938
https://doi.org/10.1109/jstars.2023.3338979
https://doi.org/10.1016/j.jag.2021.102488
https://doi.org/10.3390/rs14071608
https://doi.org/10.3389/fpls.2024.1428268
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Forest aboveground biomass estimation based on spaceborne LiDAR combining machine learning model and geostatistical method
	1 Introduction
	2 Study area and research data
	2.1 Study area
	2.2 Field inventory data and calculation of AGB
	2.3 GEDI data

	3 Methods
	3.1 Inverse distance weighting model
	3.2 Evaluation of interpolation accuracy
	3.3 Biomass estimation model
	3.3.1 Support vector machine
	3.3.2 K-nearest neighbor algorithm
	3.3.3 Random forest regression

	3.4 Biomass model validation

	4 Results
	4.1 GEDI preprocessing and data filtering
	4.1.1 GEDI data pre-processing
	4.1.2 GEDI data filtering

	4.2 GEDI data distribution analysis
	4.3 GEDI footprint interpolation results
	4.4 Accuracy evaluation of GEDI footprint interpolation results
	4.5 Correlation analysis between GEDI variables and biomass
	4.6 Biomass modeling

	5 Discussions
	5.1 Effects of the distribution and number of GEDI footprint points on the interpolation results and biomass estimation
	5.2 The influence of GEDI parameter selection on biomass estimation accuracy
	5.3 The potential and prospect of interpolation technology combined with machine learning model in using GEDI to predict future AGB on a large scale
	5.4 Limitations and prospects

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


