Utilizing a pot experiment approach, seedlings were treated with exogenous calcium at five concentrations (0, 50, 100, 200, and 400 mg•kg-1). The nutrient content of the plants and soil was measured, and their ecological stoichiometric characteristics and internal stability were analyzed. This was followed by a series of related studies.
As the concentration of calcium increases, the contents of carbon, nitrogen, phosphorus, and potassium in various organs and the whole plant exhibit a trend of first increasing and then decreasing, peaking at calcium treatment of 50-100 mg•kg-1. Concurrently, the calcium concentration in plant organs and the entire plant gradually increases with the availability of calcium in the soil. The addition of exogenous calcium has a certain impact on the ecological stoichiometric ratios (C:N, C:P, N:P) of
Calcium, as an essential structural component and second messenger, regulates the nutrient uptake and utilization in plants, influencing the stoichiometry. However, both low and high concentrations of calcium can be detrimental to plant growth by disrupting nutrient metabolism and internal structures. Consequently, there exists an optimal calcium concentration for nutrient absorption.