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This study explores the use of leaf-level visible-to-shortwave infrared (VSWIR)

reflectance observations and partial least squares regression (PLSR) to predict

foliar concentrations of macronutrients (nitrogen, phosphorus, potassium,

calcium, magnesium, and sulfur), micronutrients (boron, copper, iron, manganese,

zinc,molybdenum, aluminum, and sodium), andmoisture content inwinterwheat. A

total of 360 fresh wheat leaf samples were collected from a wheat breeding

population over two growing seasons. These leaf samples were used to collect

VSWIR reflectance observations across a spectral range spanning 350 to 2,500 nm.

These samples were then processed for nutrient composition to allow for the

examination of the ability of reflectance to accurately model diverse chemical

components in wheat foliage. Models for each nutrient were developed using a

rigorous cross-validation methodology in conjunction with three distinct

component selection methods to explore the trade-offs between model

complexity and performance in the final models. We examined absolute minimum

predicted residual error sum of squares (PRESS), backward iteration over PRESS, and

Van der Voet’s randomized t-test as component selection methods. In addition to

contrasting component selection methods for each leaf trait, the importance of

spectral regions through variable importance in projection scores was also

examined. In general, the backward iteration method provided strong model

performance while reducing model complexity relative to the other selection

methods, yielding R2 [relative percent difference (RPD), root mean squared error

(RMSE)] values in the validation dataset of 0.84 (2.45, 6.91), 0.75 (1.97, 18.67), 0.78

(2.13, 16.49), 0.66 (1.71, 17.13), 0.68 (1.75, 14.51), 0.66 (1.72, 12.29), and 0.84 (2.46,

2.20) for nitrogen, calcium, magnesium, sulfur, iron, zinc, andmoisture content on a

wet basis, respectively. These model results demonstrate that VSWIR reflectance in

combination with modern statistical modeling techniques provides a powerful high

throughput method for the quantification of a wide range of foliar nutrient contents

in wheat crops. This work has the potential to advance rapid, precise, and

nondestructive field assessments of nutrient contents and deficiencies for

precision agricultural management and to advance breeding program assessments.
KEYWORDS

hyperspectral reflectance spectroscopy, VSWIR, winter wheat, macronutrients,
micronutrients, partial least squares regression, PLSR, model selection
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1 Introduction

High-throughput phenotyping (HTP) offers tremendous potential

to significantly improve breeding efficiency by expanding the traits

used for selection to quantitative metrics of plant health and vigor

(Araus and Cairns, 2014). Visible-to-shortwave infrared (VSWIR)

spectroscopy is a method that measures surface reflectance across a

spectral range spanning 350 to 2,500 nm. This technique encompasses

the visible (400–700 nm), near-infrared (NIR) (700–1,000 nm), and

shortwave infrared (1,000–2,500 nm) portions of the electromagnetic

spectrum (Thompson et al., 2022). VSWIR sensing has been shown to

be a powerful tool for vegetation monitoring (Im and Jensen, 2008;

L. Singh et al., 2022), including for the quantification of foliar nutrient

contents (Acosta et al., 2023; Lyu et al., 2023), making it a

key technology in recent developments in many areas of HTP

(Shakoor et al., 2017). Factors such as leaf surface properties, leaf

internal structure, plant stress, and biochemical compounds impact

reflectance, offering valuable insights into various aspects of plant

functionality (Asner, 2008; Kokaly et al., 2009; Ustin and

Jacquemoud, 2020). Nutritional stresses can cause an increase in the

reflectance in the visible and infrared ranges, shifting the red edge to

shorter wavelengths due to loss of chlorophyll (Zhao et al., 2005).

The amount of change in spectral properties depends on the type and

level of deficiency and also the interaction between chemical

components (Ayala-Silva and Beyl, 2005).

A key challenge in both HTP and precision agriculture is the

assessment of plant nutritional status. Macronutrients like nitrogen,

phosphorus, potassium, calcium, magnesium, and sulfur exert distinct

effects on plant growth (Hawkesford et al., 2023). Nitrogen is widely

known to be a key factor in foliar chlorophyll content and

photosynthetic capacity (Wang et al., 2021). Phosphorus contributes

to seed formation, germination, energy storage, and cell growth (Khan

et al., 2023). Potassium is crucial for stalk strength and various

biochemical functions such as osmoregulation, enzyme activation,

and the accumulation of proteins, carbohydrates, and fats (Wang

et al., 2013). Calcium is involved in cell wall development, cell

division, and increasing dry matter and leaf area (White and

Broadley, 2003). Magnesium helps in photosynthesis and chlorophyll

formation (Ahmed et al., 2023). Sulfur plays a fundamental role in

constructing proteins and is a crucial component in the formation of

chlorophyll (Fan et al., 2021; Weissert and Kehr, 2017). Micronutrients

such as boron, copper, iron, manganese, zinc, molybdenum,

aluminum, and sodium are typically required in smaller quantities

but play a vital role in enhancing crop yield and quality (Broadley et al.,

2012; Fageria et al., 2002). Insufficient levels of these nutrients can lead

to stunted plant growth, organ damage, and even plant mortality

(Gurudatta and Sachan, 2020; Pandey et al., 2020). Changes in plant

nutrient availability can occur quickly and may be difficult to

ameliorate, making it important to develop technologies capable of

quantifying plant nutrient contents rapidly and remotely. Standard

methods for plant tissue nutrient analysis include inductive coupled

plasma–optical emission spectrometry for P, B, K, Ca, Mg, Cu, Zn, and

Na; atomic absorption spectrometry for K, Ca, Mg, Cu, Zn, and Fe;

Kjeldahl distillation for N; dry combustion for C, N, and S; and

ultraviolet (UV)–visible spectrophotometry for Nitrate-N and P

(Kalra, 1997; Menesatti et al., 2010). However, these traditional
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nutrient measurement methods are time-consuming, destructive, and

expensive (Prananto et al., 2020). Utilizing leaf optical properties as an

alternative provides a non-invasive, rapid, and cost-effective means to

capture the spatial and temporal variations across an experimental field

site or farm, providing a solution for site-specific precision fertilizer

application (L. Singh et al., 2022; Zahir et al., 2024). This technology has

the potential to dramatically improve precision agriculture and crop

breeding assessments.

Partial least squares regression (PLSR) has been shown to be a

powerful statistical modeling approach for utilizing the information

contained in VSWIR spectroscopy signals while mitigating the

problems around multi-collinearity in datasets with highly

correlated variables (Chan et al., 2022). Examples of the

successful application of PLSR to diagnose vegetation foliar states

include its use in predicting leaf mass per area (Cherif et al., 2023;

Doughty et al., 2011; Gara et al., 2019; Serbin et al., 2019), leaf area

index (Cherif et al., 2023; Gara et al., 2019; Panigrahi and Das,

2021), and a range of chemical concentrations such as nitrogen

(Doughty et al., 2011; Wang et al., 2015), carbon (Cherif et al., 2023;

Gara et al., 2019; Serbin et al., 2014), lignin (Cherif et al., 2023;

Singh et al., 2015), cellulose (Cherif et al., 2023; Serbin et al., 2014),

hemicellulose (Asner et al., 2014; Kothari et al., 2023), soluble cell

components (Serbin et al., 2014), phosphorus (Wang et al., 2015),

potassium (Cherif et al., 2023), calcium (Asner et al., 2014; Kothari

et al., 2023; Wang et al., 2020), magnesium (Asner et al., 2014;

Kothari et al., 2023; Wang et al., 2020), and chlorophylls and

carotenoids (Kothari et al., 2023; Serbin et al., 2014). Plant biotic

and abiotic stress detection has also been estimated using PLSR

(Adams et al., 2000; Asner et al., 2016; Žibrat et al., 2020). Leaf

concentrations of nitrogen, phosphorus, potassium, calcium, and

magnesium were modeled using hyperspectral data collected at

pinot noir commercial vineyards in Martinborough, New Zealand

(Lyu et al., 2023). PLSR has been shown to be versatile at predicting

macro- and micronutrient contents in a variety of plant species

including mangoes (Mahajan et al., 2021), citrus (Acosta et al.,

2023), eucalyptus (Oliveira and Santana, 2020), and tef plant (Flynn

et al., 2020); a combination of crops such as rice, corn, sesame,

soybeans, tea, and grass (Zhai et al., 2012); and loblolly pine at local

and regional scales (Stein et al., 2014).

In addition to PLSR, a linear regression method, non-linear

regression techniques have also been successfully applied to estimate

foliar nutrients. Non-linear machine learning models, such as Support

Vector Regression (SVR), Random Forest Regression (RFR), Artificial

Neural Networks (ANNs), Deep Neural Networks (DNNs), and

Gaussian Process Regression (GPR), have gained prominence in

modeling foliar nutrients in various fruits and row crops, including

mango (Mahajan et al., 2021), cashew (Mahajan et al., 2024), orange

(Osco et al., 2020b), apples (Azadnia et al., 2023), grapevines (Lyu

et al., 2023), wheat (Jamali et al., 2023), barley (Grieco et al., 2022),

soybeans (Furlanetto et al., 2023), and maize (Osco et al., 2020a). In

several cases, these models have achieved superior predictive accuracy

to PLSR, leading to more informed crop management decisions. For

example, in a study on apple trees using visible and NIR spectroscopy,

RFR model outperformed linear models, yielding relative percent

difference (RPD) values of 8.77, 6.42, and 8.16 for N, P, and K,

respectively (Azadnia et al., 2023). Similarly, in a study on nutrient
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assessment of mixed pastures in New Zealand, RFR provided the

highest accuracy for N, P, K, Zn, Na, Cu, and Mg (R2 = 0.55–0.78),

while SVR was more effective for S and Mn (R2 = 0.68–0.86)

(Pullanagari et al., 2016). In oil palm leaf evaluations using

multispectral images, RFR retrieved chlorophyll and Ca with

R2 = 0.75 and 0.71, respectively, whereas SVR predicted N with

R2 = 0.65 (Chungcharoen et al., 2022). A recent trend involves utilizing

multiple models, for instance, a combination of PLSR and the Cubist

model yielded excellent predictions for N, P, K, Mn, and Zn in cashew

(Mahajan et al., 2024). A study using PCA and PLSR predicted traits

associated with salinity stress for rice (Das et al., 2020a). In wheat, a

study employed ML and eXplainable Artificial Intelligence to predict

N status, achieving R2 > 0.85 with RFR and Gradient Boosting models

(H. Singh et al., 2022). Another study utilized a UAV platform with

multispectral, RGB, and thermal infrared cameras to estimate the

nitrogen nutrition index of wheat, achieving R2 = 0.89 with GPR and

improving model transferability by 11% using Transfer Component

Analysis (Zhang et al., 2024). The superior performance of these

models is attributed to their ability to capture complex, non-linear

relationships between spectral features and nutrient levels (Ennaji

et al., 2023; Zaji et al., 2022). However, the increased complexity of

these sophisticated models poses challenges in fully interpreting their

mechanisms (Molnar, 2020), and they require significant

computational power and large datasets making them intractable for

many circumstances (Jordan and Mitchell, 2015; Sze et al., 2017).

Wheat (Triticum aestivum) is one of the most important cereal

crops grown for human food consumption providing approximately

15% of total calories, and is the most widely cultivated crop worldwide

(Erenstein et al., 2022). It covers a significant portion of cultivated land

spanning over 220 million hectares globally (Nduku et al., 2023).

For roughly 36% of people worldwide, wheat is a key source of food

(Khalid et al., 2023). The importance of wheat as a food crop has made

ensuring steady production and enhancing wheat nutritional quality

crucial goals for global food security and has motivated work to rapidly

assess wheat plant health. This includes the estimation of nitrogen

content (Bossung et al., 2022; Clay et al., 2012; Hansen and Schjoerring,

2003; Li et al., 2020), leaf area index (Das et al., 2020b; Jamali et al.,

2023), biomass (Prasad et al., 2009; Sticksel et al., 2004), grain yield

(Montesinos-López et al., 2017; Prasad et al., 2007; Thorp et al., 2017;

Xie et al., 2020; Zhang et al., 2020), and sugars and starch (Robles-

Zazueta et al., 2022). NIR spectroscopy has been utilized to assess

nitrogen content and leaf mass per unit area in fresh and dried durum

wheat plants (Ecarnot et al., 2013), as well as to evaluate leaf nitrogen

content and leaf area index in field trials of wheat (Pimstein et al.,

2007). This focus on nitrogen content and canopy structural traits was

followed by a limited number of studies that address the ability of

spectroscopy to quantify other nutrient contents, including phosphorus

potassium, sulfur, calcium andmagnesium (Ayala-Silva and Beyl, 2005;

Mahajan et al., 2014; Pimstein et al., 2011; Yang et al., 2021). There has

also been work using airborne spectroscopy (Raya-Sereno et al., 2021)

and also work to evaluate bread wheat genotype responses to water

stresses (Hernandez et al., 2015).

In this study, we focus on the examination of the use of leaf-

level VSWIR spectroscopy observations to provide a high-

throughput predictive capability for a wide range of winter wheat

macro- and micronutrients. Using data collected over two growing
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seasons from breeding programs in central Ohio, we analyze data

from 360 unique foliar samples for the following nutrient contents:

nitrogen, phosphorus, potassium, calcium, magnesium, sulfur,

boron, copper, iron, manganese, zinc, molybdenum, aluminum,

and potassium, as well as moisture content. All fresh leaf samples

had reflectance measurements conducted across the 350–2,500 nm

range using a field spectrometer. This allowed us to evaluate

correlations between foliar nutrient content variability and

reflectance values, and further to evaluate the use of PLSR to

model this broad range of nutrient contents. Three different PLSR

component selection methods were contrasted to assess the trade-

off between predictive performance and model complexity.

Important regions of the spectrum for each foliar trait were

identified using variable importance in projection (VIP) scores.

Hence, the specific objectives of this paper were to (a) quantify and

evaluate nutrient variability in winter wheat; (b) build quantitative

models for predicting macronutrient and micronutrient

concentrations from leaf reflectance using PLSR; (c) evaluate

contrasting component selection methods for development of a

set of final PLSR models; and (d) identify important regions of the

VSWIR spectrum for the prediction of this wide range of

foliar nutrients.
2 Materials and methods

2.1 Study area and leaf sampling

The experiments were conducted at two research sites situated

at the Ohio Agricultural Research and Development Center

(OARDC) of Ohio State University, Wooster, Ohio, USA (40°46′
01.0″ N, 81°53′57.0″ W and 40°46′01.4″ N, 81°53′47.3″ W).

Samples were collected during two crop growing cycles, in the

spring of 2022 and 2023. Each site consisted of a winter wheat

breeding population in which each genotype was planted in 1.5 ×

3.0 m (4.6 m2)-sized plots. Utilizing this diverse breeding

population allowed for maximizing the genetic influence on

phenotypic traits (plant nutrient contents), making the breeding

trials a potential source of the variability to enhance this dataset for

model evaluation. Each wheat plot consisted of seven rows spaced

0.78 m apart and seeded with 100 g of seed. Nitrogen was applied in

fall at 28 kg/ha and was supplemented in spring at 100 kg/ha. No

irrigation or other fertilizer treatments were applied throughout the

growing seasons.

Fresh leaf samples were collected from 360 wheat plots across

the two study years: 180 plots in 2022 and 180 plots in 2023. Data

acquisition (VSWIR leaf reflectance and leaf sampling for trait

evaluation) was performed over multiple field visits (11 May 2022, 3

June 2022, 17 June 2022, 18 May 2023, 26 May 2023, and 1 June

2023), providing variability in plant growth stage, maturity, and

environmental response. On each sampling date, 60 plots were

randomly selected and sampled. For sample collection, multiple

fully expanded mature leaves were harvested from each sampled

plot and placed in labeled zip-lock bags in a cooler to prevent

changes to leaf pigments and water loss due to transpiration.

Immediately following the collection of leaves in the field, these
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leaves were transported to a lab where leaf spectroscopy

measurements were immediately collected.
2.2 Hyperspectral reflectance
data acquisition

Leaf spectroscopy measurements were collected using an ASD

FieldSpec 4 Standard Resolution Spectroradiometer (Malvern

Panalytical, Boulder, Colorado, USA). This instrument measures

reflected radiance across the 350–2,500 nm wavelength range,

which is then converted into reflectance by normalization against

an observation made on a white reflectance target. Measurements

are made using a 1.5-m-long fiber optic cable with a 25°field of view.

Three distinct sensors in the instrument include a visible and near-

infrared detector (VNIR) operating from 350 to 1,000 nm with 3-

nm resolution, a shortwave infrared detector (SWIR 1) operating

from 1,000 to 1,800 nm with 10-nm resolution, and another

shortwave infrared detector (SWIR 2) covering 1,800 to 2,500 nm

at 10-nm resolution (Malvern Panalytical, 2023). Following

interpolation, the reflectance observations span 2,151 individual

1-nm wavebands that were used here for trait modeling.

Foliar reflectance spectra were collected using a leaf clip assembly

with built-in contact probe, which allowed the fiber optic cable to

view an illuminated portion of the leaf being sampled. The contact

probe featured a 10-mm-diameter field of view. The leaf clip assembly

used a halogen bulb to provide controlled illumination sufficient to

capture leaf reflectance across the full spectral range examined here.

The leaf clip assembly included a two-sided rotating head, with one

side having a black panel and the other side having a white panel.

Following a 30-min warm-up period for the instrument prior to data

collection, two wheat leaves were positioned side by side and centered

across the black background of the contact probe, covering the entire

observation region of the probe (Danner et al., 2015). The leaf clip

was then securely fastened to minimize measurement errors

associated with stray light. Three independent readings were

collected from the foliage in each sample bag, from which the

spectra were averaged to ensure the representativeness of each

foliage sample. White reference readings used to normalize each

spectrum to reflectance values were recorded at 30-min intervals.

This resulting dataset was subjected to splice correction and

subsequently exported as ASCII text files using ViewSpec Pro

Software (Analytical Spectral Devices Inc., Boulder, CO, USA) for

further analysis. Once reflectance measurements had been completed

for an entire set of leaf samples, they were then processed for tissue

chemistry measurements.
2.3 Foliar chemistry and water content

Following the collection of reflectance measurements, the wet

weight (WW, [g]) of each leaf sample was measured. The leaf

samples were then placed inside labeled paper bags and dried in an

oven maintained at approximately 50–60°C for several days until

completely dried. Dry weight (DW, [g]) was then measured,
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calculated using the following formula (Morshedloo et al., 2016):

MC =
WW − DW

WW
� 100

Plant tissue chemical analysis was conducted at the Service,

Testing, and Research (STAR) laboratory at Ohio State University

(Wooster, OH). Total nitrogen (N, [%]) in the samples was

determined using Duma ’s method (AOAC, 1970). The

concentrations of the other plant elements analyzed here were

quantified in micrograms per gram (µg/g) through a nitric acid

microwave digestion system (Jones et al., 1991) and included

phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg),

sulfur (S), aluminum (Al), boron (B), copper (Cu), iron (Fe),

manganese (Mn), molybdenum (Mo), sodium (Na), and zinc

(Zn). While all plants depend on these 14 nutrients for their

overall growth and development, here we distinguish between

macronutrients and micronutrients simply in the quantities

required by the plant (Welch and Shuman, 1995).
2.4 Statistical modeling

PLSR was utilized to predict nutrient and water concentrations

from the reflectance spectra (Ang and Seng, 2021; Wold et al., 2001).

PLSR is effective for prediction problems with a large number of

predictor variables relative to the number of observations, particularly

when multi-collinearity exists across the predictor set (Geladi and

Kowalski, 1986; Hubert and Branden, 2003; Sawatsky et al., 2015;

Tobias, 2000). Here, we used the SIMPLS algorithm as implemented

in the “plsregress” function of MATLAB to develop PLSR models of

each leaf trait (de Jong, 1993). For each trait (nutrient contents and

percent water content), a unique PLSR model development process

was conducted using the wavelength range 450–2,400 nm.

Wavelengths outside of this range were removed due to noise in

reflectance values at each end of the spectra. We applied no

transformations to reflectance data and nutrient distributions

(Burnett et al., 2021). For each trait, models were developed using

1 to 30 components. For each model development iteration, the 360

data points were partitioned randomly into calibration (80% of data)

and validation (remaining 20% of data) sets using a random variable

generator in MATLAB. For each component trait and component

number, this process of randomly splitting the data, calibrating the

model, and evaluating the model on the validation data was

performed 1,000 times to enhance the robustness of the analysis

and mitigate potential biases stemming from random data splitting.

Each of these 1,000 iterations additionally involved fivefold cross-

validation within the calibration set (Fushiki, 2011). Predicted

residual error sum of squares (PRESS), root mean squared error

(RMSE), coefficient of determination (R2), and the ratio of

performance to deviation (RPD) served as measures of

prediction accuracy.

In order to mitigate the risk of overfitting, it was imperative to

carefully determine the optimal number of PLSR components

(#Comp) (Alma, 2013). Here, we evaluated three distinct
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approaches for PLSR model selection to evaluate how each

performed for this diverse set of wheat foliar traits when choosing

the optimal number of PLSR components to retain in the

final models.

2.4.1 Minimum PRESS
The first approach involved identifying the number of

components that produced the absolute minimum value of the

PRESS statistic (PRESSmin) for the validation fraction of the dataset.

This approach has been widely used for model selection in

vegetation spectroscopy (Acosta et al., 2023; Cherif et al., 2023;

Oliveira and Santana, 2020; Stein et al., 2014; Wang et al., 2020;

Yang et al., 2021).
2.4.2 Backward penalty
We noted certain situations where the PRESS value for a

reduced number of components only marginally exceeded the

absolute PRESSmin, such that simplifying the final model (i.e.,

reducing the number of components used in the model) would be

possible with little negative impact on model performance. In such

cases, a backward penalty approach was employed. Starting with the

number of components defining PRESSmin, models utilizing a

successively reduced number of components were evaluated until

the difference in the mean PRESS values for the validation fraction

for consecutive numbers of components fell below a predefined

threshold or penalty value (Tran et al., 2017). While the

determination of this penalty value could be subjective, it might

not always hold a statistical significance. To address this, we chose

to use a relative threshold as a percentage (1.5%) of the maximum

PRESS value from the validation set for each nutrient. This

approach is referred to as “PRESSadj” below.
2.4.3 Van der Voet statistic
The final approach evaluated here involved using

randomization tests, known as permutation tests, which offer the

advantage of utilizing the entire dataset in performance evaluation

(Van der Voet, 1994). The Van der Voet statistic was used to

randomly select various models and compare their residuals to

those of the reference model that minimized PRESS. Our

implementation involved a two-sided randomization t-test with a

Van der Voet T2 significance level of 1% (p-value < 0.01) to

ascertain the dimensionality of the PLSR model. This approach is

referred to as “Voet” below.

This exploration of component selection methods facilitated

well-informed decisions about model complexity, to better ensure

robust and reliable final models.

Finally, VIP scores were computed for the final model, serving

as a metric to identify the regions of the reflectance spectrum that

held significant importance in predicting leaf nutrient levels

(Meacham et al., 2020; Nakaji et al., 2019). VIP scores are

commonly employed in the variable selection process (Mehmood

et al., 2012), reflecting the statistical significance of each

independent variable (in this case, wavelengths) in the fitted PLSR

model (Chong and Jun, 2005). A higher VIP score indicates a

greater importance of the independent variable in explaining the
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variance of the dependent variable (in this case, nutrient and water

concentrations) (Mehmood et al., 2020). Typically, a VIP score

exceeding 1 serves as the criterion for selecting relevant variables

(Akarachantachote et al., 2014).
3 Results and discussion

3.1 Nutrient concentration analysis

Descriptive statistics of the observed foliar traits are presented

in Table 1 and visually depicted as box plots in Figure 1. Laboratory

analysis showed that the concentrations of all nutrients examined

here exhibited a wide range with large standard deviations. Mo

varied greatly with 61.19% CV whereas MC varied the least, having

only 5.41% CV. The mean element concentrations were 3.47%,

3,635.34 µg/g, 19,179.17 µg/g, 6,210.99 µg/g, 2,409.48 µg/g, 3,379.64

µg/g, 6.60 µg/g, 5.66 µg/g, 93.17 µg/g, 73.70 µg/g, 15.78 µg/g, 10.39

µg/g, 26.86 µg/g, 41.55 µg/g, and 68.57% for N, P, K, Ca, Mg, S, B,

Cu, Fe, Mn, Zn, Mo, Al, Na, and MC, respectively. Notably, none of

the elements exhibited a highly skewed distribution as evident in the

histograms in Supplementary Figure S1A. Furthermore, the analysis

revealed that P, K, B, Cu, and Fe exhibited nearly uniform

distributions for the sampling performed here.

A heatmap of the correlation coefficients (r) between each of the

leaf traits is presented in Figure 2. The majority of the correlations

were significant at the 0.01 probability level (non-significant values

are displayed in white). The highest correlation between any two

nutrients was for Ca and Mg with a correlation of 0.85, with the

correlation between N and Zn also quite high at 0.80. Fe had strong

positive correlations (r > 0.6) with three other nutrients: Ca, S, and

Cu. Mo had strong positive correlations (r > 0.6) with two other

nutrients: Ca and Mg. The strongest negative correlations were

between N and Mg (r = −0.63), and between water content and Fe

(r = −0.66) and Al (r = −0.63). Of all 105 pairs of traits, 21 (20%)

were not significant, 53 (50.5%) were positively correlated, and 31

(29.5%) were negatively correlated.
3.2 Spectral and correlation analysis

The mean reflectance spectrum of the full collection of wheat

leaf samples analyzed here (Figure 3A) exhibits the typical structure

characteristic of healthy green foliage (Hunt et al., 2015). While the

reflectance patterns across the wheat foliage spanning different

genotypes and growth stages are quite similar, subtle variations at

specific wavelengths within the VIS, NIR, and SWIR regions hold

the potential to predict leaf macronutrient and micronutrient

contents. The variability in the spectra is greatest in VIS, NIR,

and SWIR regions and lowest in the red edge (650–750 nm) and two

water absorption bands (1,350–1,420 and 1,680–1,700 nm).

Supplementary Figure S1B displays the average leaf reflectance

spectra for the six sampling dates spanning May 2022 to June

2023. A noticeable trend is observed across the visible, NIR, and

SWIR regions, where reflectance is lower during the earlier dates

(May) and gradually increases in the later dates (June). This trend
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may suggest seasonal variations in chlorophyll concentration, water

content, and internal leaf structure.

To identify the strength of the relationships between nutrients

and specific wavelength regions, the foliar traits were correlated with
Frontiers in Plant Science 06
the reflectance data at each wavelength across the spectral range used

here. These correlations are shown in Figure 3B. There were many

significant correlations between trait values and the leaf reflectance at

the 1% significance level (a = 0.01). Correlation values ranged from
FIGURE 1

Box plots of wheat foliar trait data for the 360 samples analyzed in this study. Each box represents the interquartile range, which spans the middle
50% of the data. The lower and upper boundaries of the box correspond to the 25th (Q1) and 75th (Q2) percentiles, respectively. The horizontal
center line in each box represents the sample median value. The dashed vertical lines indicate the region within 1.5 times the interquartile range,
with red points showing specific data values beyond this range (i.e., outliers). The data in each panel groups traits with similar ranges of variability in
[·g/g], with panel (A) presenting data for P, K, Ca, Mg and S; panel (B) presenting data for N (in %), B, Cu, Zn and Mo; panel (C) presenting data for Fe,
Mn, Al and Na; and panel (D) presenting data for MC (in %).
TABLE 1 Statistics describing observed leaf trait values of winter wheat samples examined in this study.

Statistics Min Max Mean Median SD CV (%)

N [%] 1.77 5.14 3.47 3.53 0.59 16.96

P [µg/g] 1,783.00 5,926.00 3,635.34 3,645.00 660.74 18.18

K [µg/g] 9,511.00 31,780.00 19,179.17 19,480.00 3,146.51 16.41

Ca [µg/g] 1,839.00 13,260.00 6,210.99 6,405.50 2,287.14 36.82

Mg [µg/g] 918.10 5,123.00 2,409.48 2,435.50 846.76 35.14

S [µg/g] 1,681.00 7,286.00 3,379.64 3,459.50 990.40 29.30

B [µg/g] 3.17 18.23 6.60 6.10 2.52 38.13

Cu [µg/g] 1.98 11.04 5.66 5.56 1.52 26.79

Fe [µg/g] 48.32 173.10 93.17 90.62 23.60 25.33

Mn [µg/g] 31.54 247.30 73.70 66.97 32.10 43.56

Zn [µg/g] 7.41 26.61 15.78 16.23 3.34 21.15

Mo [µg/g] 0.63 33.37 10.39 10.10 6.36 61.19

Al [µg/g] 5.96 99.63 26.86 24.82 13.92 51.81

Na [µg/g] 13.11 152.60 41.55 37.62 20.50 49.34

MC [%] 55.29 77.83 68.57 68.11 3.71 5.41
These statistics summarize the full set of 360 leaf samples. Presented here are the minimum (Min) and maximum (Max) values of each trait, along with the mean, median, standard deviation
(SD), and the coefficient of variation (CV) expressed as a percentage (SD/Mean × 100).
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−0.73 to 0.69. Ca, Mg, S, B, Cu, Fe, and Al displayed consistent

positive correlations across the spectral range. N, Zn, and MC

exhibited consistently negative correlations across the full spectral

range, with Zn correlations becoming statistically insignificant at

wavelengths longer than 1,400 nm. We also observe that foliar traits

exhibiting higher and positive r values in Figure 2 demonstrate a

congruent impact on leaf reflectance. For instance, the Ca–Mg pair

(r = 0.85) displays positive correlations with reflectance. The Mo–Mg
Frontiers in Plant Science 07
pair (r = 0.65) shows a similar positive trend, and the Zn–N pair

(r = 0.80) exhibits a negative association with reflectance. Conversely,

traits with more negative r values tend to exhibit divergent effects on

reflectance. Notably, MC demonstrates a negative correlation with

reflectance, while Fe displays a positive correlation, resulting in an r

value of −0.66. Similar patterns emerge for the MC–Al and Mg–N

pairs. K, Mn, and Na had insignificant correlations across most of the

spectral range. Overall, Fe and MC had the largest positive and
FIGURE 2

Heatmap illustrating the cross-correlations among the 14 leaf nutrients and moisture content. Each square represents the Pearson correlation
coefficient between two leaf traits, with color intensity indicating the strength and direction of the correlation. A significance threshold of p < 0.01
was used, with non-significant correlations (NS*) shown as white squares.
FIGURE 3

Leaf reflectance spectra and correlations with foliar traits across the reflectance range. (A) displays the mean (red solid line) leaf reflectance
spectrum across the 450–2,400 nm wavelength range, along with one standard deviation bands (dashed gray lines) and the full reflectance range
observed here (blue-shaded region). (B) presents the Pearson correlation coefficients between nutrient concentrations and leaf reflectance for each
wavelength. The gray shaded regions represent correlation values that are not significant at the 1% significance level.
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TABLE 2 Summary details of leaf trait prediction models for the three selection methods evaluated here.

Nutrient Selection method # Comp R2 RPD Normalized
PRESS

RMSE [%]

Cal Val Cal Val Cal Val Cal Val

N [%] PRESSmin 19 0.89 0.86 3.10 2.68 0.12 0.16 5.47 6.33

PRESSadj 14 0.87 0.84 2.80 2.45 0.15 0.19 6.05 6.91

Voet 16 0.88 0.85 2.94 2.56 0.14 0.17 5.76 6.62

P [µg/g] PRESSmin 20 0.57 0.42 1.53 1.30 0.47 0.65 11.85 13.99

PRESSadj 20 0.57 0.42 1.53 1.30 0.47 0.65 11.85 13.99

Voet 16 0.54 0.39 1.48 1.26 0.5 0.7 12.26 14.45

K [µg/g] PRESSmin 26 0.72 0.55 1.87 1.49 0.3 0.46 8.75 11.03

PRESSadj 18 0.64 0.53 1.67 1.45 0.38 0.49 9.84 11.35

Voet 23 0.68 0.56 1.78 1.48 0.33 0.46 9.21 11.08

Ca [µg/g] PRESSmin 30 0.88 0.76 2.85 2.01 0.17 0.34 12.9 18.35

PRESSadj 26 0.85 0.75 2.55 1.97 0.21 0.34 14.45 18.67

Voet 29 0.87 0.75 2.75 2.00 0.18 0.34 13.38 18.45

Mg [µg/g] PRESSmin 29 0.9 0.82 3.24 2.33 0.11 0.21 10.86 15.1

PRESSadj 21 0.85 0.78 2.57 2.13 0.18 0.25 13.69 16.49

Voet 27 0.89 0.81 3.12 2.32 0.13 0.22 11.54 15.41

S [µg/g] PRESSmin 28 0.81 0.69 2.32 1.77 0.26 0.44 12.61 16.53

PRESSadj 18 0.73 0.66 1.93 1.71 0.37 0.47 15.19 17.13

Voet 26 0.8 0.68 2.22 1.74 0.28 0.46 13.17 16.81

B [µg/g] PRESSmin 14 0.53 0.46 1.47 1.34 0.56 0.67 25.92 28.35

PRESSadj 13 0.53 0.44 1.45 1.34 0.57 0.68 26.23 28.5

Voet 11 0.49 0.42 1.41 1.30 0.61 0.71 27.14 29.26

Cu [µg/g] PRESSmin 16 0.62 0.53 1.63 1.44 0.52 0.64 16.44 18.56

PRESSadj 10 0.57 0.52 1.52 1.44 0.59 0.65 17.68 18.56

Voet 13 0.59 0.53 1.55 1.44 0.56 0.65 17.15 18.56

Fe [µg/g] PRESSmin 16 0.74 0.69 1.98 1.78 0.44 0.52 12.82 14.22

PRESSadj 13 0.73 0.68 1.91 1.75 0.47 0.54 13.23 14.51

Voet 12 0.71 0.66 1.87 1.72 0.49 0.56 13.52 14.75

Mn [µg/g] PRESSmin 18 0.53 0.41 1.47 1.28 0.47 0.61 29.66 33.98

PRESSadj 18 0.53 0.41 1.47 1.28 0.47 0.61 29.66 33.98

Voet 14 0.48 0.38 1.38 1.24 0.53 0.64 31.29 34.83

Zn [µg/g] PRESSmin 26 0.81 0.7 2.30 1.82 0.21 0.33 9.19 11.6

PRESSadj 13 0.72 0.66 1.89 1.72 0.31 0.38 11.22 12.29

Voet 24 0.8 0.69 2.23 1.79 0.23 0.35 9.51 11.79

Mo [µg/g] PRESSmin 24 0.67 0.51 1.75 1.40 0.45 0.69 34.95 43.71

PRESSadj 20 0.63 0.48 1.65 1.37 0.51 0.72 37.06 44.67

Voet 21 0.64 0.49 1.68 1.37 0.49 0.72 36.49 44.57

Al [µg/g] PRESSmin 22 0.64 0.53 1.66 1.45 0.47 0.63 31.2 35.74

(Continued)
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negative correlations at wavelengths longer than the visible

range, respectively.

Multiple studies in the literature have examined leaf-level

correlations between nutrient contents and VSWIR reflectance.

Stein et al. (2014) observed negative correlations between Ca and

Mg concentrations in the VIS and NIR spectral ranges (450–1,500

nm) for loblolly pine. They also reported positive Spearman rank

correlation coefficients for elements such as N, P, and K. In contrast,

our analysis reveals that N and K concentrations are negatively

correlated in the VIS and NIR region, while P, Ca, and Mg show

positive correlations. Our findings align with those of Yoder and

Pettigrew-Crosby (1995), who observed a negative correlation in the

N content of maple leaves within the 500–1,500 nm range. The

findings of Zhai et al. (2012) also mirrored our results for the

correlation patterns of P and K content, which fluctuated closely

around zero. Additionally, Oliveira et al. (2019) identified positive

correlation values for B, Mn, Ca, Fe, and Mg in Eucalyptus trees

within the 400–730 nm range, consistent with our results. K

displayed a negative correlation in the 400–730 nm range

(Oliveira et al., 2019), transitioning to a positive correlation

beyond 730 nm wavelength, akin to our observations of K, which

exhibited a shift from negative to positive correlation at

approximately 1,400 nm. A similar inflection point for correlation

change was identified at approximately 700 nm (Pimstein et al.,

2011), while a comparable shift at approximately 840 nm was seen

for cowpea (Amaral et al., 2022). In the case of P content in wheat

crops, Pimstein et al. (2011) found positive correlations in the NIR

and SWIR regions (>1,100 nm), consistent with our results. Our

findings indicated a negative correlation between N content with

leaf spectra in wheat, a relationship also previously observed

(Mahajan et al., 2014). Similar to our analysis, Amaral et al.

(2022) identified a positive correlation for Ca and a negative

correlation for Zn in the visible range, albeit for cowpeas. Our

moisture content correlations aligns with similar peaks reported

(Ng et al., 2007). Kovar et al. (2019) examined the relationship

between leaf water content and hyperspectral reflectance in

soybeans and found that the correlation between moisture
Frontiers in Plant Science 09
content and spectral data fluctuated around zero, in contrast to

the strongly negative correlations between MC and reflectance that

we found. Overall, the data shows substantial correlations between

reflectance and nutrient and water content across this diverse wheat

dataset, motivating the examination of VSWIR spectroscopy to

model these traits in wheat.
3.3 Model performance

The performance of the optimal PLSR models using the three

different model selection techniques is presented in Table 2. The table

presents normalized PRESS and RMSE values. Normalized PRESS is

obtained by dividing the PRESS value of either the calibration or

validation set by the maximum PRESS value within that respective

set. RMSE is expressed as a percentage of the mean value of that trait

across the full dataset. PLSR models for nutrients differed greatly in

their predictive capabilities when using different selection methods.

First, we examine the nitrogen models to illustrate the trade-offs

between model performance metrics and model complexity.

PRESSmin yields the highest R2 and RPD (0.86 and 2.68

respectively) and lowest error (PRESS = 0.16, RMSE = 6.33) in the

validation set, which are typically considered indicators of good

model performance. However, despite these seemingly favorable

outcomes, PRESSmin retains a very high number of components

(19), potentially resulting in a model with higher complexity that may

model elements of noise in the dataset. This complexity can introduce

unwanted noise into the model, as observed in the PLSR coefficient

plots (Supplementary Figure S2C). The Voet method falls short for

similar reasons as it does manage to mitigate the use of some

excessive components but residual noise persists in the model. In

contrast, the PRESSadj method demonstrates strong predictive

performance with an R2 of 0.84, an RPD of 2.45, and a slightly

higher error (PRESS = 0.19, RMSE = 6.91) using fewer components

(14), thereby resulting in smoother model coefficients. Similar

observations can be made for the models of K, Ca, Mg, S, Cu, Zn,

Mo, and MC. It is crucial to strike a balance between accuracy, error,
TABLE 2 Continued

Nutrient Selection method # Comp R2 RPD Normalized
PRESS

RMSE [%]

Cal Val Cal Val Cal Val Cal Val

PRESSadj 21 0.63 0.53 1.64 1.44 0.49 0.63 31.65 35.97

Voet 18 0.61 0.49 1.61 1.41 0.51 0.68 32.47 37.38

Na [µg/g] PRESSmin 15 0.53 0.45 1.46 1.34 0.49 0.58 33.89 36.95

PRESSadj 13 0.5 0.43 1.42 1.32 0.52 0.59 34.83 37.31

Voet 11 0.45 0.41 1.36 1.28 0.56 0.63 36.35 38.42

MC [%] PRESSmin 16 0.89 0.86 3.09 2.67 0.17 0.23 1.75 2.03

PRESSadj 9 0.85 0.84 2.63 2.46 0.24 0.27 2.06 2.2

Voet 13 0.88 0.85 2.92 2.61 0.19 0.24 1.85 2.07
fron
Displayed here for each trait and selection method are the optimal number of components of the final models (# Comp), the coefficient of determination (R2), the ratio of performance to
deviation (RPD), the normalized predicted residual error sum of squares (PRESS) statistic, and the root mean square error (RMSE [%]) for both calibration (Cal) and validation (Val) datasets.
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and model simplicity, as excessively complex models may introduce

noise and compromise interpretability and extensibility to other

datasets and broader applicability. Here, we demonstrate that the

success of the PRESSadj method, compared to the widely used

PRESSmin method and the less commonly employed Voet method,

lies in its ability to retain an optimal number of components while

explaining a comparable amount of nutrient variation to other

selection methods that tend to retain a higher number of

components. A detailed comparison of the three model selection

methods is presented for all foliar traits in Supplementary Figures S2

through S16.

The performance of the final PLSR regression models using

PRESSadj for model selection is presented in Figure 4. This figure

demonstrates the broadly strong model performance that PLSR using

PRESSadj demonstrates for a wide range of macro- and micronutrients

and foliar water content. The best-performing models are associated

with N (R2 = 0.84, RPD = 2.45, RMSE = 6.91), MC (R2 = 0.84, RPD =

2.46, RMSE = 2.20), Mg (R2 = 0.78, RPD = 2.13, RMSE = 16.49), and

Ca (R2 = 0.75, RPD = 1.97, RMSE = 18.67). Other nutrients for which

PLSR models showed intermediate to high predictive accuracy were

Fe (R2 = 0.68, RPD = 1.75, RMSE = 14.51), Zn (R2 = 0.66, RPD = 1.72,

RMSE = 12.29), and S (R2 = 0.66, RPD = 1.71, RMSE = 17.13).

In contrast, the models for K (R2 = 0.53, RPD = 1.45, RMSE = 11.35),
Frontiers in Plant Science 10
Al (R2 = 0.53, RPD = 1.44, RMSE = 35.97), Cu (R2 = 0.52, RPD = 1.44,

RMSE = 18.56), Mo (R2 = 0.48, RPD = 1.37, RMSE = 44.67),

B (R2 = 0.44, RPD = 1.34, RMSE = 28.50), Na (R2 = 0.43, RPD =

1.32, RMSE = 37.31), P (R2 = 0.42, RPD = 1.30, RMSE = 13.99), and

Mn (R2 = 0.41, RPD = 1.28, RMSE = 33.98) exhibit a moderate level of

agreement with observed concentrations. In the work by Chang et al.

(2001), three distinct categories were established to evaluate model

reliability based on the RPD values. Models with an RPD greater than

2.0 are considered excellent, those with an RPD between 1.40 and 2.00

are classified as fair, while models with an RPD below 1.40 are deemed

non-reliable. In our analysis, the majority of the nutrient models were

classified as either excellent or fair, with the exceptions being Mo, B,

Na, P, and Mn. In the vast majority of cases, the predicted values fall

within the 95% confidence interval region, as illustrated in Figure 4.

The PLSR coefficients across all the wavelengths produced by

the PRESSadj method are shown in Figure 5. The magnitudes of the

regression coefficients serve as indicators of the impact of individual

wavelengths and wavelength ranges on model predictions. These

coefficients denote the weights assigned to each predictor variable in

the model, with larger coefficients suggesting a stronger association

between predictors and predictands (Sawatsky et al., 2015). The

diverse set of nutrients examined here exhibited peaks in distinct

wavelength regions that spanned the entire spectrum. The sign of
FIGURE 4

PLSR model performance for the 15 wheat foliar traits using PRESSadj for model selection. Each panel shows a comparison between predicted
(vertical axes) and observed (horizontal axes) trait values. In each panel, the black solid line is the 1-1 line, the red line shows the best linear fit line
between the model and observed data, the gray shaded region denotes 95% confidence bounds around the fit line serving as the measure of
precision of the prediction, with the green dots representing individual data points. For each trait, the coefficient of determination (R2), the root
mean square error (RMSE) for the validation fraction, and number of components are presented. Parts A–O correspond to the model performance
for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, Mo, Al, Na, MC, respectively.
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each coefficient reveals the direction of the relationship between the

predictors and predictands, with a positive coefficient signifying a

positive relationship (as the predictor variable increases, the

response variable tends to increase) and a negative coefficient

signifying a negative relationship (as the predictor variable

increases, the response variable tends to decrease).

An associated method to assess important regions of the

spectrum is the evaluation of VIP scores across the spectrum

(Figure 6). Here, we utilize a VIP threshold value of 1 to indicate

those spectral regions important to model predictions (Mehmood

et al., 2020). All wavelengths with VIP scores above this value are

considered significant in the final model prediction. In Figure 6, we

highlight the wavelength ranges that represent the three highest

peak values in VIP scores. These peaks usually align with

wavelengths where essential physiological or biochemical

processes in leaves affect reflectance (Curran, 1989). For almost

all nutrients, the highest peak of VIP scores comes in the region of

the spectrum spanning the red and red-edge wavelengths (630–770

nm) and the green region (550–560 nm) of the spectrum, as this

region is associated with chlorophyll absorption crucial for

photosynthesis. P, S, Zn, and Na showed the highest VIP scores

(>3) in the 630–780 nm region. Generally, the VIP scores fall below

the threshold across the NIR region for most nutrients. In this

region, peaks are often linked to leaf internal structure and water

content, which significantly affect light scattering within the leaf.
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The next highest peaks for most traits come in the SWIR region

(1,300–2,400 nm), where they often correspond to water absorption

bands and the presence of organic compounds, which are important

for assessing leaf water status and stress indicators. For MC, the

highest two peaks come in the SWIR region where there is greater

sensitivity of reflectance to water content. These locations of

important VIP scores and higher magnitude PLSR coefficients

occurring in the visible and NIR regions are in agreement with

studies that deal with other plant species such as pinot noir (Lyu

et al., 2023), eucalyptus (Oliveira and Santana, 2020), temperate and

boreal tree species (Serbin et al., 2014), and citrus (Acosta

et al., 2023).
4 Conclusions

This study demonstrates the potential of using VSWIR

spectroscopy as a rapid and non-destructive sensing technique,

along with PLSR, to quantify the contents of 14 macro- and

micronutrients in green winter wheat foliage, as well as foliar

water content. Our sampling of winter wheat foliage at different

growth stages over two field seasons demonstrated the wide range of

variability in these foliar traits despite no differences in treatment.

For most traits, there were extensive regions of the spectrum

examined here (350–2,500 nm) for which there were significant
FIGURE 5

Standardized PLSR coefficient plots spanning the wavelength range from 450 to 2,400 nm using PRESSadj for model selection. Blue regions indicate
positive coefficient values while red hues represent negative coefficient values. The gray line shows the mean reflectance spectrum (multiplied by
nine for display purposes) for reference. The coefficients presented here have been standardized to have a mean of zero and a standard deviation of
one. Parts A–O correspond to the model coefficients for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, Mo, Al, Na, MC, respectively.
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correlations between trait values and reflectance, highlighting the

potential of VSWIR sensing to capture subtle variations in even

micronutrients with low concentrations.

This study provided a comprehensive evaluation of a wide

range of macro- and micronutrients crucial for winter wheat

growth, providing a wider lens on nutrient content variability

than is typically provided in studies focused on one or a few

macronutrients. This allowed us to evaluate the ability of VSWIR

reflectance and PLSR to capture trait variability, particularly for

some poorly studied micronutrients that pose challenges to model

retrievals due to low concentrations in green foliar tissue. The

models we developed exhibited good to excellent predictive

performance across this wide range of foliar traits. The

evaluation of model coefficient variability and VIP scores

pointed to critical regions of the spectrum most important for

predicting each trait. This analysis has the potential to guide

sensor development focused on the quantification of a subset of

foliar nutrients with simplified sensors that cover only the most

critical spectral regions.

Our methodology provided a systematic comparison between

three PLSR component selection methods. These included the

widely used method of evaluation of the absolute minimum value

of the PRESS statistic, as well as the less widely adopted Van der

Voet’s two-sided randomization t-test, and a backward iteration
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process developed here to minimize model complexity while

retaining sufficient predictive performance. Our analysis revealed

that the backward iteration method struck an ideal balance between

model complexity and predictive accuracy. In general, this method

resulted in fewer components retained in the final model relative to

the other two methods, providing confidence that overfitting had

been reduced, making model predictions more reliable and

providing a path to further evaluation of heuristic methods to

reduce overfitting in PLSR model development.

This work has the potential to significantly improve precision

wheat management by demonstrating the potential of spectroscopic

sensors to provide accurate evaluations of foliar nutrient contents,

allowing managers to make decisions informed broadly on nutrient

health. Likewise, accurate and rapid assessments of foliar nutrient

profiles have the potential to impact breeding decisions, potentially

improving selection and accelerating the breeding cycle. In both

cases, this study points to the potential for this technology to be

applied to other agricultural systems.
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FIGURE 6

Variable Importance in Projection (VIP) scores across the full spectral range used for PLSR modeling. Solid blue lines are the VIP scores, with the
threshold value of 1 shown as a red dashed line. The shaded gray regions correspond to the areas surrounding the top three peaks in the VIP scores,
indicative of regions of the spectrum most important for modeling each leaf trait. Parts A–O correspond to the VIP scores for N, P, K, Ca, Mg, S, B,
Cu, Fe, Mn, Zn, Mo, Al, Na, MC, respectively.
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