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Comparative transcriptome
analysis of resistant and
susceptible watermelon
genotypes reveals the role of
RNAi, callose, proteinase, and
cell wall in squash vein yellowing
virus resistance
Rahul Kumar1,2, Bidisha Chanda1†, Scott Adkins3

and Chandrasekar S. Kousik1*

1Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States
Department of Agriculture, Charleston, SC, United States, 2ORISE participant, USVL, USDA-ARS,
Charleston, SC, United States, 3U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce,
FL, United States
Watermelon (Citrullus lanatus) is the third largest fruit crop in the world in term of

production. However, it is susceptible to several viruses. Watermelon vine decline

(WVD), caused by whitefly-transmitted squash vein yellowing virus (SqVYV), is a

disease that has caused over $60 million in losses in the US and continues to

occur regularly in southeastern states. Understanding themolecular mechanisms

underlying resistance to SqVYV is important for effective disease management. A

time-course transcriptomic analysis was conducted on resistant (392291-VDR)

and susceptible (Crimson Sweet) watermelon genotypes inoculated with SqVYV.

Significantly higher levels of SqVYV were observed over time in the susceptible

compared to the resistant genotype. The plasmodesmata callose binding protein

(PDCB) gene, which is responsible for increased callose deposition in the

plasmodesmata, was more highly expressed in the resistant genotype than in

the susceptible genotype before and after inoculation, suggesting the inhibition

of cell-to-cell movement of SqVYV. The potential role of the RNA interference

(RNAi) pathway was observed in the resistant genotype based on differential

expression of eukaryotic initiation factor (eIF), translin, DICER, ribosome

inactivating proteins, RNA-dependent RNA polymerase (RDR), and Argonaute

(AGO) genes after inoculation. The significant differential expression of

hormone-related genes, including those involved in the ethylene, jasmonic

acid, auxin, cytokinin, gibberellin, and salicylic acid signaling pathways, was

observed, emphasizing their regulatory roles in the defense response. Genes

regulating pectin metabolism, cellulose synthesis, cell growth and development,

xenobiotic metabolism, and lignin biosynthesis were overexpressed in the
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susceptible genotype, suggesting that alterations in cell wall integrity and growth

processes result in disease symptom development. These findings will be helpful

for further functional studies and the development of SqVYV-resistant

watermelon cultivars.
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Introduction

Watermelon (Citrullus lanatus, 2N = 22), is a member of the

family Cucurbitaceae and the world’s third largest fruit crop in term

of production. It is a globally cultivated cash crop renowned for its

health-promoting compounds such as lycopene and citrulline

(Kousik et al., 2015b; Maoto et al., 2019; Zamuz et al., 2021). In

the United States, watermelon cultivation spans 96,500 acres, with

an estimated value of $748 million (USDA, 2023). Nearly 80% of all

U.S. watermelon production occurs in four states: Florida, Georgia,

Texas, and California. Squash vein yellowing virus (SqVYV), the

causal agent of watermelon vine decline (WVD), is one of the most

important viral pathogens affecting watermelon crops in the

southeastern United States, especially Florida (Huber, 2006;

Roberts et al., 2008; Kousik et al., 2010; Kousik et al., 2012b;

Adkins et al., 2013). Recognizing the severity of the situation, the

National Watermelon Association identified WVD as a critical

research priority (Morrissey, 2006; Kousik et al., 2016). This

disease occurs during the spring and fall growing seasons in

Florida and is characterized by a severe and sudden decline in

watermelon vines and foliage as the crop approaches harvest or

soon after the first harvest (Adkins et al., 2007; Kousik et al., 2012b;

Webster et al., 2013). The symptoms include yellowing, scorched or

brown leaves, defoliation, and wilting of the vines, leading to the

rapid collapse of mature plants. In some fields, the incidence of

WVD can increase from 10% to 80% within a week, indicating rapid

disease progression (Kousik et al., 2012b). Fruits from affected

plants are generally unmarketable and exhibit symptoms of

internal rind necrosis and flesh decay, despite their external

appearance being normal (Huber, 2006; Adkins et al., 2007;

Roberts et al., 2008; Kousik et al., 2012b).

SqVYV is a potyvirus of the genus Ipomovirus (Adkins et al.,

2007; Roberts et al., 2008). SqVYV was first identified in squash

plants but has gained recognition for its devastating impact on

watermelon. SqVYV is transmitted by whiteflies (Bemisia tabaci) in

the agro-ecosytem (Webb et al., 2012) although experimentally

SqVYV can also be mechanically transmitted (Adkins et al., 2007;

Kousik et al., 2009; Webster et al., 2013). SqVYV is now widespread

in the USA (Egel and Adkins, 2007; Adkins et al., 2011; Webster and

Adkins, 2012; Batuman et al., 2015). In Florida, existing

management strategies for WVD focus on eliminating reservoir
02
host plants including cucurbit weeds and volunteer plants (Adkins

et al., 2008; Kousik et al., 2012b). Though theoretically sound,

complete eradication of the virus reservoirs is challenging and

extremely difficult in practice. Additionally, whitefly populations

are managed through insecticide application and the use of silver

plastic mulch (Kousik et al., 2010; Kousik et al., 2015a). In addition,

there has been an alarming increase in the number of whitefly

populations resistant to insecticides, particularly neonicotinoids

(Patra and Hath, 2022). Therefore, the development of SqVYV-

resistant cultivars is one of the best options for managing this

devastating disease. Our laboratory has identified sources of

resistance to SqVYV in watermelon germplasm and developed

392291-VDR, a resistant watermelon germplasm (Kousik et al.,

2009; Kousik et al., 2012a).

Plants have developed a series of defense mechanisms against

pathogen attacks during their coevolution (Métraux et al., 2009; Qi

et al., 2011; Tena, 2021). Recognition and signaling pathways are

central to the defense against viral infections in plants. Pattern

recognition receptors (PRRs) enable plants to detect conserved viral

components known as pathogen-associated molecular patterns

(PAMPs), initiating a cascade of signaling events that activate

defense responses (Jones and Dangl, 2006). Signaling pathways,

such as the salicylic acid (SA), jasmonic acid (JA), and ethylene

(ET) pathways, play pivotal roles in mediating antiviral defense

responses by regulating the expression of defense genes and

coordinating various defense mechanisms (Pandey and Baldwin,

2007; Pieterse et al., 2012). An essential mechanism employed by

plants to combat viral infections is RNA silencing, also known as

RNA interference (RNAi) (Ding and Voinnet, 2007; Hung and

Slotkin, 2021). This conserved pathway involves the production of

small RNA molecules, including small interfering RNAs (siRNAs)

and microRNAs (miRNAs), which target and degrade viral RNA

(Ding and Voinnet, 2007; Hung and Slotkin, 2021). RNA silencing

acts as a potent antiviral defense mechanism, suppressing viral

replication and spread. Another critical component of plant defense

against viral diseases is the presence of resistance (R) genes. These

genes encode intracellular immune receptors that directly or

indirectly recognize viral effector molecules. Recognition of effectors

leads to the activation of effector-triggered immunity (ETI), which

often manifests as a hypersensitive response (HR) characterized by

localized cell death at the infection site (Jones and Dangl, 2006).
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In collaboration with other defense pathways, such as SA-mediated

signaling, R genes confer resistance against specific strains or types of

viruses, enhancing plant immunity (Dangl et al., 2013). Plants also

deploy cellular structural barriers to defend against pathogens,

hindering their initial entry and subsequent cell-to-cell spread. The

polysaccharide callose is one such barrier made up primarily of b-1,3-
glucan chains that play important roles in the defense against biotic

stresses, including viral infections (Li et al., 2012; Wang et al., 2021;

Zhang et al., 2022). In addition, antioxidant mechanism also helps

plants in combating stresses (Ding et al., 2020; Rana et al., 2021, 2022;

Kumar et al., 2023; Chugh et al., 2024). The intricate interplay of these

defense mechanisms provides plants with layered and dynamic

resistance against viral diseases.

Since WVD caused by SqVYV is an important disease,

understanding the molecular basis of resistance could be useful for

developing vine decline resistant watermelon varieties. To date, no

transcriptomic study of vine decline disease has been reported in

watermelon. To address these knowledge gaps, 392291-VDR (resistant)

developed by USDA ARS (Kousik et al., 2012a) and the commercial

cultivar Crimson Sweet (susceptible) watermelon genotypes were used

to understand the molecular basis of WVD resistance. The findings of

this study enhance our understanding of WVD resistance mechanisms

and provide valuable insights for the development of targeted

approaches for watermelon disease management.
Materials and methods

Plant materials and virus inoculation

Two watermelon genotypes, 392291-VDR (Resistant) and

Crimson Sweet (Susceptible), were used in this study. The SqVYV-

resistant watermelon germplasm, 392291-VDR (Citrullus lanatus) was

identified and developed in our lab based on phenotyping 218 plant

introductions (PI) by mechanical inoculation with SqVYV (Kousik

et al., 2009; 2012a). Seeds of the cultivar Crimson Sweet, developed by

C.V. Hall through crossing ‘Peacock’ and ‘Chubby Gray’s’ at Kansas

State University in 1964, were obtained from Willhite Seeds (Poolville,

TX). The original squash isolate of SqVYV was obtained from

Hillsborough County, FL, as described previously (Adkins et al.,

2007, 2008) and routinely maintained in Prelude II squash plants

(Cucurbita pepo, Seminis Seeds, Oxnard, CA). The virus inoculum was

prepared by homogenizing infected plant tissue, including leaves,

cotyledons, and hypocotyls, in 20 mM sodium phosphate buffer (pH

7.0) containing 0.1% (wt/vol) sodium sulfite and 1% (wt/vol) celite

following the protocol described by Adkins et al. (2008). Mechanical

inoculation of the resistant and susceptible genotypes was carried out

by gently rubbing the inoculum onto the cotyledons and first true

leaves of 4-week-old plants using cheese cloth. After inoculation, the

plants were placed in a walk-in Percival (https://www.percival-

scientific.com/) growth chamber at 28°C with 12 h day/night light

cycles. The control and zero-time-point plants were mock-

inoculated with sodium phosphate buffer only. The plants were

then monitored every day for vine decline symptom expression.
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RNA extraction, cDNA library construction,
and Illumina sequencing

Plant tissues including hypocotyl and true leaves were collected

from both the 392291-VDR and Crimson Sweet genotypes at four

time points: 0 (before inoculation), 5, 10, and 15 days after

inoculation. Plant tissues were frozen in liquid nitrogen

immediately after harvesting and stored at -80°C. Total RNA was

isolated from frozen plant tissue using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) following the manufacturer’s instructions.

RNA purification steps and on-column DNase digestion were

performed using the QIAGEN RNeasy Mini Kit as suggested by

the manufacturer (QIAGEN, Hilden, Germany). Paired-end

sequencing was performed using a NovaSeq 6000 SP v1.5 200

cycle sequencing (2 × 100 bp) instrument. Three biological

replicates of each genotype (392291-VDR and Crimson Sweet)

per time point were used for 100 bp paired-end RNA-seq. The

original RNA-seq data has been submitted to the National Center

for Biotechnology Information (NCBI) and can be accessed under

the bioproject number PRJNA1086032.
Processing and mapping of Illumina reads

Transcriptome analysis was done by Novogene. The quality of

the raw sequencing data was assessed using FastQC (fastqc/0.12.1

version) (Andrews, 2010) to ensure high data quality. Subsequently,

Trimmomatic (trimmomatic/0.39 version) was used to remove

adapter sequences and low-quality reads, resulting in a set of

high-quality reads for downstream analysis (Bolger et al., 2014).

Low-quality reads with a minimum Phred quality score of less than

35 were trimmed from both ends. To ensure a minimum length

requirement, reads with 30 or more nucleotides (for each pair) were

retained. The high-quality reads were then mapped to the

Charleston gray watermelon reference genome (Wu et al., 2019)

(http://cucurbitgenomics.org/organism/4) using the mem

algorithm from the Burrows−Wheeler aligner (bwa-mem2/2.1

version) (Li and Durbin, 2009). edgeR (edgeR_4.0.16 version) was

used to identify differentially expressed genes (Robinson et al.,

2010). Genes with a log2FC > 2 and < −2 were considered up-

and downregulated, respectively. A false discovery rate (FDR) ratio

threshold of less than 0.05 was used to filter out the most

significantly differentially expressed genes (DEGs).
Gene annotation, classification of DEGs
into functional categories, and
KEGG analysis

The Gene Ontology (GO) classifications of all DEGs/transcripts

were categorized into broader GO classes using the GO enrichment

and GO gene classification tools available in the Cucurbit

Genomics Database (https://cucurbitgenomics.org/pwyenrich) and

Blast2GO server (https://www.blast2go.com/). KEGG pathway
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analysis was performed using the KOBAS 3 database (https://

kobas.cbi.pku.edu.cn/kobas3).
Quantitative real-time PCR validation of
select differentially expressed genes

Eight important DEGs were confirmed by qRT-PCR, and the

sequences of the primers used are listed in Table 1. Three biological

replicates were used for the qRT−PCR analysis. cDNA was

synthesized using the iScript™ cDNA Synthesis Kit (Bio-Rad

Laboratories, Richmond, CA, US). Subsequently, these cDNA

products were used in qRT−PCR assays with SYBR Green I

Master Mix (2× concentration). The reactions were carried out on

a LightCycler 480 Instrument II (Roche, Basel, Switzerland) in 96-

well plates. Each well had a reaction solution volume of 20 mL. For
normalization purposes, the native actin gene was used as the

internal control, as suggested in prior studies (Mandal et al.,

2018). The expression levels were standardized against the actin

gene expression for each respective sample using the comparative

Ct method (2−DDCt) (Livak and Schmittgen, 2001).
Results

392291-VDR genotype showed resistance
to SqVYV

Fifteen days post-inoculation (dpi), all plants were scored for

theWVD symptoms (Figures 1A–C). Crimson Sweet plants showed

characteristic symptoms of WVD, which included yellowing,

scorched or brown leaves, defoliation, and wilting of the vines.

Conversely, 392291-VDR plants exhibited resistance to the disease,

showing significantly milder symptoms than Crimson Sweet

(Figures 1A–C). To calculate the number of viral copies in the

plants, the transcriptome data were mapped to the SqVYV genome.

The percent reads for each sample were determined based on the

overall count of reads in the samples. Following inoculation, both
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the resistant and susceptible genotypes exhibited increased viral

loads (reads) (Figures 1D, E). However, the susceptible genotypes

had a significantly much higher number of mapped reads compared

to the resistant genotypes. After 5, 10, and 15 dpi, the susceptible

genotypes accounted for 0.026% (14231 copies), 4.4% (925137

copies), and 36% (17853634 copies) of the total reads, respectively

(Figures 1E, F). In comparison, the resistant genotypes produced

averages of 0.021% (9781 copies), 0.08% (34694 copies), and 4.9%

(1549655 copies) at the same time intervals. Relative gene

expression analysis of SqVYV was performed using qRT-PCR. A

2-fold and 5.5-fold higher expression of the SqVYV gene was

observed in the susceptible genotype compared to the resistant

genotype after 5 and 10 dpi, respectively (Figure 1G). However,

after 15 dpi, the gene expression decreased by 50% in the susceptible

genotype compared to the resistant genotype, possibly due to

tissue death.
Evaluation of RNA-seq data

The genome-wide gene expression profile was obtained through

RNA-seq analysis of resistant and susceptible genotypes before and

after inoculation. RNA-seq analysis was conducted at four time

points: 0 (before inoculation), 5, 10, and 15 days. The resulting

RNA-seq libraries generated 19.7 to 42.8 million reads (Table 2).

The highest number of reads (46.40 million) was observed for the

VDR-15 (392291-VDR at 15 dpi), while the lowest number of reads

(41.28 million) was observed for the VDR-10 (392291-VDR at 10

dpi). Most of these reads (44% to 97%) were successfully mapped to

the watermelon reference genome, resulting in transcriptome

coverage ranging from 19X to 25X (Table 2). Among the total

mapped reads, VDR-0 (392291-VDR at 0) has highest mapping

with 42.83 million reads, while CS-15 (Crimson Sweet at 15 dpi)

had the lowest at 19.77 million. In terms of unique mapping, VDR-0

again had highest uniquely mapped reads with 41.08 million, with

CS-15 having the lowest at 18.92 million. Considering the

percentage of total mapping rates, VDR-0 had the highest

percentage, at 96.94%. In contrast, CS-15 had the lowest
TABLE 1 Primers used for the validation of DEGs.

Gene Name Forward (5’-3’) Reverse (5’-3’)

Actin TCAGCAACTGGGATGATATGG TGAGAGGAGCTTCGGTAAGA

Plasmodesmata callose binding protein (PDCB), ACGACGAATCCAGGAATGAC CTGCCAAAAGCAAGTTCCTC

Eukaryotic initiation factor 4 (EIF4) GGACTACGACGAGGAGCTTG TACCGCCATTCTGATCCTTC

Dicer like protein 4 (DLP4) GTGAGACCAAGTGCAGCAAA AAGCCGCTGTCAACTAGGAA

Argonaute (AGO) GGATCCAACCGTGAAGAGAA GATCCAAGGATGGGTCAATG

Limonene synthase (LMS) TTCCACGATGGAGGAGAGAC TCCTGAGGGATGTGATAGCC

Ethylene-responsive proteinase inhibitor 1 (ERR1) TGGCCGGAACTTGTTGGAAT GTCACTCCACTTCCAGCCAA

Viral movement protein (VMP) GAGCAGCTTCCTAAAGGGACA CTCTCAAGCAAAGCATCTGGC

non-specific lipid transfer proteins (nsLTP) CATGACGTGCAACCAAGTGG TCACACCGTAGCAACAGGTC

SqVYV GTGACAACAACCGTCGCG TCCTCCCTTGCAGCTCAATG
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percentage, at 43.45%. VDR-0 had the highest unique mapping rate

of 92.99%, and CS-15 had the lowest unique mapping rate of

41.58%. Multiple mapping reads ranged from a maximum of 1.75

million in VDR-0 to a minimum of 0.85 million in CS-15. Multiple

mapping rates varied moderately across samples, with the highest

being 3.95% for VDR-0 and the lowest being 1.87% for CS-15.
Analysis of differentially expressed genes

Differentially expressed genes (DEGs) were identified by

comparing treatments with a log2FC (fold change) greater than 2
Frontiers in Plant Science 05
and an adjusted p value (p-adj) at or less than 0.05 (Supplementary

Table 1). SqVYV infection induced dramatic changes in cellular and

metabolic processes. In the Crimson Sweet genotype, 1270 DEGs

(412 upregulated and 858 downregulated) were identified at the

early infection phase (5 dpi) compared to 0 dpi (Figure 2A). There

were 1583 (814 upregulated and 769 downregulated) DEGs at 10

dpi compared to 0 dpi. After 15 dpi, there were a total of 3700

DEGs, with 1516 upregulated and 2184 downregulated genes. In the

resistant genotype, 392291-VDR, there were 1083 DEGs during the

early stages of infection (5 dpi) compared to 0 dpi, comprising 339

upregulated and 744 downregulated genes (Figure 2A).

Interestingly, after 10 dpi, there were a total of 439 DEGs,
frontiersin.or
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FIGURE 1

Assessment of phenotype and viral loads following SqVYV inoculation. (A–C) 392291-VDR (VDR) genotype showed SqVYV resistance compared to
Crimson Sweet (CS) after 15 days of the inoculation. Crimson Sweet showed a typical watermelon vine decline (WVD) symptoms including yellowing,
defoliation (A), stem necrosis (B), reduced growth, and collapse of hypocotyl (C). (D) Heatmaps showing hierarchical cluster analysis of differentially
expressed genes at 0, 5, 10, and 15 days post inoculation. (E, F) The transcriptome data were mapped to the SqVYV genome, and the aggregate
number of reads was determined. The viral load in both the resistant and susceptible genotypes increased after inoculation; however, the viral load
in the resistant genotype remained significantly lower than that in the susceptible genotype. (G) Relative gene expression analysis of SqVYV using
qRT-PCR. Higher SqVYV gene expression was observed in susceptible genotype compared to resistant after 5 and 10 dpi. However, after 15 dpi, the
gene expression decreased in susceptible genotype compared to resistant, possibly due to tissue death. Asterisks indicate statistically significant
differences compared to susceptible control (student's t-test): *p < 0.05.
g
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TABLE 2 RNA-seq read statistics of 392291-VDR (VDR) and Crimson Sweet (CS) before and after SqVYV inoculation.

Sequence VDR0 VDR5 VDR10 VDR15 CS0 CS5 CS10 CS15

Total reads (M) 44.18 44.58 41.28 46.40 42.45 42.68 44.83 45.88

Total mapped reads (M) 42.83 38.28 28.43 33.40 36.49 37.15 33.53 19.77

Uniquely mapped reads (M) 41.08 36.91 27.43 32.20 35.0 35.85 32.18 18.92

Multiple mapped reads (M) 1.75 1.37 1.00 1.20 1.47 1.31 1.31 0.85

Total mapping rate (%) 96.94 85.77 69.30 72.18 86.38 87.33 74.62 43.45

Uniquely mapping rate (%) 92.99 82.70 66.86 69.58 82.90 84.26 71.63 41.58

Multiple mapping rate (%) 3.95 3.07 2.44 2.60 3.48 3.07 2.99 1.87
F
rontiers in Plant Science
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Total reads (M) - The total number of sequencing reads generated for each sample in millions. Total mapped reads (M) - The number of reads that were successfully aligned to the reference
genome. Uniquely mapped reads (M) - The subset of mapped reads that aligned to a unique location in the reference. Multiple mapped reads (M) - The subset of mapped reads that aligned to
multiple locations in the reference. Total mapping rate (%) - The percentage of total reads that were successfully mapped to the reference. Uniquely mapping rate (%) - The percentage of total
reads that uniquely mapped to a single location in the reference. Multiple mapping rate (%) - The percentage of total reads that mapped to multiple locations in the reference. VRD0, VRD5,
VRD10, and VRD15 denote the observations for 392291-VDR at 0, 5, 10, and 15 dpi, respectively. Similarly, CS0, CS5, CS10, and CS15 represent the data points for Crimson Sweet at 0, 5, 10, and
15 dpi, respectively.
B

A

FIGURE 2

Numbers of differentially expressed genes (DEGs) and Venn diagram of DEGs in the transcriptomes of the VDR and CS at different time points.
(A) Numbers of DEGs in Crimson Sweet (CS) and 392291-VDR (VDR) at various time points before and after inoculation with SqVYV. Numbers of
DEGs were increased between VDR and CS genotypes after inoculation with the time. A higher number of DEGs were observed in CS compared
VDR in response SqVYV inoculation. (B) All DEGs are grouped into different comparison groups represented by circles. The overlapping portions of
the circles show the number of DEGs common to these groups.
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consisting of 148 upregulated and 291 downregulated genes. During

the late stages of infection (15 dpi), there were 831 DEGs,

comprising 394 upregulated and 437 downregulated genes.

There were 27 DEGs (13 upregulated and 14 downregulated)

between 392291-VDR and Crimson Sweet before infection

(Figure 2A). At 5 dpi, 63 DEGs (29 upregulated and 34

downregulated) were observed in the 392291-VDR compared to the

Crimson Sweet. A total of 541 DEGs, comprising 127 upregulated and

414 downregulated genes, were observed in 392291-VDR compared to

Crimson Sweet at 10 dpi. At 15 dpi, 2035 DEGs (1141 upregulated and

894 downregulated) were observed in 392291-VDR compared to

Crimson Sweet. These results indicate that SqVYV infection caused

drastic changes in both genotypes, but expectedly, more changes were

observed in the susceptible genotype.

A common DEGs were identified at different point of

inoculation in both resistant and susceptible genotypes

(Figure 2B). 542 common DEGs were identified at 5, 10, and 15

dpi compared to 0 dpi in Crimson Sweet. Similarly, 122 common

DEGs were found at the same time points in 392291-VDR

compared to 0 dpi. Before and after SqVYV inoculation, a total of

34 DEGs were identified between Crimson Sweet and 392291-VDR,

with 18 DEGs identified after inoculation, suggesting their potential

significance in SqVYV resistance (Figure 2B).
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Functional annotation and pathway
enrichment analysis of DEGs

Gene Ontology (GO) enrichment analysis of the identified DEGs

was performed to provide insights into the biological processes that

play a role in resistance and a common response to SqVYV infection.

During the infection stages (5 and 10 dpi), the GO functional categories

for Crimson Sweet and 392291-VDR displayed some similarities when

compared with those at 0 dpi (Figure 3). After 5 and 10 dpi,

ribonucleoprotein, ribosome, cytoplasm, and translation related genes

were differentially expressed in both genotypes. However, at 15 dpi,

peptide related genes were predominantly differentially expressed in the

susceptible genotype. On the other hand, in the resistant genotype,

genes related to ribonucleoprotein, ribosome, cytoplasm and

translation were differentially expressed at 15 dpi (Figure 3).
Virus replication inhibitor genes
differentially expressed between resistant
and susceptible genotypes

The resistant genotypes exhibited altered expression of genes

involved in RNA-related processes, including those involve in the
FIGURE 3

Gene Ontology (GO) functional enrichment analysis of the DEGs identified. DEGs were identified before and after inoculation in the 392291-VDR
(VDR) and Crimson Sweet (CS) genotypes. *Asterisk means DEGs were significantly enriched in this GO term.
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inhibition of virus replication. Eukaryotic initiation factors

(ClCG11G014680, ClCG06G001240), translin (ClCG10G020230),

Dicer-like protein 4 (ClCG06G012100), RNA-dependent RNA

polymerase (ClCG01G006600, ClCG01G006450), and Argonaute

(ClCG01G014010) genes were differentially expressed between the

resistant and susceptible genotype after inoculation (Figure 4A).
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These genes play crucial roles in RNA interference mediated viral

disease resistance in plants. Eukaryotic initiation factor 4E

(ClCG11G014680) was upregulated in the susceptible genotype

compared to resistant after inoculation, while this gene expression

did not change in the resistant cultivar. On the contrary, the

eukaryotic initiation factor 3 E (ClCG06G001240) gene was
B

C D

E F

A

FIGURE 4

Transcriptome heatmap for DEGs in Crimson Sweet (CS) and 392291-VDR (VDR) post-inoculation. The heatmap shows the RNA-Seq transcriptome
analysis results for 35 selected genes from Crimson Sweet (CS) and 392291-VDR (VDR) at 0, 5, 10, and 15 dpi. Each row corresponds to a specific
gene, and columns represent ten different interactions. Upregulated genes are indicated in red, whereas downregulated genes are indicated in blue.
The color gradient illustrates the log2 fold changes in gene expression, providing insights into the differential responses of the Crimson Sweet
(susceptible) and 392291-VDR (resistant) genotypes to SqVYV infection. The heatmap categorizes genes into four groups: (A) Genes involved in
disease resistance and plant-pathogen interaction (B) Genes involved in plant hormones, (C) Disease symptoms (D) ABS transporter, (E) Proteinase
inhibitor, and (F) Pathogenesis related proteins.
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overexpressed in the resistant cultivar compared to the susceptible

cultivar after inoculation. Translin, an important component of the

antiviral RNA interference (RNAi) pathway, was 4.7 times

overexpressed in the resistant cultivar compared to the susceptible

cultivar after 15 days of inoculation. Dicer like protein 4

(ClCG06G012100) and Argonaute (ClCG01G014010), an integral

components of the antiviral RNA interference (RNAi) pathway,

were upregulated in the susceptible cultivar after inoculation

relative to the resistant cultivar (Figure 4). Similarly, the

expression of RNA-dependent RNA polymerase ClCG01G006600

and ClCG01G006450 was upregulated 52 and 11 times in the

susceptible cultivar at 10 dpi, respectively (Figure 4A). Ribosome-

inactivating proteins are a class of enzymes found in various

organisms, including plants and fungi. These proteins have the

ability to inhibit protein synthesis by catalyzing the removal of

adenine residues from the ribosomal RNA, thus rendering the

ribosome unable to function properly. Ribosome-inactivating

proteins confer resistance to viruses in plants. Two ribosome-

inactivating proteins (ClCG08G004120, ClCG08G004130) were

downregulated 2.5 to 5 times in the susceptible genotype after

inoculation, while resistant genotype maintained expression level.

Prior to inoculation, the expression of the plasmodesmata callose

binding protein (PDCB) gene (ClCG05G023730), which plays a

crucial role in inhibiting virus movement, was 4.5 times greater in

the resistant genotype compared to the susceptible. At 5, 10, and 15

dpi, the expression levels in the resistant genotype were elevated by

4.9, 13.4, and 4.7 times, respectively, compared to the susceptible

genotype. In the susceptible genotype, the expression of the PDCB

gene at 5, 10, and 15 dpi was reduced 4, 5.2, and 7.9 times,

respectively, compared to 0 dpi. Interestingly, in the resistant

genotype, there were no significant changes in the expression

levels after 5 and 10 dpi compared to 0 dpi. However, after 15

days the expression decreased to 4.4 times lower than the 0 dpi but

was still 4.7 times greater than the susceptible genotype (Figure 4A).
Role of pathogenesis related genes in
disease resistance

Proteinase inhibitor, ubiquitin, histone, pathogenesis related

proteins and ABC transporter genes were differentially expressed in

both genotypes specially in susceptible after SqVYV inoculation

(Figures 4C–F). Proteinase inhibitors play important roles in viral

resistance in plants. Proteinase inhibitors can inhibit viral proteases,

thereby disrupting viral replication and spread within the host plant. In

this study, 16 proteinase inhibitor genes showed a differential

expression in the susceptible genotypes after inoculation (Figure 4E).

These genes included ClCG04G002450, ClCG10G010350, ClCG05

G004550, ClCG02G015990, ClCG02G016010, ClCG02G016000, ClC

G01G015280, ClCG09G014710, ClCG07G000740, ClCG09G014750,

ClCG04G002440, ClCG09G021860, ClCG01G015320, ClCG01

G015330, ClCG01G015260, and ClCG04G002450. Out of these 16

proteinase genes, 5 were upregulated and 11 downregulated. These

proteinase inhibitors include aspartic acid proteinase inhibitor,

ethylene-responsive proteinase inhibitor, cysteine acid proteinase

inhibitor, aspartic acid proteinase inhibitor, trypsin and protease
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inhibitor, glu S. griseus protease inhibitor, trypsin inhibitor, and

aspartic acid protease inhibitor. nsLTPs are small, cysteine-rich

proteins and are known to have diverse roles in plant defense

mechanisms, including defense against viral pathogens. 19

pathogenesis related proteins including ClCG01G023440,

ClCG02G007190, ClCG02G007210, ClCG02G016680, ClCG02G0

16690, ClCG05G011110, ClCG05G011130, ClCG05G011140, ClCG

05G011170, ClCG05G025130, ClCG07G007260, ClCG07G010250,

ClCG08G006500, ClCG09G009850, ClCG09G016970, ClCG09G

019910, ClCG10G019850, ClCG11G001300, and ClCG11G001310

were differentially expressed in susceptible genotype after inoculation

(Figure 4F). Out of 19 genes, 9 upregulated and 10 downregulated. In

the resistant genotype, only ClCG02G016690 and ClCG08G006500

genes were upregulated after inoculation and other genes did not

significantly change.

Fourteen ATP-Binding Cassette (ABC) transporter genes

(ClCG11G010820, ClCG11G013200, ClCG09G011750, ClCG09

G018320, ClCG05G026280, ClCG05G002750, ClCG01G016130,

ClCG09G011400, ClCG06G008310, ClCG10G004470, ClCG0

3G002840, ClCG07G013290, ClCG09G016700, ClCG09G020300)

were differentially expressed between the resistant and susceptible

genotypes after inoculation (Figure 4D). Of these 14 genes, 4 belong

to the B family, 2 to the C family, 1 to the F family, and 7 to the G

family. Among these 14 genes, 11 were upregulated, and 3 were

downregulated in the susceptible genotype after inoculation. In the

resistant genotypes, only ClCG01G016130, ClCG09G020300, and

ClCG07G013290 genes differentially expressed after inoculation.

Among the ubiquitin genes analyzed, ClCG10G013720 exhibited

significant downregulation in the SqVYV-resistant watermelon

genotype compared to susceptible cultivars. This downregulation

suggests a potential role of ClCG10G013720 in the resistance

mechanism against SqVYV infection. Conversely, ClCG01G009040

showed significant upregulation, indicating its potential involvement in

the defense response to SqVYV. In the histone gene family,

ClCG09G011670 displayed significant upregulation in the resistant

watermelon genotype. We also observed the reduced expression of

nsLTP genes in the susceptible genotypes after SqVYV inoculation

including ClCG07G000370, ClCG10G022680, and ClCG07G016400.

In addition, the accelerated cell death 6 (ACD6) gene

(ClCG02G016840) was upregulated 4, 12, and 28 times in the

susceptible genotype after 5, 10, and 15 dpi, respectively, compared

to 0 dpi.
Role of hormones and SqVYV resistance
in watermelon

Viral infection altered the expression of hormone-related genes,

including those involved in the ethylene, jasmonic acid, auxin,

cytokinin, gibberellin, and salicylic acid signaling pathways,

suggesting the roles of these genes in defense responses against

SqVYV (Figure 4B). Jasmonic acid-amino synthetase

(ClCG02G017430) exhibited a 39.4 times downregulation after 10

dpi compared to 0 dpi in the susceptible genotype. The jasmonate ZIM

domain-containing protein 10 (ClCG06G001800) gene was 4.9 and 7

times upregulated after 10 and 15 dpi, respectively, compared to 0 dpi
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in the susceptible genotype. Jasmonate O-methyltransferase

(ClCG05G018780) showed 11 times downregulation after 5 dpi

compared to 0 dpi in the susceptible genotype. In contrast, the

expression levels of each of these genes did not change in the

resistant genotype after inoculation. The expression of indoleacetic

acid 4 (IAA4) (ClCG05G004670), a gene involved in auxin signaling

pathways, was 10.6, 11.4, and 223 times downregulated after 5, 10, and

15 dpi, respectively, compared to 0 dpi in the susceptible genotype. In

the resistant genotype, the expression of this gene decreased about 4.3

times at 5 dpi and maintained expression level at 10 and 15 dpi.

The expression level of the cytokinin oxidases/dehydrogenases 3

(CKX3) (ClCG03G015550) gene was elevated 69 and 137 times at 10

and 15 dpi, respectively, in the susceptible genotype compared at 0

dpi, while no significant change was observed in the resistant

genotype. In the susceptible genotype, gibberellin 3-oxidase

(GA3ox) (ClCG06G003700) and gibberellin 20-oxidase (GA20ox)

(ClCG01G005290) were 4.6 and 32 times downregulated,

respectively, after 15 dpi compared to 0 dpi, while della protein

(ClCG06G010570) was downregulated 6.5 and 13 times at 10 and 15

dpi. In the resistant genotype, GA20ox gene was 4.3 times

downregulated after 5 dpi compared to 0 dpi, while no significant

changes were observed in GA3ox and della genes. The negative

regulator of gibberellic acid biosynthesis pathway, Gibberellin 2-

beta-dioxygenase (GA2ox) (ClCG07G010460) was 16 and 4 times

upregulated in susceptible and resistant genotypes, respectively, after

15 dpi compared to 0 dpi. Ethylene responsive transcription factor

(ClCG05G009970) was 18.4 times upregulated in the susceptible

genotype after 15 dpi compared to 0 dpi. The expression level of the

ethylene-responsive proteinase inhibitor 1 (ClCG07G000740) gene

was elevated 6.5, 21, and 256 times at 5, 10, and 15 dpi, respectively, in

the susceptible genotype compared to 0 dpi. No significant change

was observed in both genes in the resistant genotype. The resistant

genotype exhibited 4.5, 7.8, 17, and 20 times lower expression of the

ethylene-insensitive-like 3 (ClCG00G002220) gene at 0, 5, 10, and 15

dpi, respectively, compared to the susceptible genotype. After 15 dpi,

salicylate 3-hydroxylase (ClCG01G001350) was 4.9 times upregulated

in the susceptible genotype and salicylic acid-binding protein

(ClCG09G017610) was 6.5 times upregulated in the resistant

genotype, compared to 0 dpi. Auxin-induced protein (AUX28)

(ClCG07G000600) was 776 times downregulated in the susceptible

genotype after 15 dpi compared to 0 dpi, and no significant change

was observed in the resistant genotype.
Identification of DEGs involved in disease
symptom development

The susceptible genotypes showed DEGs associated with plant cell

wall modification, including those related to pectin, polygalacturonase,

lignin, and chitin after SqVYV inoculation (Figure 4C). Pectinase

(ClCG09G004100), pectinesterase (ClCG03G014780), pectin

methylesterase inhibitor (ClCG03G014790), and polygalacturonase

(ClCG09G014630), which play important roles in pectin metabolism

andmodification, were overexpressed in the susceptible genotypes after

infection. Furthermore, cellulose synthase (ClCG02G008970), involved
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in cellulose synthesis and cell wall architecture, showed higher

expression in the susceptible genotypes. The expression levels of

xyloglucan endotransglucosylase (ClCG09G011620) and trichome

birefringence-like 27 (ClCG05G025110) genes associated with cell

elongation and development were also upregulated in the susceptible

genotypes. Furthermore, genes associated with lignin and chitin

biosynthesis showed overexpression in the susceptible genotypes.

Lignin-forming anionic peroxidase (ClCG01G004800), acidic

endochitinase (ClCG00G004280), and chitin elicitor-binding protein

(ClCG02G003560) genes were among those upregulated.
SqVYV infection upregulates the
watermelon terpenoid pathway

Terpenes are a diverse class of volatile organic compounds

produced by plants (Glaeske and Boehlke, 2002). Terpenoid pathway

genes were highly upregulated in the susceptible variety after SqVYV

inoculation (Figure 4A). Terpenoid biosynthesis genes germacrene-D

synthase (ClCG10G002820), limonene synthase (ClCG02G000830),

and germacrene-D synthase (ClCG10G003700) were 128, 44, and 41

times, respectively, upregulated in the susceptible genotypes 10 dpi.

After extending the inoculation period to 15 days, the expression levels

of genes germacrene-D synthase (ClCG10G002820), limonene

synthase (ClCG02G000830), and germacrene-D synthase

(ClCG10G003700) increased even further, showing elevations of 315,

28, and 16 times, respectively. The expression level of these genes did

not decrease significantly in the resistant variety.
Validation of RNA-seq data by qRT−PCR

To validate the RNA-Seq data, eight important DEGs were

selected for gene expression analysis via qRT−PCR (Figures 5A, B).

Similar to transcriptome data, AGO, DLP4, LMS, ERP1, nsLTP, and

VMP genes were downregulated in the 392291-VDR genotype

compared to Crimson Sweet, as observed by qRT-PCR. PDCB

and EIF4 genes were overexpressed in the 392291-VDR genotype

compared to Crimson Sweet, which is congruent with

transcriptome data. Overall, the qRT-PCR results validated the

expression pattern of selected DEGs observed in RNA-Seq data.
Discussion

A transcriptomic analysis was performed to explore the

differences in gene expression between resistant and susceptible

genotypes before and after inoculation with SqVYV to understand

the mechanism of virus resistance in watermelon. This study

revealed significant variations in the expression levels of several

genes associated with diverse biological processes and some of them

potentially associated with disease resistance. Our study revealed

that suppression of virus replication and plasmodesmata callose

deposition mechanism were activated in the resistant genotype,

suggesting a possible role of these mechanisms in SqVYV resistance.
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The PDCB gene was highly expressed in the resistant genotype

compared to the susceptible genotype before and after SqVYV

inoculation. In the susceptible genotype, the expression level of

PDCB sharply decreased, while the resistant genotype maintained

the gene expression level at 5 and 10 dpi. Callose is a polysaccharide

made up primarily of b-1,3-glucan chains. In plants, it plays

important roles in the defense against biotic stresses, including

viral infections. Callose deposition at plasmodesmata inhibits the

cell-to-cell movement of the viruses in plants and increases virus

resistance (Li et al., 2012; Wang et al., 2021; Zhang et al., 2022).

PDCB-overexpressing transgenic lines showed increased callose

deposition and reduced symplastic transport in Arabidopsis

(Simpson et al., 2009; Maule et al., 2013). In a genome-wide

association study, the presence of genomic regions associated with

SqVYV resistance in watermelon has been identified on

chromosome 5, and the PDCB gene is situated on the same

chromosome (Kousik, 2022). Callose deposition serves as an

indicator of a plant’s resistance to a virus. b-1,3-glucanases play a

key role in callose metabolism, a vital part of plasmodesmata,

commonly linked with the movement of viruses (Iglesias and

Meins, 2000; Li et al., 2012; Wang et al., 2021; Zhang et al., 2022).

Viruses control the activity of b-1,3-glucanase and cause the callose

in plasmodesmata to break down, enlarging their size-exclusion

limit. This enlargement facilitates the movement of viral particles

through them. Generally, (+) RNA viruses manipulate b-1,3-
glucanases for the successful invasion and transportation in the

plants (Iglesias and Meins, 2000). b-1,3-glucanase-deficient tobacco
plants show resistance to tobacco mosaic virus, and these plants

inhibit viral movement between cells (Iglesias and Meins, 2000).

Overall, these results suggest the involvement of callose deposition

in SqVYV resistance and the role of b-1,3-glucanase in

susceptibility in watermelon.

Plants activate the RNA silencing defense mechanism in

response to viral infection (Vance and Vaucheret, 2001;

Wang et al., 2012; Guerra et al., 2019; Lopez-Gomollon and
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Baulcombe, 2022). In our study, five DEGs associated with

the RNA silencing defense mechanism were differentially

expressed between the resistant and susceptible genotypes after

inoculation. These DEGs include eukaryotic initiation factors

(ClCG11G014680, ClCG06G001240), translin (ClCG10G020230),

Dicer like protein 4 (ClCG06G012100), RNA-dependent

RNA polymerase (ClCG01G006600, ClCG01G006450), and

Argonaute (ClCG01G014010). Eukaryotic initiation factor 4

(ClCG11G014680), Argonaute (ClCG01G014010) and Dicer like

protein 4 (ClCG06G012100) were overexpressed in the susceptible

genotype after inoculation but remained consistently expressed

in the resistant line. In contrast, eukaryotic initiation factor 3

(ClCG06G001240) and translin (ClCG10G020230) were

downregulated in the susceptible genotype after inoculation but

exhibited consistent expression in the resistant line. Dicer like

protein play important role viral resistant in plants (Moissiard

and Voinnet, 2006; Andika et al., 2015; De-Souza et al, 2019). It

regulates cauliflower mosaic virus resistance in Arabidopsis via

RNAi (Moissiard and Voinnet, 2006). Furthermore, differential

expression of the Dicer-like proteins contributes to antiviral

defenses against potato virus X in tobacco (Andika et al., 2015).

eIF4 is a complex involved in the initiation of translation. Modifying

eIF4, particularly eIF4E, has shown promise in developing virus-

resistant plants (De-Souza et al, 2019; Le et al., 2022; Lucioli et al.,

2022). CRISPR/Cas9 assisted mutagenesis in eIF4E gene enhance

PVY resistance in tobacco (Le et al., 2022). Similarly, genome

editing of eIF4E1 gene increase PVY Resistance in eggplant

(Lucioli et al., 2022). AGO gene family plays an important role in

RNA silencing and regulation of disease resistance in plants. AGO

proteins are key components of the RNA-induced silencing

complex, which mediates gene silencing through mechanisms

such as microRNA (miRNA) and small interfering RNA (siRNA)

pathways. Recent studies have demonstrated the role of AGO genes

in plant resistance to viruses (Kamitani et al., 2016; Zheng et al.,

2017; Zanardo et al., 2019; Xu et al., 2022). The expression levels of
BA

FIGURE 5

qRT-PCR validation of the relative expression levels of eight selected DEGs. Expression levels of argonaute (AGO), dicer like protein 4 (DLP4),
limonene synthase (LMS), ethylene-responsive proteinase inhibitor 1 (ERPI), non specific lipid transfer protein (nsLTP), viral movement protein (VMP),
plasmodesmata callose binding protein (PDCB), and eukaryotic initiation factor 4 (EIF4) genes in 392291-VDR (VDR) genotype compared to Crimson
Sweet (CS) at 0, 5, 10, and 15 dpi. Subfigures (A, B) respectively represent the downregulation and upregulation of the genes, respectively. Actin was
used as an internal control in qRT-PCR and data are represented as the mean of three biological replicates. Asterisks indicate statistically significant
differences compared to control (student's t-test): *p<0.05.
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two RNA-dependent RNA polymerase (RDR) genes

(ClCG01G006600 and ClCG01G006450) increased in both

genotypes after inoculation, but in the susceptible genotype, these

genes were significantly overexpressed. The differential expression

of RDR related genes in plant defense against viruses has been

reported in various studies (Kamitani et al., 2016; Zanardo et al.,

2019; Xu et al., 2022). RDR1 mutation caused decreased resistance

in tobacco plants to tobacco mosaic virus (TMV) (Vaucheret, 2006).

Two ribosome-inactivating proteins (ClCG08G004120,

ClCG08G004130) were overexpressed in the resistant genotype

after inoculation, while these genes were downregulated in the

susceptible genotype. Ribosome-inactivating proteins enhance

virus resistance in plants by arresting virus protein synthesis

during translation (Zhu et al., 2018). Overexpression of ribosome-

inactivating proteins in transgenic plants have been associated with

resistance to various viruses such as cucumber mosaic virus (CMV),

potato virus Y, potato virus X, turnip mosaic virus, potato leafroll

virus, and TMV (Zhu et al., 2018). In addition, exogenous

application of mirabilis antiviral protein, a type I ribosome-

inactivating proteins showed strong resistance against CMV, and

cucumber green mottle mosaic virus (CGMMV) in tobacco (Kubo

et al., 1990). Furthermore, a recombinant ribosome-inactivating

proteins showed strong resistance against TMV (Choudhary et al.,

2008). Exogenous application of type I ribosome-inactivating

proteins, pokeweed antiviral protein (PAP), enhance zucchini

yellow mosaic virus (ZYMV) resistance in squash plants

(Sipahioglu et al., 2017). Similar to our study, eight ribosome-

inact ivat ing prote ins including ClCG08G004120 and

ClCG08G004130 were overexpressed in resistant genotype

compared to susceptible in response to potyvirus infection in

watermelon, further suggesting role of ribosome-inactivating

proteins in virus resistance in watermelon (Chanda et al., 2022).

The differential expression of genes involved in virus genome

replication and protein synthesis inhibition suggests the role of

these mechanisms in SqVYV resistance.

There were significant differences in the expression of ET, CT,

GA, JA, and SA hormone- related genes in both genotypes after

SqVYV infection. Plant hormones play an important role in the

growth and development of plants, some of which are essential for

plant resistance against pathogens. Salicylic acid, JA, and ET play an

important role in disease resistance. These hormone pathways are

interconnected and crosstalk with each other (Denancé et al., 2013;

Yang et al., 2013; Kaniganti et al., 2022). Ethylene-responsive

proteinase inhibitor 1 (ClCG07G000740) and Ethylene insensitive

like 3 (ClCG00G002220) were upregulated in the susceptible

genotype after inoculation relative to the resistant genotype.

Ethylene-responsive transcription factor (ClCG05G009970) was

upregulated in the resistant genotype after inoculation. Plants

viruses are known to manipulate the ET response pathway in

plants by suppressing a plant’s defense mechanism including

RNA silencing (Endres et al., 2010; Zhao et al., 2017). Viruses

hijack ethylene biosynthesis and response pathways in the

susceptible genotype for successful invasion. The involvement of

ethylene hormone in plant-virus interaction has been reported in
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previous transcriptomic studies (Choi et al., 2015; Kalapos et al.,

2021; Chen et al., 2022). Therefore, we hypothesized that ethylene-

responsive proteinase inhibitor 1 (ClCG07G000740) and ethylene

insensitive like 3 are required for susceptible reaction, and ethylene-

responsive transcription factor is required for plant resistance

against SqVYV. Salicylate 3-hydroxylase (ClCG01G001350) was

upregulated in the susceptible genotype, while salicylic acid-binding

protein (ClCG09G017610) was upregulated in the resistant variety

after inoculation. Salicylic acid is a key hormone that plays an

important role in plant defense against viruses (Denancé et al., 2013;

Yang et al., 2013; Slavokhotova et al., 2021). Differential expression

of SA biosynthesis pathway genes after virus infection has also been

observed in in other studies (Fernando Gil et al., 2020; Slavokhotova

et al., 2021; Sáez et al., 2022). Several JA biosynthesis pathway genes

were differentially expressed between the resistant and susceptible

genotypes after SqVYV inoculation. Jasmonic acid-amido

synthetase (ClCG02G017430) was downregulated in the

susceptible variety, while jasmonate O-methyltransferase

(ClCG05G018780) was downregulated in both genotypes at 5 dpi.

Jasmonate ZIM domain-containing protein 10 (ClCG06G001800)

was upregulated in the susceptible variety at 10 and 15 dpi.

Differential expression of JA biosynthesis pathway genes in

response to virus infection has also been observed in other studies

(Fernando Gil et al., 2020; Slavokhotova et al., 2021; Sáez et al.,

2022). The dual positive and negative roles of JA in plant defense

against viruses have been reported in various studies (Zhao and Li,

2021). Additionally, genes associated with the biosynthesis and

response to GA, cytokinin, and auxin showed differential

expression. This could be attributed to interactions between these

hormones and ET, SA, and JA. Overall, our results suggest possible

roles for ET, SA, and JA hormones in watermelon resistance against

SqVYV infection.

Proteinase inhibitors, LTPs, ACD, ABC transporters, ubiquitin,

and histones are important components of plant defense (Patkar

and Chattoo, 2006; Smith and Boyko, 2007; Huang et al., 2016;

Amador et al., 2021; Missaoui et al., 2022; Shang et al., 2022). Three

nsLTPs were downregulated in the susceptible genotype after

inoculations, while their expression in the resistant genotype was

unchanged. LTPs are small, cysteine-rich proteins that promote

plant defense against pathogens, including viruses (Patkar and

Chattoo, 2006; Huang et al., 2016; Amador et al., 2021; Missaoui

et al., 2022; Shang et al., 2022). The downregulation of nsLTP genes

in the susceptible genotype after inoculation suggested that SqVYV

overcomes this layer of watermelon resistance. Proteinase inhibitors

in plants are defense proteins that are traditionally known for

protecting against herbivores. However, they also play a role in

defense against viruses by inhibiting viral proteases, thereby

potentially reducing viral replication (Gutierrez-Campos et al.,

1999; Nair et al., 2023; Soleimani et al., 2023). Viruses need to

overcome this layer of defense to cause disease in plants. In our

study, the susceptible genotype had a significant reduction in the

expression of proteinase inhibitor genes, and the resistant genotype

maintained the expression of these genes, suggesting the role of

proteinase inhibitor genes in SqVYV resistance in watermelon.
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Some of these proteinase genes overexpressed in the susceptible

genotype after inoculation. These proteinases might be negative

regulators of SqVYV resistance in watermelon. Furthermore, ABC

transporters, ubiquitin, and histones play crucial roles in plant

disease resistance. ABC transporters help in defense by transporting

antimicrobial compounds and detoxifying pathogen-produced

toxins (Devanna et al., 2021; Panigrahi et al., 2021; Banasiak and

Jasiński, 2022; Qu et al., 2023). The ubiquitin−proteasome system

regulates plant immunity by targeting specific defense proteins for

degradation, although some pathogens manipulate this system to

weaken defenses (Panigrahi et al., 2021). Moreover, histone

modifications, such as acetylation, modulate the expression of

defense-related genes, either by amplifying or suppressing plant

defense responses based on the nature of the modification

(Panigrahi et al., 2021; Qu et al., 2023). The differential

expression of ABC transporters, ubiquitin, and histone-related

genes suggested their role in SqVYV resistance in watermelon.

The cell wall of plants is a crucial structural component that

provides support and defense against environmental stresses and

pathogens. Virus infections in plants can lead to the degradation of

the cell wall, increased plasmodesmata permeability, and alterations

in cell wall components, which facilitate the spread of the virus and

the manifestation of symptoms. However, in resistant plant

genotypes, these changes in the cell wall are minimized or

prevented, maintaining cell wall stability and hindering the virus’s

ability to spread (Li et al., 2017; Kozieł et al., 2021). Watermelon

fruits infected by Cucumber green mottle mosaic virus showed

differential expression of pectin, cellulose, and lignin regulated

genes (Li et al., 2017). Transcriptional analysis of South African

cassava mosaic virus-infected susceptible and tolerant landraces of

cassava showed upregulation of the cell wall related genes after

infection (Allie et al., 2014). Our transcriptome analysis revealed

significant differential expression of specific genes related to pectin

metabolism and modification, cellulose synthesis, cell growth and

development, xenobiotic metabolism, lignin biosynthesis, and

defense against chitin-containing pathogens. Although, more

DEGs were found in susceptible genotype compared to resistant

suggest more cell wall degradation in susceptible genotype after

inculcation. The downregulation of genes involved in pectin

metabolism and modification, cellulose synthesis, and cell growth

and development suggested potential alterations in cell wall

integrity, defense responses, and growth processes in response to

SqVYV infection. Similar to our study, differential expression of

cellulose, hemicellulose, and pectin related genes have been

reported in Arabidopsis thaliana Infected by Tomato spotted wilt

virus (Xu et al., 2020, 2022). Similarly, comparative transcriptome

analysis demonstrates the role of lignin synthesis genes in regal lily

against cucumber mosaic virus and tobacco mosaic virus (Sun et al.,

2019). Additionally, the downregulation of genes associated with

lignin biosynthesis and defense against chitin-containing pathogens

implies potential modulation of stress responses, xenobiotic

metabolism, lignin production, and defense mechanisms against

chitin-containing pathogens in SqVYV resistance. Terpene

biosynthesis pathway genes were highly overexpressed in the
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susceptible genotype after SqVYV inoculation. Further research is

needed to elucidate the role of terpenoids in SqVYV infection

of watermelon.

Our transcriptome data provided a basis for a comprehensive

understanding of the gene expression profiles of resistant and

susceptible watermelon varieties at different stages of SqVYV

infection and provided insight into the SqVYV resistance

mechanism. Our analysis revealed significant differential expression

of genes involved in pathogenesis-related processes, including

ubiquitin-mediated proteolysis, histone modifications, and antiviral

RNA interference (RNAi) pathways. The results highlighted the

important genes involved in the ETH, JA, and SA signaling

pathways and related to the response to SqVYV infection that were

differentially expressed between the susceptible and resistant varieties.

These findings will be helpful for understanding the molecular

mechanisms of SqVYV resistance in watermelon.
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