
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Erika Levei,
INCDO INOE 2000 Research Institute for
Analytical Instrumentation Cluj-Napoca,
Romania

REVIEWED BY

Zuzana Lhotáková,
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Water content estimation of
conifer needles using leaf-level
hyperspectral data
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Academy of Sciences, Shenyang, China, 2University of Chinese Academy of Sciences, Beijing, China
Water is a crucial component for plant growth and survival. Accurately estimating

and simulating plant water content can help us promptly monitor the physiological

status and stress response of vegetation. In this study, we constructed water loss

curves for three types of conifers with morphologically different needles, then

evaluated the applicability of 12 commonly used water indices, and finally explored

leaf water content estimation from hyperspectral data for needles with various

morphology. The results showed that the rate of water loss of Olgan larch is

approximately 8 times higher than that of Chinese fir pine and 21 times that of

Korean pine. The reflectance changes were most significant in the near infrared

region (NIR, 780-1300 nm) and the short-wave infrared region (SWIR, 1300–2500

nm). Thewater sensitive bands for conifer needlesweremainly concentrated in the

SWIR region. The water indices were suitable for estimating the water content of a

single type of conifer needles. The partial least squares regression (PLSR) model is

effective for the water content estimation of all three morphologies of conifer

needles, demonstrating that the hyperspectral PLSR model is a promising tool for

estimating needles water content.
KEYWORDS

gymnosperms, water content, hyperspectral data, water indices, partial least
squares regression
1 Introduction

Leaves play a crucial role in plant photosynthesis, and carry essential physiological

functions. During photosynthesis, CO2 enters the leaf tissue through the stomata, and the

leaves constantly lose water in the process. Under severe drought stress, the relative water

content of leaves decreases progressively, which reduces stomatal conductance, slows CO2

assimilation, and eventually stops photosynthesis (Lawlor, 2002). This indicates that the

photosynthetic performance is highly dependent on the stable and suitable water status of

leaves (Xiong and Nadal, 2020). In comparison with whole-leaf nitrogen and phosphorus

masses, leaf water mass is a better predictor of whole-leaf photosynthesis (Wang et al., 2022).

Therefore, accurately estimating leaf water content is crucial for detecting drought stress and

monitoring plant health status.
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Contactless approaches, such as electromagnetic spectroscopy and

radar, are the primary techniques used to estimate the water content of

individual leaves (Quemada et al., 2021). Over the past decade, portable

spectrometers have emerged as a popular electromagnetic spectroscopy

tool. Its hyperspectral sensors can divide the spectrum into dozens to

hundreds of narrow bands, enabling the precise measurement of

physiological and biochemical parameters in plants. The biochemistry

and internal structure of leaves control the optical signatures observed

(Serbin and Townsend, 2020). Leaf water content (Naik et al., 2020),

chlorophyll concentration (Ling et al., 2019), and nutrients (Liu et al.,

2023) are the three key parameters of interest. In terms of theory, the

absorbed bands of chlorophyll are concentrated in the visible bands

(VIS, 380–780 nm), while the other two class parameters are

concentrated in the short-wave infrared region (SWIR, 1300–2500

nm). However, most studies have focused on field crops (Khan et al.,

2022), with limited attention given to tall trees, particularly conifers. An

early study demonstrates that there is a critical link between the

physiological characteristics of needles and spectral signatures in two

co-occurring conifers (Stimson et al., 2005). And the spectral changes

were detected earlier than observable in the field, when water stress

occurred (Einzmann et al., 2021).

Conifers are non-porous trees (Gymnosperms) with conservative

water use strategies, and their growth processes are highly sensitive to

drought stress (Zlobin, 2022). They may be more vulnerable to

extreme drought than broadleaved species under climate warming

(Yuan et al., 2021). Different conifers have various foliage

morphologies, such as linear-acicular leaves, and scale-like leaves.

Most conifer needles have a cuticular wax and several narrow bands

of stomatal lines. Conifers have rather low stomatal densities in

comparison to broadleaf species and herbs (Xiong and Flexas, 2020),

which allow to minimize water loss. Therefore, studying the simulation

and estimation of water loss of conifer needles can help understand

their coping strategies to drought stress. The objectives of this study

were: 1) to propose the acquisition method of hyperspectral data

according to three types of conifers with morphologically different

needles; 2) to construct the water loss curve of needles, and analyze the

reasons for the differences in water loss rate; 3) to determine

the sensitive bands of leaf water, verify and analyze the

applicability of commonly used water indices; and 4) to explore a

hyperspectral estimation machine learning method for needles with

various morphology.
2 Materials and methods

2.1 Study area

Our study area was located in the National Natural Reserve of

Changbai Mountain (42°24′9″N, 128°05′45″E), Jilin Province,

Northeast China. Changbai Mountain has typical temperate vertical

vegetation zones, including a rich variety of tree species within its

ecosystem. Three types of conifers were selected for this study, based

on the characteristics of their respective needles (Table 1). The three

conifers belong to Pinaceae plants, including the genera of Pinus,

Larix, and Abies, respectively.
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2.2 Data acquisition

Mature older sun needles were collected from three types of

conifers. Each type consists of five trees, and then the needles of

each tree were divided into 3 groups (total 15 groups) for natural

drying treatment in the laboratory (25°C, 40% RH), respectively.

Different morphologies of conifer needles were set at different

natural drying time intervals (Table 2) to obtain the actual weight

and spectral reflectance. It should be noted that due to slow water

loss of Korean pine, the needles color changes greatly after long-

term water loss, so its water content is higher than 35%. Finally, the

needles were dried at 65°C for 72 h to record the dry weight.

Spectral reflectance of the leaves was measured using an ASD

FieldSpec4 device (Analytical Spectral Devices). Three sets of individual

measurements were taken from different positions of the needles, with

each set representing the mean value of ten measurements. A total of

1215 spectral reflectance data sets (15 groups, 9-time intervals, and 3

measurements) were recorded. The contact probe of ASD is not well-

suited for directly measuring spectral reflectance of conifer needles,

which have very narrow leaves. The usual method is to cut off the

needles from the twigs and place on a plate for measuring (Einzmann

et al., 2014; Hejtmanek et al., 2022). In this study, this method was used

for Olgan larch. And put the needles in the culture dish as much as

possible to avoid reflection interference from other materials in the

background. For harder or longer needles, it’s challenging to fill the

contact probe of the spectrometer when the needles are placed on a

plate. To overcome this issue, we developed an acquisitionmethod after

multiple attempts: needles were plucked from the twigs, and collected

by clamp (Figure 1), and then the spectral reflectance data were

measured. Clamp can securely hold the needles. For each of the

three conifers, about 8 bundles of needles, 2 grams of needles, and

12 needles were selected to fill the field of view of the contact probe,

respectively. This new method ensures that the contact probe is fully

covered by needles.

Weight was recorded using an electronic balance CPA225D

(Sartorius) at 0.01 mg accuracy. Water content was calculated

according to Equation 1.

WC = (FW − DW)=DW (1)

Notes: FW (fresh weight, g), DW (dry weight, g).
TABLE 1 Three conifers and the characteristics of these needles.

Species Latin
name

Characteristics of needles

Korean
pine

Pinus
koraiensis
Siebold
& Zucc.

Needles 5 per bundle, dark green, straight, almost
triangular in cross section, 6-12 cm, stomatal lines 6-
8 along each abaxial surface, blue-gray, vascular
bundle 1, resin canals 3.

Olgan
larch

Larix
olgensis
A. Henry

Leaves 1.5-2.5 cm × ca. 1 mm, keeled abaxially,
stomatal lines 1-2 along each side of midvein on the
upper surface, 2-5 on the lower surface.

Chinese
fir pine

Abies
holophylla
Maxim.

Leaves pectinately arranged in 2 lateral sets, dark
green and shining adaxially, linear, flattened, 2-4 cm
× 1.5-2.5 mm, stomatal lines in 2 white bands
abaxially, resin canals 2.
(Referred to www.worldfloraonline.org and www.iplant.cn).
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2.3 Water content fitting and estimation

The water content of the picked needles changed with time. To

model the change in water content over time, and evaluate the rate

of water loss, we used an exponential function.

Four methods are used to quantify the biophysical variables of

vegetation from spectral data: parametric regression, nonparametric

regression, physically based, and hybrid regression methods

(Verrelst et al., 2019). In our study, the estimation of water

content using hyperspectral data includes two parts: the water

index method (parametric regression) and the machine learning

method (hybrid regression methods). The latter data is divided into

two parts: model training data (1/3) and validation data (2/3).

We identified 12 water indices through previous studies, including

Water Index (WI) (Penuelas et al., 1997), Moisture Stress Index (MSI-1)

(Hunt and Rock, 1989), Disease-Water Stress Index (DWSI) (Apan et

al., 2004), Leaf Water Index (LWI) (Seelig et al., 2008), Moisture Stress

Index (MSI-2) (Rock et al., 1986), Normalized Difference Water Index

(NDWI) (Gao et al., 1996), Normalized Difference Infrared Index

(NDII) (Hardisky et al., 1983), Normalized Heading Index (NHI)

(Pimstein et al., 2009), NDWI-Hyperion (NDWI-Hyp) (Ustin et al.,

2002), Double Difference Index (DDI) (Wang and Li, 2012), Floating

PositionWater Band Index (FPWBI) (Strachan et al., 2002), and Global

Vegetation Moisture Index (GVMI) (Ceccato et al., 2002). These band
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indices are related to the water content of different parts of the plant, and

a brief description can be found in Supplementary Table S1.

Partial Least Squares Regression (PLSR) is the more robust of

multiple machine learning methods, and can be considered the

optimal technique for predicting the water content of broad-leaved

trees (Zhang et al., 2022). There is a best-practice guide to

predicting plant traits using PLSR (Burnett et al., 2021). In this

study, the achievement of PLSR using R language with the package

“pls” (Mevik and Wehrens, 2007). Segmented cross-validation

method is used in PLSR. And 10 principal components were

identified by standard error based on cross-validation residuals.
2.4 Analysis approaches

An exponential function class (y=a*e-b*x+c) was used to

evaluate the water loss of needles. The higher the coefficient b, the

rapider the rate of water loss.

The water sensitive bands were determined by Pearson

correlation coefficient (R). The inversion results of water content

based on hyperspectral data were evaluated by coefficient of

determination (R2), and root mean square error (RMSE).
3 Results

3.1 Water loss and curve fitting of needles

The water content of needles decreases over time, after being

picked from the trees (Figure 2). The rate of water loss reduction is

fastest at the initial stage (the first two-time intervals of natural

drying treatment), and then it becomes slower and slower.
FIGURE 1

Needles were processed for spectral reflectance measurement. Each scale bar is 2.0 cm.
TABLE 2 Different natural drying time intervals of three morphologies of
conifer needles.

Species Drying time intervals

Korean pine 24h

Olgan larch 0, 1, 1, 2, 2, 2, 2, 2, 4h

Chinese fir pine 0, 4, 12, 16, 16, 16, 16, 16, 16h
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The water loss of needles follows an exponential function

distribution, and varies among different morphologies of conifer

needles. Chinese fir pine has the fastest rate of water loss, followed

by Olgan larch, while Korean pine has the slowest rate. The rate of

water loss of Olgan larch is approximately 8 times higher than that

of Chinese fir pine and 21 times that of Korean pine.
3.2 Changes of spectral reflectance

Different morphologies of conifer needles exhibit varying

reflectance under different leaf water content (Figure 3). Like the

leaves of broad-leaved tree species, the reflectance of needles also

exhibits four peaks (560, 770-1310, 1670-1850, 2240 nm), with the

second peak covering the widest bands and displaying the highest

reflectivity (Figure 3A). Among the three tree species, Korean pine,

and Olgan larch have the most similar reflectance, and Chinese fir

pine has the lowest reflectance.

The reflectance of the three tree species gradually decreased

over time (Figures 3B–D), except for the reflectance changes around

1000 nm, which showed no obvious regularity. The change in

reflectance was more significant in the near infrared region (NIR,

780-1300 nm) and the SWIR region than in the VIS region. Among

the three species, Olgan larch exhibited the most pronounced

changes (about 0.2) in reflectance over time, while Korean pine

showed the least changes (about 0.1).
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3.3 The leaf water sensitive bands

Water sensitive bands are mainly concentrated in the SWIR

region, and exhibit negative correlations (Figure 4). Different

morphologies of conifer needles have distinct characteristics. For

Korean pine, the three most relevant bands are 1402, 1874, and

2303 nm. However, for Chinese fir pine, they are 1487, 1880, and

2024 nm. For Olgan larch, there is a most positive band at 742 nm.

The changes of R values are less pronounced in the SWIR region

compared to the other two morphologies of conifer needles.
3.4 The applicability of the commonly used
water indices

Twelve water indices were used to estimate the water content of

three morphologies of conifer needles. The estimation results of

different water indices showed varying distribution intervals

(Supplementary Figure S1), ranging from -0.5 to 3.5. Among the

12 water indices, three water indices (MSI-1, MSI-2, and DDI)

showed a negative correlation, while the other nine showed a

positive correlation. The calculation results of the water index

LWI were the largest, even several times larger than the other

indices. Some water indices showed similar results, such as WI and

FPWBI, MSI-1 and MSI-2, NDII and GVMI, etc.

The correlation results are different in various water indices and

morphologies of conifer needles (Figure 5). The correlation was lower
FIGURE 2

The water loss curve of leaves of three morphologies of conifer needles (A) Korean pine, (B) Chinese fir pine, and (C) Olgan larch.
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FIGURE 4

The leaf water sensitive bands of three morphologies of conifer needles. The ordinate is the Pearson correlation coefficient (R).
FIGURE 3

The hyperspectral reflectance of three morphologies of conifer needles. (A) Reflectance at the beginning time. Reflectance changes over time for
Korean pine (B), Olgan larch (C), and Chinese fir pine (D).
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for Korean pine (mean value 0.42), but higher for Olgan larch (mean

value 0.78) and Chinese fir pine (mean value 0.91). The R2 values of

the WI, NDWI, NDWI-Hyp, and FPWBI indices are all above 0.50.

When considering the three morphologies of conifer needles

simultaneously, the correlation between 12 water indices and water

content is lower than when modeling each morphology of conifer

needles separately (Figure 6). The R2 values of the LWI, MSI-2, and

DDI indices are all above 0.50.
3.5 Partial least squares regression method
predictions of water content

The results indicate that the leaf water content in different

conifers is well-fitted. PLSR prediction, using hyperspectral

reflectance, can well predict water content (R2 = 0.89, RMSE=6.89)

for all three morphologies of conifer needles (Figure 7).
4 Discussion

In this study, we utilized hyperspectral reflectance in 12 water

indices and PLSR models to assess the leaf water content of three

morphologies of conifer needles. We found that the performance of

different water indices varied, and to a certain extent, each water index

was suitable for estimating the water content of a single type of conifer

needles. The PLSR model was effective in estimating the water content

of all three morphologies of conifer needles, demonstrating that the

hyperspectral PLSR model is a promising tool for estimating canopy

water content of forest with high species diversity on a larger scale.
4.1 Water loss differences

Trees with different wood properties (diffuse-porous, ring-

porous, and non-porous) process different xylem structures,

which is the main reason for the differences in their hydraulic

efficiency (McCulloh et al., 2010). In diffuse-porous and ring-

porous trees (Angiosperms), water is transported the evaporating

surface through dense vein networks and vessels within the leaves.

Conversely, in non-porous trees (Gymnosperms), water transport
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within needles depends on a single main vein, with narrow

tracheids acting as the water transport cells (Hacke et al., 2015).

The thick cuticle of epidermis, sunken stomata, and rounder shape

of overall leaves, help prevent water loss through the needles. So the

leaf hydraulic conductance of non-porous trees is the lowest (Jin

and Wang, 2016). In addition, the stomatal density of

Gymnosperms is lower than that of Angiosperms, which is also

one of the possible reasons (Xiong and Flexas, 2020).

Three types of conifers are all non-porous trees and Pinaceae

plants in our study, while the rates of water loss exhibit significantly

differences. This disparity in hydraulic trait may be ascribed to

variations in leaf traits and anatomy, such as leaf venation (Sack and

Scoffoni, 2013), stomata (Buckley, 2005), anatomical traits of cells

and tissues (John et al., 2013), and so on. Concerning leaf traits, the

needles of Korean pine are the longest and triangular in section,

those of Chinese fir pine are the widest and relatively hard, and the

needles of Olgan larch are small and soft.

The anatomy of the Korean pine needles is shown in Figure 8.

One notable feature is that stomata are only appeared on two sides,

with the abaxial side (based on the position of the phloem) lacking

stomata (Ghimire et al., 2015a). There are three medial resin ducts

in cross section, which is more than those of the other two tree

species (that typically have only one or two resin ducts). We infer

that this may be one of the reasons for its slower water loss. On the

other hand, the embolism-resistant xylem of the Larix genus (Larix

occidentalis) is the least, when compared with that of conifers of the

Pinus and Pseudotsuga genera (Miller and Johnson, 2017). The

xylem is easily embolized implies that the water use strategy is not

conservative, which explains why the Olgan larch needles lose water

the fastest. In addition, the Pinus genus (Pinus sylvestris) has a

thicker cell wall thickness and a lower average fraction of

intercellular airspace compared to Larix genus (Larix decidua)

(Eckert et al., 2021). Both of these characteristics provide

resistance to water evaporation from the stomata, which may

explain the slower water loss of Pinus sylvestris needles. In terms

of Chinese fir pine needles, they have a continuous single-layered

hypodermis (Ghimire et al., 2015b), whereas Korean pine needles

are typically one to two layered. The differences in hypodermis may

be one of the reasons for the variance in water loss between these

two species. Lastly, another difference that cannot be ignored is the

quantity of resin ducts. Does a higher quantity and proportion of
FIGURE 5

Correlation between 12 water indices and water content of three morphologies of conifer needles. KP, CFP, and OL are the abbreviations of Korean
pine, Chinese fir pine, and Olgan larch, respectively. The corresponding scatter plots are shown in Supplementary Figures S2, S3, and S4.
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resin ducts in the cross section result in slower water loss of needles?

The question remains to be explored.
4.2 Spectral reflectance and water indices

Water has high absorption in the NIR and SWIR wavelength range,

as confirmed by previous studies. Three spectral intervals (970–1150,

1330–1350, and 1584–1760 nm) have been proven to be suitable for

retrieving leaf water content (Fang et al., 2017). In the study of equivalent

water thickness for three mangrove trees, the spectral domain of 1125-

1868 nm is found to be sensitive (Fu et al., 2024). In our recent research,

we also found the SWIR region is sensitive to leaf water content (Zhang

et al., 2022). The bands that make up the 12 water indices also mostly

come from this interval (Supplementary Table S1).
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Water indices can be used to promptly estimate leaf water

content, which is crucial for detecting and monitoring water stress

in forests (Le et al., 2023). Leaf traits or physiological indicators

exert a certain degree of influence on the inversion results. In our

study, the R2 of Korean pine is lower than the other two (Figure 5).

We speculate that it might be attributed to the influence of leaf

morphology and pigment changes, as Korean pine has lost water for

an overly long period. The accuracy of water content estimation for

a specific type of leaves, such as maize seedlings (Ma et al., 2016)

and kiwifruit (Zhang et al., 2022), is very high. However, a challenge

emerges as the inversion accuracy varies among different

morphologies of leaves, even for the same water index, when the

fitting coefficient is not taken into account (Figure 6). Consequently,

separate fitting is required for different leaves, leading to a lack of

generalization of the water indices.
FIGURE 6

Scatter plots between 12 water indices and water content of three morphologies of conifer needles. The dark green, light blue, and light green dots
represent Olgan larch, Chinese fir pine, and Korean pine, respectively.
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Although the water indices have the drawback of species-

specificity, they are still widely used (Zhang and Zhou, 2019; Raj

et al., 2021). They provide a relatively quick and straightforward

way to obtain initial estimates of parameters. Also, the existing

knowledge and research basis for these water indices make them a

convenient starting point for many studies. However, in the long

term, more efforts should be made to develop and apply full spectra

prediction models to improve the accuracy and universality of water

content estimation.
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4.3 Advantages of machine
learning method

Compared with water indices, the machine learning method is

more suitable for estimating the water content of multiple needles just

through building one model. Methods such as PLSR (Xie et al., 2013),

random forest (Xu et al., 2023), and support vector machine (Tunca

et al., 2023) are considered preferable for determining water content. In

recent years, state-of-the-art deep learning solutions have also been

develop and attracted attention (Kamarudin et al., 2021).

In this study, we solved the problem by using PLSR, that

estimation in various leaves is inconsistent (Figure 7). PLSR

encompasses principal component analysis, canonical correlation

analysis, and multiple linear regression, rendering it more

appropriate for modeling multi-dimensional spectral information.

Scaling the leaf-level model to the canopy level is essential for

vegetation monitoring. Also, several studies have estimated the

water content of the vegetation canopy based on PLSR (Mirzaie

et al., 2014; Boloorani et al., 2020; Sun et al., 2021). Leaf age

(Lhotakova et al., 2021) background soil reflectance (Panigrahi and

Das, 2021) are both the important factors that need to be considered.

This approach could be explored in future research endeavors.
4.4 Limitations of the study

The spectral features and relationships identified at the leaf scale

cannot be directly applied to the plant canopy without

modifications (Ma et al., 2019), which is an important problem in

model scaling. The PROSAIL Model (PROSPECT and SAIL

radiative transfer models) (Berger et al., 2018) provides a possible

method to solve this problem. Parameters such as leaf pigment

content, leaf area index, and average leaf inclination angle are input

into the model together with leaf water content, to generate canopy

reflectance data. That is, canopy reflectance data can be used to

estimate water content when other parameters are determined.

There has been a study on the potential applicability of the leaf

radiative transfer model (PROSPECT) for Norway spruce needles

(Malenovsky et al., 2006). However, new problems emerge, i.e., the

large-scale acquisition and coupling of the other parameters still

require further studied.

Leaf traits are influenced by leaf age and seasonal dynamics. The

needles in our study were fully mature leaves during the peak growing

season. However, the physiological and biochemical characteristics of

leaves typically change with time during the year or more. Taking leaf

age and seasonal dynamics into account is crucial for the spectral

inversion of leaf traits. There are large age-related variation in leaf

spectral (Chavana-Bryant et al., 2017), especially for Cunninghamia

lanceolata (Wu et al., 2018). While for Picea sitchensis, the study

found the reflectance of different leaf ages changes relatively little

(O’Neill et al., 2002).And rapid changes were observed in the spectra

in early spring and late autumn for several conifers (Hovi et al., 2017).

In future studies, the effects of seasonal dynamics and leaf age should

be considered and compared for different conifers.
FIGURE 7

Scatter plot of measured water content and predicted water content
by partial least squares regression model.
FIGURE 8

Needle cross section of Korean pine. Three resin ducts are marked.
The cell was stained with safranin-fast green. The method is
consistent with xylem anatomy (Zhang et al., 2020).
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SUPPLEMENTARY FIGURE 1

Estimation results of 12 water indices under different water content. Yellow
indicates negative correlation and green indicates positive correlation.

SUPPLEMENTARY FIGURE 2

Correlation scatter plots between 12 water indices (vertical ordinate) and

water content (horizontal ordinate, abbreviation “WC”) of Korean pine.

SUPPLEMENTARY FIGURE 3

Correlation scatter plots between 12 water indices (vertical ordinate) and

water content (horizontal ordinate, abbreviation “WC”) of Chinese fir pine.

SUPPLEMENTARY FIGURE 4

Correlation scatter plots between 12 water indices (vertical ordinate) and
water content (horizontal ordinate, abbreviation “WC”) of Chinese fir pine.

SUPPLEMENTARY TABLE 1

Brief description of narrow band indices that were used in the study. Notes:
BR stands for band radio; BD stands for band difference. r1530 stands for the

spectral reflectance of band 1530 nm. min(r930, r980) stands for the minima

in reflectance between 930 and 980 nm.
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